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Abstract

A calculation of the electromagnetic response of a thin conductor in the presence
of an exciting primary magnetic field has been attempted by various authors. Ana-
lytic solutions are obtainable when either the conductor is of infinite extent or when
the problem possesses some symmetry. The loss of symmetry makes the problem
difficult to solve except for the simplest shape - that of a circular conductor. A
numerical method has been used for the rectangular conductor by other authors. In
this paper we consider the response due to a thin plane conductor of arbitrary shape.
The method involves the numerical generation of a set of body-fitted orthogonal cur-
vilinear coordinates which maps the conductor onto a unit square. Good orthogonal
grids can be generated for shapes that do not deviate too far from the rectangular.
In terms of these curvilinear coordinates the vector potential for the area current
density satisfies an integro-differential equation which is solved numerically.

1. Introduction

Problems involving the induction of eddy currents in the low-frequency limit,
are important in several branches of physics, including mining geophysics. In
the electromagnetic method of prospecting, an oscillating magnetic field is set
up by sending an alternating current through a transmitting loop of wire and the
presence of a conductor is detected by the presence of an anomalous secondary
field due to the eddy currents induced in the conductor. The electromagnetic
response of idealized models whose thickness is small compared to its lateral
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extent is of interest in the detection of ores occuring in lateritic formation. It is
also of interest in ionospheric physics and in the induction of oceanic basins.

The induction of eddy currents in thin sheets has been studied by various
authors. The method used usually depends on the geometry of the conductor.
The simplest case is when the conductor is considered to be an infinite thin
sheet [7], or when certain assumptions are made regarding the inducing field
[1,9]. When the conductor is of finite extent, or when there is no axial symmetry,
the problem is not always solvable analytically. Siew and Hurley [10] have
obtained analytical solutions for the response in thin circular conductors in
the presence of an arbitrary exciting field. The analytical methods used are
unfortunately not suitable for other geometries. Lamontagne and West [6] used
a numerical formulation for the rectangular conductor, but here the scheme is
geometry dependent. There is therefore a need for a general scheme that will
not depend on the geometry of the conductor and it is the purpose of this paper
to outline one such scheme.

2. Basic equations

The formulation follows quite closely that used in Siew and Hurley [10]. We
consider here a plane conductor with normal in the Oz direction. The conductor
is assumed to be surrounded by vacuum in which there is a primary alternating
magnetic field H(p)exp(7a>0> and the eddy currents induced in the conductor
give rise to an anomalous field H(i) exp(icot). The time variation of exp(/a>?)
will be assumed from now on. Outside the conductor, Maxwell's equation for
the electric field E is given by

V x E = -ico(x0(H
(p) + H(J)), (2.1)

where IXQ is the permeability of free space. If the thickness d of the conductor
is small enough so that the current density J may be assumed constant across it,
an area current density K may be defined [6] as

K=/
Jo

d

Jdz= id.

Then, on the surface of the conductor, (2.1) may be replaced by

(V x K) • z = -iaxTfiodiH™ + //£>), (2.2)
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where z is the unit vector in the Oz direction, a is the conductivity, assumed
constant, and the subscripts z+ denote the vertical components of the magnetic
fields. The right hand side of (2.2) is obtained by assuming the fields do not vary
appreciably across the thickness of the conductor. K may also be defined in terms
of a stream potential U(x, y) by the relation (see for example, Smythe [11]),

K = V x (0,0, U),

and the equation to be solved is given in non-dimensional form by

V2U = ia{H™ + //£>}, (2.3)

where a = fi0acoda is the induction number, and a is a suitable length scale.
Equation (2.3) is solved with the condition that U = 0 on the boundary of 5.

This was done analytically for the circular conductor by Siew and Hurley [10]
and numerically by Lamontagne and West [6] for a rectangular conductor. In
terms of the integral form of the Biot Savart law we have

where S is the surface of the conductor, r and r' are the observation and source
points respectively, and we have implicitly assumed that {(r — r ' ) / | r — r' |3}
does not vary appreciably across the thickness of the conductor. As remarked
in [6], the present model is appropriate for a large proportion of geologically
occuring conductors. Equation (2.4) is well defined except where r' = r when
it becomes an improper integral. When r lies inside 5 it can be shown that
the improper integral is convergent in the usual sense while, if r is a boundary
point of S, the integral becomes logarithmic, an edge property that was also
encountered in Hurley and Siew [4]. Here the logarithmic singularity is a
consequence of the averaging process used to derive (2.4). This last equation
holds everywhere except for a region that is 0{d) from the boundary of the thin
conductor. Given that we are solving for U at interior points on the surface, the
logarithmic singularity is never a feature of the problem.

3. A numerical scheme for a unit square

It is useful to consider initially a conductor occupying the unit square 0 <
x < 1 and 0 < y < 1. For other geometries the conductor can be mapped onto
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a unit square leading to an algebraically more complicated integro-differential
equation, but little detracts from the method described in this section. In both
cases, the right hand side of (2.4) still presents a problem numerically. In the
numerical scheme for a rectangular conductor, Lamontagne and West used a
difference approximation for the derivatives of U and imposed a quadrature
approximation on VU which removes the singularity. However the method
becomes unwieldy when the shape of the conductor is not rectangular and
when it is necessary to map its boundary onto that of a unit square. Now, the
convergence of the improper integral defining H^s) means we can omit a small
neighbourhood of r' = r when evaluating the surface integral. Analytically the
integral over this small neighbourhood can be shown to tend to zero as its area
tends to zero. Therefore, in the numerical scheme adopted below, we omit the
contribution from the four sub-regions surrounding the observation point. A
numerical justification for this is given in the appendix where we show that a
different quadrature can be chosen for U over these four squares such that the
contribution is negligible or zero.

Consider now a regular AfxJV mesh covering the unit square. It is required to
obtain estimates for Umn = U{xm,yn) at the observation point (xm, yn) satisfying
(2.3)wherexm = mh and yn =nh for 1 <m < N —1,1 < n < N — l. Umn — 0
for m and n equal to 0 or N, being points on the boundary of the conductor. If
suffixes i and j are used to replace m and n respectively for the source points
in the integrand in (2.4), and if the integral over the square Ay occupying the
region x,• < x < xl+l and vy- < y < v;+1 is denoted by /ymn then (2.3) and (2.4)
yield

(V2f/)mn = ia{Pmn + J2hjmn - h \ (3.1)
*• 'J '

where (V2C/)mn = Um+Un + Um-i,n - 4Umn + f/m,n_, + Um,n+l is the Laplacian,
Pmn is the value of H^+\xm, yn) and 74 denotes the contribution from the four
squares surrounding the observation point, that is, for / = m — 1 or m and
j = n — 1 or n. In Ay, we first interpolate U(x, y) by using the values at the
four corners of the square:

U(x', / ) = /,7 Ui+l,J+l - /,,,+, Ui+lJ + /,+,,,+, £/,,, - /,+1,; UiJ+l, (3.2)

where (x', y') e Ay and

lij = (x'-ihXy'-jh)/h2. (3.3)

https://doi.org/10.1017/S0334270000009565 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009565


[5] A numerical scheme for the electromagnetic response 483

Equation (3.2) also yields
Q J T -

(3.4)

and
O 7 7

U J j i \ . (3.5)

Thus, IiJmn takes the form

Jjh JihJjh J mnh
where

Qijmn{X , y ) = Ui

and
gi,j,m,n = {mh - x')(y' - jh) + (nh - y')(x' - ih).

For each value of / and j , A,; is mapped onto the square —1 < x < 1,
— 1 S y < 1 by use of the transformation

x = h[x + 2i + l]/2, y = h[y + 2j + l]/2 (3.7)

and the resulting integral evaluated by use of a Gauss-Legendre quadrature.
In the various examples shown in this paper we have used an 8-point Gauss-
Legendre quadrature (see Stroud and Secrest [12]) - using a higher order quad-
rature does not give significantly different results. Once all the coefficients of
Umn are found, the resulting (N - I)2 x (N — I)2 complex system of equations
given by (3.1) is solved by LU-factorization. As shown in the appendix, /4 is
identically zero for a suitable quadrature approximation for U slightly different
from (3.2) above.

4. Body fitted coordinates

When the cross-section of the conductor is not square, the choice of the
numerical technique becomes of importance. There are many contenders here,
and all schemes have some inherent deficiencies either in terms of computational
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complexities or smoothness of the estimated quantities. Directly connected
with this is the coverage of the actual region in question. As pointed out
by Fornberg [3] conformal mapping is an ill-conditioned problem since small
changes in the domain may result in large displacements of neighbouring points
in the image. This is not a dismissal of the technique which has many useful
applications; indeed, in a recent paper, Kang and Leal [5] used a conformal map
as a preliminary step for their boundary integral technique. This technique may
be used for more complicated shapes than the ones treated in this paper. Finite
elements have been extensively used when dealing with bodies with curved
boundaries, however, not all derivatives can be made continuous across the
boundaries of the various elements. The use of body fitted coordinates has made
finite difference schemes a worthwhile alternative.

In this paper we use a numerical scheme to obtain a set of body fitted co-
ordinates which maps the boundary of the conductor onto a unit square. The
method used to obtain the orthogonal grid is that derived by Ryskin and Leal [8].
The choice is influenced by the desire to retain some control over the boundary
correspondence between the original domain and its image and still work with
an orthogonal set of coordinates. For this particular application, orthogonality
leads to a comparatively simpler transformed equation. Another advantage is
that the arbitrary domain in the Oxy frame of reference is always mapped onto
the unit square 0 < § < 1, 0 < 37 < 1 in the 0^/j frame, over which a regular
N x N mesh is imposed. We give a brief description of the method below and
the interested reader is referred to the original paper [8] for details. Since x
and y are the cartesian coordinates which are linear scalar functions of position,
grad(x) and grad(v) are constant valued vector fields and hence

V2x = 0, V2y = O (4.1)

everywhere, where V2 is the covariant Laplace operator. Equation (4.1) is
independent of the coordinates chosen and hence may be used as the defining
equations for the functions

x = jc($,ij), y = yG,n) (4.2)

which map the cartesian coordinates to the set of curvilinear coordinates (£, rf).
If the scale factors along curves of constant r) and £ are respectively ft)and h2,
then (4.1) becomes

» ( ,£) + ' (If) =0, ± (/g) + f ( ' §>) =0. (4.3,
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where / ( £ , r,) = h2/hi is a distortion function in the sense that it measures
how far the mapping deviates from being conformal (this being the case when
/ = 1). Now, in general there are two degrees of freedom in choosing the
mapping function. The requirement for orthogonality (see (4.5) below) means
that we can only impose one other constraint. One choice is to specify the
distribution for / ( £ , r?) in the domain in question. This choice does not allow
us to impose any control over the boundary correspondence. An alternative
choice is to prescribe the boundary correspondence while allowing the values of
f(M,r)) to be determined by the mapping itself. This is what the authors referred
to as the weak constraint method. Chikhliwala and Yortsos [2] have shown that
the method of weak constraint gives satisfactory orthogonal grid when (4.3) is
solved with a mix of Dirichlet and Neumann conditions on the boundary. In
practice, one starts with an initial guess for x{%, rj), y{%,rf) from which the
values of / ( £ , r)) on the boundary can be deduced. The boundary values of
/ ( § , rj) are then used to obtain a smooth interpolation of its distribution inside
the unit square via the equation

, i?) = (1 - £)/(0, ri) + ?/( l , i?) + (1 - IJ) / (£ , 0)
(4.4)

where

/ e ( t , ri) = ( 1 - ^ ( 1 - ^ / ( 0 , 0)+(l-$)»j/(0, l)+£(l-»/)/(l , 0 ) + £ I J / ( 1 , 1).

Equation (4.3) is then solved with the prescribed boundary conditions and the
whole process repeated until some convergence criteria is satisfied.

The actual geometry of the region under study determines the ease with which
the grids are obtained. Since the problem is two dimensional, a condition for
orthogonality is given by requiring that

^ + ^ = 0 . (4.5)

This equation further implies that

dx dy dx dy

3£ ~ dr)' dr) ~ J 9 | '

Numerically the value of

1M = cos '
9| dr, di-dr,]]
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gives a measure of the orthogonality achieved. Similar to Chikhliwala and
Yortsas we adopt as a measure of orthogonality the quantity MDO = (0.5 —
M/TT). Good orthogonal grids are obtained when MDO is small. This value
is calculated at each grid point and the maximum value is used as one of the
criteria for terminating the iterations. The other criterion is the maximum
absolute difference A / between successive values of the distortion function. In
the examples considered here A / = 0.01 has been used in each case.

For any given geometry, (4.3) is replaced by the scheme

axzi+x + a2Zi-i + a3z + a4zj^ + a5zj+x = 0, (4.7)

where z is either x or y, suffixes i and j are suppressed (that is zi+Xij is written as
z,+i only) and ak, k = 1,2,..., 5 are coefficients involving / . Equation (4.7) is
solved using an SOR scheme with prescribed Dirichlet or Neumann conditions
on the boundary of the region. The number of iterations required for convergence
is small if one starts with a low number of meshes. To obtain good orthogonal
grids with N = 20 say, one might start with an arbitrary distribution of values
for (*(£,-, r}j), y(£,, rj,)) over a 5 x 5 mesh. A higher convergence tolerance may
be used at this stage. The set of grid values obtained is then linearly interpolated
over a 10 x 10 mesh and the iterations carried out with a lower convergence
tolerance. The set of values so obtained is then interpolated over the final
20 x 20 mesh and the iterations again carried out this time with the prescribed
convergence criteria. The program exits either when the minimum value of
MDO is achieved or when the deviation in the distortion function is everywhere
less than the value set for A/ . The final set of points (*(£,-, rjj), y(£,, r\j)) are
then used in solving the equivalent transformed equation obtained from (2.3).

5. The general case

Starting with (2.3), the transformation given by (4.2) leads to the equation

1 d2U 1 81

ia_f/px/a^ J_^f\ ?z(&l x d2yX\\

W(x«,q), y(£,f,)) + £L U U
 GZt™?'TnMnd?dn'. (5.1a)

+ 4nJ Ja[(x-x')2 + (y-y')2]3'2
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where

dx'i du ( 5 1 b )

/ is the Jacobian given by

dx dy dx dy

£2 denotes the unit square in the 0%r\ frame and use has been made of (4.5)
and (4.6) to give the relation J = fh\. Also, it is understood that x and y are
functions of £ and r\ while x' and y' are functions o f f and r\'. We note in passing
that when the conductor is rectangular, then x, y are linear in £, r\ respectively
and we recover (2.3) and (2.4).

We assume now that the orthogonal grids have been generated by the method
of Section 4. The left hand side of (5.1a) is discretized using central differences
and the discretized form of the right hand side looks similar to the right hand
side of (3.1), but with a slightly more complicated expression for lljmn and /4.

6. Some numerical results

We present here some results obtained using the numerically generated grids
to solve (5.1). Figure 1 shows the stream potential maps for a 2 x 3 rectangular
thin plate due to a uniform vertical inducing field with a = 20. The plate
occupies the region 0 < x < 3 , 0 < y < 2 . This region is mapped onto
a unit square which is superimposed with a 20 x 20 grid and the resulting
361 x 361 system of equations are then solved for U. Figure 2 gives the vertical
component of the induced magnetic field along a traverse starting from the point
with coordinates ( -2 , 1, 0.2) to the point (5, 1, 0.2).

Figures 3 and 4 give the corresponding results for the response due to a unit
vertical dipole positioned at (1.5,4, 0.2). The traverse path used in Figure 4 is
from the point with coordinates (1.5, - 2 , 0.2) to the point (1.5,4, 0.2).

Good orthogonal grids may be obtained for shapes that do not deviate too
much from the rectangular. Figure 5 shows the 40 x 40 grid that is generated
for the quadrilateral shown. The average deviation from orthogonality is 0.52
of a degree and is worse near the obtuse angled top right hand corner where it
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FIGURE 1. The stream potential maps due to a uniform vertical primary field, (a) In-phase
component, (b) Quadrature component, a = 20. Zero contour on boundaries. Contour intervals
= 0.5. (Dimension of plate not to scale)
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3 4
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FIGURE 2. The vertical component of the induced magnetic field due to a uniform primary field.
a = 20 The horizontal scale s, measures distances along the path of traverse from (—2, 1, 0.2) to
(5,1, 0.2). The response over the plate covers the range 2 < s < 5.

deviates by a little over five degrees. Figure 6 shows the corresponding 40 x 40
grid that is generated for the shape where the right most boundary curve has
equation x = 2 + 0.5cos(ny/2). In this case all corners are right angles and
the generated grids have an average deviation from orthogonality of about half a
degree, the worse being near the bottom right hand comer where it reached 0.89
of a degree. This may be improved on by setting lower convergence criteria on
MDO and A / .

In both Figures 5 and 6, Dirichlet conditions are imposed on the right hand
boundary while zero Neumann conditions are maintained on the other bound-
aries. Figure 7 illustrates the change in the grids generated when the distortion
function is changed. In both cases, Dirichlet conditions are maintained only
on the curved boundary. For this slightly awkward shape, the entire boundary
x] — 1 in the tranformed plane is mapped onto a point in the physical plane. In
Figure 8 we show the stream potential maps for the shape of Figure 6 with a unit
vertical dipole situated at (3, 1,0.2). The corresponding induced magnetic field
as calculated along a horizontal path given by y = 1 and at the same height as
the inducing dipole is shown in Figure 9.
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FIGURE 3. The stream potential maps for the rectangular plate with a primary unit vertical
dipole situated at (1.5,4,0.2). (a) In-phase component, (b) Quadrature component, a — 20.
Zero contour on boundaries. Contour intervals = 0.05. (Dimension of plate not to scale)
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0.4

0.3H

0.2H

O . l H

- O . l H

-0.2

in-phase
quadrature

FIGURE 4. Vertical component of the induced magnetic field for the rectangular plate due to a
unit dipole at (1.5, 4, 0.2). a = 20. The horizontal scale measures distances from (1.5, - 2 , 0.2)
to (1.5, 4, 0.2). The plate occupies the same region as in Figure 2.

1 . 5

0.5

0 0 . 5 1 . 5 2.5

FIGURE 5. 40 x 40 grids for a quadrilateral A / = 0.00928, MDO = 0.0895.
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1 . 5 -t

0.5 -i

FIGURE 6. 40 x 40 grids for an otherwise rectangular shape. Right hand boundary has equation
x = 2 + 0.5 cos(ny/2). A / = 0.00994, MDO = 0.0155.

FIGURE 7. 20 x 20 grids generated using two different distortion functions. On the left / is
defined by (4.4). On the right / is given by (4.4) multiplied by (1 — 0.2cos7T>j).
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FIGURE 8. Stream potential maps for the region of figure 6 with a unit vertical dipole situated
at (3, 1, 0.2). (a) In-phase component, (b) Quadrature component, a = 20. Zero contour on
boundaries. Contour intervals = 0.1.
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0 . 8 '

- 0 . 2

in-phase
quadrature

FIGURE 9. Vertical component of the induced magnetic field. The inducing dipole is at
(3, 1,0.2), a = 20. The horizontal scale i measures distances along the path of traverse from
(-2,1,0.2) to (5, 1,0.2).

7. Discussion

We have treated the problem of a thin planar conductor in free space. The
method is relevant for deposits whose lateral extent is much larger than its
thickness. It should be noted that in practical situations we need to take account
of the surrounding medium unless of course the host turns out to be only weakly
conducting. When the host medium is also conducting, the problem is best
tackled by reformulating in terms of the electric field, resulting in an integral
equation (see [13]) which may be treated in a manner similar to that described
here. We note from the magnetic field response that the curves typically peaks
near the edge of the conductor, not unlike the type curves associated with
magnetic surveys. This property may be used to ascertain the lateral extent
of the deposit by taking sufficient numbers of readings from various lines of
traverse. The present formulation does not suggest a ready method for depth
estimation.

The advantage of the method presented in this paper lies in its simplicity.
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Every region is mapped onto a unit square and the corresponding problem
solved in the transformed plane over a regular mesh. The grid generated can be
varied by imposing different expressions for the distortion function as well as
by changing the choice of boundaries on which to impose Neumann or Dirichlet
conditions. The accuracy obtainable is affected by two factors. One is the
accuracy with which the orthogonal grids can be generated numerically. For
shapes that do not have corners that differ too much from the right angle, one can
expect to get good orthogonal grids. This is inherent in the method used here.
Another factor is the interpolation quadrature for U. To keep the algebra simple,
we have used a quadrature that is linear in the two coordinates. The cancellation
in U for each interior point occurs over a regular mesh in the transformed plane
irrespective of its actual location in the physical plane.

Acknowledgement

This work has been partially supported by a Curtin Research Grant. The
author wishes to acknowledge the contribution of Mr Peter Staples who helped
to implement the numerical codes used in this paper.

Appendix

In this appendix, we will justify neglecting the contribution /4, from the
four squares A say, surrounding the observation point (xmn, ymn), where xmn =
x(i-m, t)n) and ymn — y(%m, t]n). Starting with (5.1a) the integral over A is given
by

U= f [ ( * , . - *
J(n-l)h J(m-\)h [

x [(xmn - x')2 + (ymn - y')2Y3/2d?dri', (A.I)

where x', y' are functions of §' and r{ and h is the mesh size as before. When
the conductor is a square, then dx'/dr]' = 0 = dy'/d%' and the integrand in
(A.I) simplifies somewhat. When the mesh size is small enough, we expect
that both x' and y' may be approximated closely by linear functions of £' and r\'
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in the region A irrespective of the shape of the conductor. This means higher
derivatives of x' and y' may be neglected and hence the distortion function /
may be assumed constant throughout this region. This linear relation is in fact
exact when the conductor is rectangular in shape. For conductors of large extent
this fact may be exploited by dividing the region into subregions which contain
rectangles. We now let

£ = mh+lh, r]' = nh + fjh, (A.2)

and then, over A we have

so that

Similarly

•.-/ = -* [* % + «!•?]• <*••>
Substituting into (A.I) now yields

dU _dU

-111 /.1
I rt J- nTI I

d^df,, (A.5)

where (4.5) and the relation J = fh\ from Section 5 have been used. Using a
bilinear quadrature for U based on the corner points of A, viz.

' - (m - \)h][r)' - (« - l)/z]f/m+1,n+1

(A.6)- [ § ' - (m - l)h][ri' - (/i + \)hWm+i,n-\
- (w + l)h)[r,' - (n

-W - (m+l)h][rf - (« - \)h)Um-hn+l}/(4h2),

we see that (A.5) is made up of three principal value integrals with integrands
which are proportional to | [ | 2 + fj2r3/2, /?[|2 + *?2]-3/2 and f ^[f2 + rj2]"3/2.
Each improper integral converges to zero.
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