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Lukas Unglehrt1,† and Michael Manhart1

1Professorship of Hydromechanics, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany

(Received 16 March 2023; revised 3 August 2023; accepted 19 September 2023)

We investigate steady and oscillatory flow through a hexagonal close-packed arrangement
of spheres in the framework of the volume-averaged momentum equation. We quantify
the friction and pressure drag based on a direct numerical simulation dataset. Using the
pressure decomposition of Graham (J. Fluid Mech., vol. 881, 2019), the pressure drag
can be further split up into an accelerative, a viscous and a convective contribution. For
the accelerative pressure, a closed-form expression can be given in terms of the potential
flow solution. We investigate the contributions of the different drag components to the
volume-averaged momentum budget and their Reynolds number scaling. For steady flow,
we find that the friction and viscous pressure drag are proportional to Re at low Reynolds
numbers and scale with Re1.4 for high Reynolds numbers. This is close to the steady
laminar boundary layer scaling. For the convective pressure drag, we find a cubic scaling at
low and a quadratic scaling at high Reynolds numbers. The Reynolds stresses have a minor
contribution to the momentum budget. For oscillatory flow at low and medium Womersley
numbers, the amplitudes of the drag components are similar to the steady cases at the
same Reynolds number. At high Womersley numbers, the drag components behave quite
differently and the friction and viscous pressure drag are relatively insignificant. The drag
components are not in phase with the forcing and the superficial velocity; the phase lag
increases with the Womersley number. This suggests that new models beyond the current
quasisteady approaches need to be developed.

Key words: porous media, general fluid mechanics, Navier–Stokes equations

1. Introduction

In this contribution we investigate the behaviour of the drag in steady and oscillatory flow
through a hexagonal sphere pack. The sphere pack can be decomposed into triply periodic
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unit cells of size � and is assumed to have a spatial extent L � � (figure 1a). When the flow
is driven by pressure or velocity variations on the macroscale, for example by a pressure
wave of wavelength O(L), the flow is locally almost periodic (Ene & Sanchez-Palencia
1975). The pore-scale flow is described in terms of the velocity u and the pressure P. The
large-scale flow is described in terms of the macroscopic pressure gradient f , which is
defined such that the pore-scale pressure deviation p = P − f · x is a periodic function,
and in terms of the superficial velocity 〈u〉s, which is defined as the volume average of the
pore-scale velocity u over the unit cell

〈u〉s = 1
V

∫
Vf

u dV. (1.1)

Here, V is the volume of the unit cell and Vf is the fluid volume within the unit cell; the
porosity ε is defined as the ratio Vf /V . Note that depending on the flow regime, the unit
cell has to be chosen larger than the primitive unit cell of the geometry (Agnaou, Lasseux
& Ahmadi 2016). Here, the unit cell contains four primitive unit cells (figure 1b). In the
limit �/L → 0, the superficial velocity is governed by the continuity equation

∇ · 〈u〉s = 0 (1.2)

and a local relation between the superficial velocity and the macroscopic pressure
gradient that follows from the solution of the Navier–Stokes equations on the unit cell
(Ene & Sanchez-Palencia 1975). The pore-scale velocity u and the pore-scale pressure
deviation p are regarded as triply periodic fields on the unit cell. The relation between
the superficial velocity and the macroscopic pressure gradient can also be expressed by
the volume-averaged Navier–Stokes equations, which are obtained by averaging equation
(2.1b) over the unit cell. By Gauss’ theorem and the periodic boundary conditions, the
integrals over the open pore areas cancel; thus we obtain

ρ
∂〈u〉s

∂t
= − 1

V

∫
Afs

p n dA︸ ︷︷ ︸
pressure drag

− 1
V

∫
Afs

τw dA︸ ︷︷ ︸
friction drag

−ε f . (1.3)

In this equation, the symbol τw = μ (∇ ⊗ u)T|w · n represents the wall shear stress vector,
and Afs denotes the fluid–solid interface, i.e. the surface of the spheres. Note that the force
exerted by the fluid onto the spheres also contains a contribution from the macroscopic
pressure gradient. While (1.2) and (1.3) have been derived assuming a periodic porous
medium, they can also be obtained for non-periodic porous media by the volume-averaging
theory of Whitaker (1986, 1996) if the pore scale, the averaging scale and the macroscale
are sufficiently separated. A comparison between the homogenisation approach outlined
above and the volume-averaging approach can be found in Davit et al. (2013). The pressure
drag and the friction drag terms appearing in (1.3) are unclosed with respect to 〈u〉s and
f . In general, they can be obtained only by direct numerical simulation (DNS) of the
pore-scale flow. The aim of modelling is to replace the solution to the pore-scale flow
problem by an explicit relationship between f and 〈u〉s.

In this work, we investigate this relationship and consider the macroscopic pressure
gradient as a known quantity. The pore-scale flow is computed numerically in a triply
periodic domain of the hexagonal sphere pack (shown in figure 1b) for a constant
and a sinusoidally oscillating forcing. The pore-scale flow then depends on two
dimensionless numbers that are formed with the sphere diameter d, the density ρ and
the kinematic viscosity ν: The Hagen number Hg = | f |d3/(ρν2) describes the magnitude
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Decomposition of drag force in flow through a sphere pack
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Figure 1. Conceptual sketch of the volume approach for the hexagonal sphere pack. (a) The sphere pack
consists of triply periodic unit cells. The periodic flow u, p inside the unit cell is driven by the macroscopic
pressure gradient f . (b) The simulation domain of the hexagonal sphere pack consists of four primitive unit
cells (one of which is highlighted in yellow).

of the macroscopic pressure gradient relative to the viscous forces. In other work, the
Hagen number is referred to as the pressure-gradient-based Reynolds number (Ene &
Sanchez-Palencia 1975; Firdaouss, Guermond & Le Quéré 1997; Iervolino, Manna &
Vacca 2010; Lasseux, Valdés-Parada & Bellet 2019). The Womersley number is defined as
Wo =

√
Ωd2/ν where Ω is the angular frequency of the forcing. The Womersley number

is proportional to the ratio of the sphere diameter to the Stokes layer thickness
√

2ν/Ω

and thus determines the region that is affected by the wall friction via diffusive transport.
For each parameter combination, a Reynolds number Re = | 〈u〉s |d/ν for steady flow or

Re = lim sup
t→∞

|〈u〉s| d
ν

(1.4)

for oscillatory flow results from solving the pore-scale flow problem.
Next, we briefly summarise some important findings on the flow resistance behaviour of

steady flow. In this case there are closed-form expressions which allow the pore-scale
problem to be bypassed. Figure 2 shows the drag coefficient defined according to
(Macdonald et al. 1979) as

F′
k = | f | d

ρ〈u〉2
s

= Hg
Re2 (1.5)

as a function of the Reynolds number for the DNSs of Sakai & Manhart (2020) of steady
flow through the hexagonal sphere pack. For very small Reynolds numbers, the superficial
velocity depends linearly on the macroscopic pressure gradient. This relationship is
described by Darcy’s law (dotted line) which can be written in dimensionless form as

Hg = d2

K
Re or F′

k = d2

K
Re−1, (1.6)

where K denotes the permeability. For Reynolds numbers �10, Mei & Auriault (1991)
derived a cubic correction to Darcy’s law of the form

Hg = d2

K
Re + b̂ Re3 or F′

k = d2

K
Re−1 + b̂ Re (1.7)
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Figure 2. Drag coefficient in steady flow through a hexagonal sphere pack together with Darcy’s law, the
correction of Mei & Auriault (1991) and the modified Ergun equation (Macdonald et al. 1979).

for isotropic porous media (solid line). Firdaouss et al. (1997) derived the same law
under the condition that ‘if the pressure gradient is reversed, the seepage velocity should
also be reversed with no change in modulus’. They supported their derivation with
numerical simulations of two-dimensional porous media flow and further demonstrated
that (1.7) is satisfied for several classical experimental datasets up to Reynolds numbers
of approximately 16. Hill, Koch & Ladd (2001) confirmed the theory of Mei & Auriault
(1991) for numerical simulations of flow through regular and random sphere packs. For
higher Reynolds numbers, the drag is commonly described in terms of the Forchheimer
equation (Forchheimer 1901) which is composed of a linear and a quadratic term

Hg = a Re + b Re2 or F′
k = a Re−1 + b. (1.8)

It should be noted that the Forchheimer equation is not consistent with (1.7). Ergun
(1952) proposed empirical correlations for the coefficients a and b based on packed bed
experiments. The correlations were further refined by, for example, Macdonald et al.
(1979) who aggregated multiple experimental datasets. When the flow becomes turbulent,
a change of slope of the resistance curve occurs and a different set of coefficients a′, b′
must be determined (Fand et al. 1987; Burcharth & Andersen 1995).

A major difficulty in describing unsteady and oscillatory flow is that the drag force does
not depend solely on the instantaneous Reynolds number, but is generally a function of
the history of the flow. For example, figure 3 shows the instantaneous drag force (i.e.
the first two terms on the right-hand side of (1.3)) as a function of the instantaneous
Reynolds number for two of our oscillatory flow simulations. It can be seen in figure 3(a)
that for the low frequency case LF5 the instantaneous drag is mostly close to the drag
observed in a steady flow at the same instantaneous Reynolds number. Conversely, for
the medium frequency case MF5 (figure 3b) the instantaneous drag differs significantly
from the drag observed in a steady flow at the same instantaneous Reynolds number.
Moreover, a hysteresis loop can be observed which suggests a different behaviour of
the flow in the acceleration and deceleration phases of the cycle. For linear oscillatory
flow the models of Johnson, Koplik & Dashen (1987) and Pride, Morgan & Gangi (1993)
provide an accurate description of the history-dependent drag. The models are formulated
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Decomposition of drag force in flow through a sphere pack
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Figure 3. Comparison of the relation between the instantaneous drag force and the superficial velocity for
steady and oscillatory flow: (a) LF5 (Re = 158, Wo = 10); (b) MF5 (Re = 157, Wo = 31.62).

in the frequency domain as a non-rational transfer function (‘dynamic permeability’). For
nonlinear oscillatory flow, the drag has been described by a Forchheimer-type expression
(see (1.8)) and variations thereof with frequency- or time-dependent coefficients (van Gent
1993; Hall, Smith & Turcke 1995). However, the inherent assumption of the model is that
the nonlinear drag is a function of the instantaneous Reynolds number. As discussed in
the above, this assumption is not valid for some flow configurations. Furthermore, we
have shown in our previous work (Unglehrt & Manhart 2022a) that at medium and large
Womersley numbers the nonlinear parts of the flow can be out of phase with the superficial
velocity.

Therefore, the objective of the present contribution is to identify and quantify the drag
generation processes in steady and oscillatory flow through a sphere pack. In particular,
the analysis is guided by the following questions: How large is the contribution of the
pressure drag and the friction drag? What effects contribute to the pressure drag? What is
the effect of turbulence? How do these contributions scale with the dimensionless numbers
governing the flow? What is the phase of these contributions in oscillatory flow?

We adapt the pressure decomposition of Graham (2019) to unsteady incompressible flow
through a periodic porous medium. Based on the Poisson equation for the pressure, the
pressure is decomposed into three different components: the first component is a reaction
force to the imposed macroscopic pressure gradient; the second component represents the
displacement of the flow from the wall due to viscosity; and the third component represents
the pressure drag induced by vorticity and dissipation. The resulting decomposition of the
volume-averaged Navier–Stokes equations is similar to the approach of Aghaei-Jouybari
et al. (2022) and is also closely related to various decompositions of the force on a moving
body (Quartapelle & Napolitano 1983; Howe 1989; Yu 2014; Li & Wu 2018; Menon &
Mittal 2021). We comment on the relationship between this decomposition and the theory
of Johnson et al. (1987) for linear oscillatory porous media flow in Appendix B.2. We then
investigate DNS datasets for laminar oscillatory flow (Unglehrt & Manhart 2022a) and
steady flow (Sakai & Manhart 2020) through a hexagonal sphere pack. In order to establish
a baseline, we apply this decomposition to nonlinear steady flow and linear oscillatory
flow. We then proceed to analyse nonlinear oscillatory flow. We investigate the evolution
of the drag components over the cycle depending on the Reynolds and Womersley number,
with particular focus on the Reynolds number scaling of the drag components. Finally, we
discuss the implications of our results for the physical understanding and for the modelling
of unsteady flow in porous media.
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2. Theory

2.1. Mathematical notation
The equations are written in vector notation according to the ISO 80000-2:2019 standard.
In particular, ∇ = ei ∂(.)/∂xi denotes the Nabla operator, where ei are the Cartesian unit
vectors; a · b = aibi denotes the inner product, A : B = AijBij denotes the double inner
product, (a ⊗ b)ij = aibj denotes the outer product and (a × b)i = εijkajbk denotes the
cross product.

2.2. Differential equations
The flow in the pore space is governed by the incompressible Navier–Stokes equations

∇ · u = 0, (2.1a)

∂u
∂t

+ ∇ · (u ⊗ u) = − 1
ρ

∇p + ν�u + 1
ρ

f . (2.1b)

The flow is driven by a constant force f = fx ex or a sinusoidal force f = fx sin Ωt ex which
is constant in space and represents to the macroscopic pressure gradient. On the spheres,
the velocity satisfies no-slip and impermeability boundary conditions and for both the
velocity u and the deviation pressure p triply periodic boundary conditions are imposed.

2.3. Decomposition of the pressure
In this section, we recall the decomposition of the pressure of Graham (2019) that forms
the basis of the discussion in the rest of the article. We start from the Poisson equation for
the pressure, which can be derived by taking the divergence of the momentum equation
(2.1b):

�p = −ρ ∇ · ∇ · (u ⊗ u) = 2ρQ, (2.2a)

where Q = −1
2 (∇ ⊗ u) : (∇ ⊗ u)T is the second invariant of the velocity gradient tensor

(Chong, Perry & Cantwell 1990) that is frequently used for vortex identification (Hunt,
Wray & Moin 1988; Dubief & Delcayre 2000). The pressure satisfies periodic boundary
conditions at the open domain boundaries and the Neumann boundary condition

∇p · n = μ�u · n + f · n (2.2b)

at solid walls where μ = ρν is the dynamic viscosity. The boundary condition can be
obtained by projecting the Navier–Stokes equations onto the normal n and using the
no-slip and no-penetration conditions for u. Note that this boundary condition is not
required to solve for the pressure, but it is a property of any sufficiently smooth solution
(Sani et al. 2006). Thus, the pressure has three sources with a generally different scaling:
the macroscopic pressure gradient; the viscous force; and the convective force. The
additive decomposition of Graham (2019) separates these different scalings and results
in the following three boundary value problems:

differential equation wall boundary condition

�p(a) = 0, ∇p(a) · n = f · n, (2.3a)

�p(v) = 0, ∇p(v) · n = μ�u · n, (2.3b)

�p(c) = 2ρQ, ∇p(c) · n = 0. (2.3c)
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Decomposition of drag force in flow through a sphere pack

(b)(a)

Figure 4. Illustration of the effect of the pressure component p(a). (a) External force field f . (b) Projected
force field f − ∇p(a) (blue) and −∇p(a) (red).

By summing up the equations, the pressure Poisson equation and the boundary condition
are recovered. The accelerative pressure p(a) counterbalances the wall-normal component
of the macroscopic pressure gradient f and therefore ensures that the force field acts
tangentially to the wall. This effect is illustrated in figure 4 for flow around a cylinder.
Note that Graham (2019) defined the accelerative pressure in terms of the acceleration of
a moving body in a stationary frame of reference. Upon changing to a comoving frame
of reference, the body becomes stationary and a fictitious force appears in the momentum
equation. By identifying the acceleration of the body with − f /ρ, we have adapted the
decomposition to the present setting. The viscous pressure p(v) arises from unbalanced
viscous stresses at the wall (Graham 2019). In particular, we show in Appendix A.1 that
the boundary condition of the viscous pressure is given by the divergence of the wall
shear stress. Finally, as the Q-invariant is equal to the difference between the rotation
rate magnitude and the strain rate magnitude (Dubief & Delcayre 2000), the convective
pressure p(c) is caused by vortical (Q > 0) and dissipative (Q < 0) flow features.

For turbulent flow, we follow Aghaei-Jouybari et al. (2022) and take the Reynolds
average of the pressure decomposition. Then, the mean convective pressure p̄(c) contains
contributions from the mean velocity ū and the Reynolds stress tensor:

�p̄(c) = 2ρQ̄ = −ρ ∇ · ∇ · (u ⊗ u) = −ρ ∇ · ∇ · (u ⊗ ū) − ρ ∇ · ∇ · (u′ ⊗ u′). (2.4)

In analogy to the terminology for the dissipation rate, we refer to the former contribution
as ‘direct’ convective pressure p̄(d) and to the latter as ‘turbulent’ convective pressure p̄(t).

2.4. Decomposition of the pressure drag
In this section, we decompose the pressure drag in the volume-averaged momentum
equation (1.3) into the components due to the accelerative pressure p(a), the viscous
pressure p(v) and the convective pressure p(c). An auxiliary potential field allows the
pressure drag components to be directly expressed in terms of the sources in the boundary
value problems (2.3). First, we define an auxiliary potential Φ which satisfies the Laplace
equation �Φ = 0 with periodic boundary conditions and (∇ ⊗ Φ)T · n = n at solid walls
(Batchelor 2000, (6.4.11)). This auxiliary potential also forms the basis of other force
decompositions (Quartapelle & Napolitano 1983; Howe 1989; Yu 2014; Li & Wu 2018;
Menon & Mittal 2021). Then, we apply Green’s second identity to the pressure p and the
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components of the auxiliary potential Φ:∫
Vf

Φ �p dV =
∫

Vf

p �Φ dV︸ ︷︷ ︸
=0

+
∫

∂Vf

Φ(∇p · n) dA −
∫

∂Vf

p (∇ ⊗ Φ)T · n dA. (2.5)

By the definition of the auxiliary potential, its Laplacian is zero and its wall-normal
gradient can be replaced by the normal vector. Furthermore, the integrals over the pore
areas cancel due to the periodic boundary conditions on Φ and p. We get∫

Vf

Φ �p dV =
∫

Afs

Φ(∇p · n) dA −
∫

Afs

p n dA. (2.6)

Finally, we insert the boundary value problems (2.3) and we obtain the components of the
pressure drag force per unit volume

−f (a)
p := − 1

V

∫
Afs

p(a) n dA = − 1
V

∫
Afs

Φ ( f · n) dA, (2.7a)

−f (v)
p := − 1

V

∫
Afs

p(v) n dA = − 1
V

∫
Afs

Φ (μ�u · n) dA, (2.7b)

−f (c)
p := − 1

V

∫
Afs

p(c) n dA = 1
V

∫
Vf

Φ 2ρQ dV. (2.7c)

The auxiliary potential Φ can be considered as an analogue of the influence line in
structural mechanics and represents the effect of a pressure source on the integral pressure
drag. Vice versa, the components Φx, Φy and Φz of the auxiliary potential can be seen as
the pressure fields in response to a unit source ex, ey or ez distributed uniformly over the
surface. Note that the auxiliary potential Φ is defined up to a constant, but both Q and
�u · n have zero mean for a domain with periodic and no-slip boundary conditions (see
Soria, Ooi & Chong (1997) and Appendix A.2, respectively) and the constant does not
affect the result. For simplicity, we constrain Φ to have zero mean. Figure 5 shows the
distribution of the x-component of this potential in the hexagonal sphere pack. We can see
that Φx is an antisymmetric function with respect to the planes x = 0, x = d/2, x = d, . . .,
and has periodicity d in the x-direction. The auxiliary potential is largest at the wall and
takes its extreme values near the contact points of the spheres.

In the following, we briefly discuss the pressure drag components in (2.7). With the
(dimensionless) tensor of virtual inertia

A = 1
Vs

∫
Afs

Φ ⊗ n dA (2.8)

defined in Batchelor (2000, (6.4.15)), we can rewrite the accelerative pressure drag as

− 1
V

∫
Afs

p(a) n dA = −
(

1
V

∫
Afs

Φ ⊗ n dA

)
· f = − (1 − ε) A · f . (2.9)

Consequently, the accelerative pressure drag directly counteracts the macroscopic pressure
gradient. The tensor −(1 − ε)A is equivalent to the hydrodynamic drag tensor λ∞
introduced by Lafarge (2009, p. 159) based on the work of Johnson & Sen (1981).
Moreover, we demonstrate in Appendix B.1 that the tensor of virtual inertia A can be
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Decomposition of drag force in flow through a sphere pack

y

Φx(x) = – Φx(x
′)

x

z

2d

x = dx = 0 x = d/2

3d

3
2 6 d

0

(b)(a)

Figure 5. Auxiliary potential Φx in the hexagonal sphere pack (a) in a three-dimensional view and (b) in
the plane

√
3/3 y − √

6/3 z = 0 with the mirror planes x = 0, x = d/2 and x = d of the hexagonal sphere
pack. The auxiliary potential Φx is antisymmetric with respect to these mirror planes. The colours range from
−0.15 d (blue) to 0.15 d (red).

related to the well-known ‘high-frequency limit of the dynamic tortuosity’ α∞ by Johnson
et al. (1987). As the tensor of virtual inertia can be precomputed for a given geometry, no
further model is necessary to describe the accelerative pressure drag. The viscous pressure
drag is a weighted surface integral of the source term of the viscous pressure p(v). As
demonstrated in Appendix A.3, the viscous pressure drag can be reformulated in terms of
the wall shear stress as

− 1
V

∫
Afs

p(v) n dA = 1
V

∫
Afs

(∇ ⊗ Φ)T · τw dA (2.10)

for the present boundary conditions. As both the friction drag and the viscous pressure
drag are integrals of the wall shear stress with only geometry-dependent weights, these
terms should have the same scaling. The convective pressure drag term (2.7c) has also
been referred to as ‘Q-induced force’ (Aghaei-Jouybari et al. 2022). Due to the fore–aft
antisymmetry of the auxiliary potential Φx in the hexagonal sphere pack (figure 5),
drag can only be produced from the part of the distribution of the Q-invariant that is
antisymmetric with respect to the fore–aft symmetry.

Finally, we can insert the decomposition (2.7) into the volume-averaged momentum
equation (1.3):

ρ
d〈u〉s

dt
= − 1

V

∫
Afs

(I − ∇ ⊗ Φ)T · τw dA︸ ︷︷ ︸
friction and viscous pressure drag

+ 1
V

∫
Vf

Φ 2ρQ dV︸ ︷︷ ︸
convective pressure drag

+ [εI − (1 − ε) A] · f︸ ︷︷ ︸
effective forcing

.

(2.11)

In this form, the drag in the porous media flow is separated into a surface contribution
due to the viscous term and a volume contribution due to the convective term of the
Navier–Stokes equations. It can also be seen that only a fraction of the macroscopic
pressure gradient acts onto the flow. In the remainder of the paper, we apply the pressure
drag decomposition to a DNS dataset of steady and oscillatory flow in a hexagonal sphere
pack. We also show in the Appendices B.2 and B.3 how the drag terms in (2.11) can be
used to rederive the results of Johnson et al. (1987) for linear oscillatory flow at high
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Womersley numbers and to generalise the theory of Mei & Auriault (1991) to oscillatory
flow at low Reynolds numbers, respectively.

3. Methodology

3.1. Description of the flow solver
The simulation dataset used in this paper was obtained using our in-house code MGLET
(Manhart, Tremblay & Friedrich 2001). It employs a block-structured Cartesian grid with
a staggered arrangement of variables (Harlow & Welch 1965) on which the incompressible
Navier–Stokes equations are discretised by means of a finite volume method with
second-order central approximations. A third-order low-storage Runge–Kutta method is
used for the time integration. In every stage a projection step is performed to make the
stage velocity divergence-free. This requires the solution of a discrete Poisson problem
for a correction pressure. The no-slip boundary conditions on the spheres are enforced
by a second-order accurate ghost-cell immersed boundary method (Peller et al. 2006;
Peller 2010). In this approach, the velocity field in the interface cells is approximated
by a linear least-squares interpolant that satisfies the no-slip boundary condition. From
this the specific volume fluxes are computed for the convective velocities, whereas the
point values are computed for the convected velocities. The convective velocities are
made divergence-free by a cell-by-cell iterative correction that is coupled to the pressure
correction in the field. As a result the immersed boundary method is mass conserving.

3.2. Description of the porous medium geometry
A hexagonal close-packed arrangement of spheres (simply referred to as hexagonal sphere
pack) is considered as a porous medium geometry. It is triply periodic with the lattice
vectors d ex, 1/2 d ex + √

3/2 d ey and 2
√

6/3 d ez, and the primitive unit cell (figure 1b)
contains two spheres of diameter d that are placed at the locations (0, 0, 0) d and
(1/2, 2

√
3/3,

√
6/3) d (Conway & Sloane 1999, p. 114). The sphere pack has a porosity

ε = 1 − π/(3
√

2) = 0.26 which is identical to the porosity of the cubic close-packing
studied for example in Hill et al. (2001), Hill & Koch (2002) and He et al. (2019).
The hexagonal close-packing arrangement possesses a total number of 24 symmetries
(Cockroft 1999, space group 194), for example mirror symmetries about the planes
x = 1/2 d and z = √

6/3 d.

3.3. Description of the simulation database
The drag decomposition will be evaluated for a collection of DNSs of steady and
oscillatory flow through a hexagonal close-packed arrangement of spheres (Conway &
Sloane 1999, p. 114). The simulation parameters of the steady and the oscillatory cases
are summarised in tables 1 and 2, respectively. Figure 6 shows the distribution of the
simulated cases in the Hg–Wo parameter space. Note that since oscillatory flow in the
quasisteady limit (Wo → 0) is in equilibrium at every instant, its behaviour is identical to
the corresponding steady flow.

For all cases, we used a triply periodic simulation domain with the lengths Lx = 2 d,
Ly = √

3 d and Lz = 2
√

6/3 d in the x-, y- and z-directions, respectively. The simulation
domain thus contains four primitive unit cells. Choosing an appropriate domain size is
essential since the flow may otherwise be constrained to a periodic state far from what
would be observed in larger domains. Since laminar flow has the same periodicity as the
geometry, it would be sufficient to consider one unit cell. Using multiple unit cells allows
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Decomposition of drag force in flow through a sphere pack

Case Hg Re d/�x Tsim 〈u〉i /d Tavg 〈u〉i /d Nsamples (r)rms /
(

fpx
)

rms

L4† 6.50 × 101 0.0114 320 0.00158 — — 1.5 %
L6† 6.50 × 103 1.14 320 0.158 — — 1.5 %
SNL1† 6.50 × 104 10.5 320 1.45 — — 1.4 %
SNL2† 3.25 × 105 36.6 320 5.08 — — 1.0 %
SNL4 6.50 × 105 58.9 320 2.04 — — 0.8 %
UNL1 1.30 × 106 91.1 320 10.5 — — 0.6 %
UNL2 2.60 × 106 138 320 19.2 16.8 36 0.6 %
T1 5.20 × 106 208 320 12.6 7.22 21 0.8 %
T2 7.80 × 106 263 320 16.7 15.2 51 0.9 %
T3 1.04 × 107 313 320 17.7 14.9 56 1.2 %
T4 1.30 × 107 354 320 11.8 9.33 39 1.2 %

Table 1. Simulation parameters of the steady cases and root mean square of the pressure drag decomposition
residual. The simulations marked with † were recomputed at a finer grid resolution compared with Sakai &
Manhart (2020). The value Nsamples denotes the number of snapshots that were collected during the averaging
time Tavg. The residual r = fpx − f (a)

px − f (v)
px − f (c)

px of the pressure drag decomposition was computed for each
snapshot.

Case Hg Wo Re d/�x TsimΩ/(2π) Nsamples/period (r)rms /
(

fpx
)

rms

LF1† 1.00 × 103 10 0.171 384 1.5 12.5 0.2 %
LF2† 1.00 × 104 10 1.7 384 2.25 25 0.2 %
LF3† 1.00 × 105 10 14.8 384 1.4 100 0.1 %
LF4† 1.00 × 106 10 76.7 384 1.25 100 0.3 %
LF5 3.16 × 106 10 158 384 2.27 100 1.0 %
LF6 1.00 × 107 10 307 384 1.56 100 2.3 %
MF1† 1.00 × 104 31.6 0.857 384 3 50 1.0 %
MF2† 1.00 × 105 31.6 8.57 384 3 50 0.9 %
MF3† 3.16 × 105 31.6 26.9 384 3 50 0.8 %
MF4† 1.00 × 106 31.6 73.1 384 3 25 0.7 %
MF5 3.16 × 106 31.6 157 384 6.4 50 1.1 %
MF6 1.00 × 107 31.6 298 384 2.26 50 2.7 %
HF1† 1.00 × 105 100 1.3 384 20.4 25 1.6 %
HF2† 1.00 × 106 100 13 384 19.9 25 1.6 %
HF3† 1.00 × 107 100 132 384 6.32 25 1.1 %
HF4† 1.78 × 107 100 252 768 8 50 0.9 %
HF5 3.16 × 107 100 465 768 6 25 1.5 %

Table 2. Simulation parameters of the oscillatory cases and root mean square of the pressure drag
decomposition residual. The simulations marked with † were taken from Unglehrt & Manhart (2022a). The
residual r = fpx − f (a)

px − f (v)
px − f (c)

px of the pressure drag decomposition was computed for each snapshot.

us to observe the breaking of this periodicity, which is an indicator of a transitional or
turbulent flow state. In these regimes, it is plausible that structures spanning multiple pores
could form. However, in their study of turbulent flow through a cubic-close packed array of
spheres at Re = 222, 370 and 740, He et al. (2019) found that ‘[. . .] the integral scales for
all Reynolds numbers studied in this work are much smaller than the particle diameter and
thus the unit cell domain showed little variation in statistics compared to a larger domain’.
Consequently, we would expect only minor changes if the domain size were increased.
The findings of Agnaou et al. (2016) further support this view; they observed that the
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Figure 6. Parameter space for the hexagonal sphere pack. The blue crosses represent the steady simulations
in Sakai & Manhart (2020) that correspond to the limit Wo → 0. The open circles denote the simulations in
Unglehrt & Manhart (2022a) of laminar oscillatory flow and the red filled circles represent simulations of
transitional and turbulent oscillatory flow. The dashed line separates the linear regime on the left-hand side
from the nonlinear regime on the right-hand side (Unglehrt & Manhart 2022a).

critical Reynolds number for the onset of unsteady flow in arrays of cylinders is essentially
independent of the domain size if the porosity is small (ε � 0.45).

The steady cases are based on the transient flow simulations by Sakai & Manhart
(2020). They classified their flow cases into linear (L), steady nonlinear (SNL), unsteady
nonlinear (UNL) and turbulent (T) regimes. For large times, the linear and steady nonlinear
cases resulted in a constant flow field, whereas the unsteady nonlinear and turbulent
cases resulted in a temporally fluctuating velocity field. The low-Reynolds-number cases
were recomputed on a finer grid in order to reduce the errors in the evaluation of
the pressure decomposition. Thus, all simulations of steady flow used in the present
paper were performed using a resolution of 320 cells per sphere diameter (cpd).
The high-Reynolds-number simulations UNL2–T4 were continued in order to collect
instantaneous flow fields for a statistical evaluation of the mean and turbulent drag
components. When the case UNL1 was continued up to a time t 〈u〉i /d = 10.5, the chaotic
oscillations changed into a decaying harmonic oscillation which indicates that the flow
converges to a steady state.

The oscillatory cases are based on the simulations in Unglehrt & Manhart (2022a)
of linear and nonlinear laminar oscillatory flow. The cases are grouped according to
their Womersley number into the low frequency regime (LF) at Wo = 10, the medium
frequency regime (MF) at Wo = 31.62 and the high frequency regime (HF) at Wo = 100
and numbered consecutively from 1 to 4 with increasing Hagen number. We performed
additional simulations of oscillatory flow (cases LF5, LF6, MF5, MF6 and HF5) that
were classified as transitional or turbulent based upon their symmetry behaviour (Unglehrt
& Manhart 2022b). The cases HF4 and HF5 were computed at a resolution of 768 cpd
and the other oscillatory flow cases were computed at a resolution of 384 cpd. We found
in Unglehrt & Manhart (2022a) that the cases LF1, LF2, MF1, MF2, HF1, HF2 show
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Decomposition of drag force in flow through a sphere pack

effectively linear behaviour and the cases LF3, MF3, HF3 and LF4, MF4, HF4 exhibit
nonlinear effects of comparable strength, respectively. For all simulations, the time series
of the volume-averaged velocity as well as instantaneous velocity and pressure fields
were saved. For the simulations LF5, LF6, MF5, MF6 and HF5, which are transitional or
turbulent, only the instantaneous values are discussed as it is computationally expensive
to obtain converged statistics for an oscillatory flow.

In Sakai & Manhart (2020) and Unglehrt & Manhart (2022a), the relationship between
the imposed pressure gradient and the superficial velocity in the steady and linear
oscillatory cases was validated with results from the literature and the grid resolution was
determined based on a grid study. The grid convergence of the new cases LF5, LF6, MF5,
MF6 and HF5 was assessed based on simulations with coarser grids at resolutions of 48,
96 and 192 cpd (Appendix C). We found that the differences in the cycle-averaged kinetic
energy and in the maximum amplitude of the superficial velocity between the finest and
the second finest resolution were less than 1.8 % for all cases.

3.4. Calculation of the terms in the decomposition
In this section, we describe the details of the evaluation of the terms in the drag
decomposition from our simulation data. Moreover, we quantify the errors introduced
by the decomposition and the statistical errors. First, the pressure drag components were
determined from snapshots of the flow fields. The accelerative pressure drag f (a)

p could
be calculated in closed form using the tensor of virtual inertia (2.8) obtained from the
auxiliary potential. The viscous pressure drag f (v)

p was calculated in the form of (2.7b).
To obtain the second derivative �u · n at the surface, the wall normal velocity v was
interpolated to a point at wall distance h = 1.5�x. The value of �u · n|w was then
calculated using a Taylor expansion of the wall normal velocity profile

v( y) = v|w︸︷︷︸
=0

+ ∂v

∂y

∣∣∣∣
w︸ ︷︷ ︸

=0

y + ∂2v

∂y2

∣∣∣∣
w

y2

2
= �u · n|w

y2

2
(3.1)

that satisfies the no-slip, impermeability and incompressibility conditions. The convective
pressure drag f (c)

p was determined by the volume integral (2.7c). As the integrand ΦQ
can take large positive and negative values, the numerical evaluation of the integral is
a delicate task. Due to the symmetry of the hexagonal sphere pack, flow in the positive
and negative x-direction should behave the same. To enforce this behaviour, we made the
values of the auxiliary potential Φx antisymmetric with respect to the mirror planes x = 0,
x = d/2, x = d, etc. (figure 5) by setting Φx(x) := [Φx(x) − Φx(2d − x)]/2. Note that this
is unnecessary in the continuous setting due to the identities 〈Q〉s = 0 and (A7), which
are, however, not perfectly satisfied in the discrete sense. In addition, the Q-invariant was
formulated as the divergence of the convective term in order to be consistent with the
projection method used in our flow solver. The interface cells were not included in the
integration as Q = 0 at no-slip walls.

We determined the residual of the pressure drag decomposition with respect to the
pressure drag force that was directly computed from the instantaneous pressure fields. In
tables 1 and 2, we report the root mean square residuals over all snapshots; for the steady
cases L4, L6, SNL1, SNL2 and SNL4 we report only the residual at the final time. It can
be seen that the balance is closed with satisfactory accuracy considering that the total and
viscous pressure drag terms have been computed at a ghost-cell immersed boundary. The
residual of the decomposition increases with the Womersley number; this can be explained
by the formation of boundary layers that increase the error in the evaluation of the source
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term for the viscous pressure especially near the contact points of the spheres. A higher
residual is also observed for the transitional and turbulent cases.

Second, we determined the friction drag using the volume-averaged momentum balance
(1.3). The pressure drag term was computed directly from the instantaneous pressure fields
and the superficial acceleration was obtained from the derivative of the time series of the
superficial velocity 〈u〉s.

Third, for the line plots of the oscillatory cases in § 4 the snapshot values in the last
period of each simulation were shifted such that the abscissae ϕ := Ωt lie in [0, 2π].
Since the sinusoidal behaviour of the linear cases was misrepresented by a piecewise linear
curve due to the relatively low number of samples (table 2), we used a Fourier series
interpolation of the snapshot values. For the cases LF5, LF6, MF5 and MF6 a piecewise
cubic interpolation (Akima 1974) was used due to high frequency fluctuations during parts
of the cycle.

Finally, we averaged the snapshot values for the steady chaotic and turbulent cases
UNL2, T1, T2, T3 and T4. For the cases L4–UNL1 we used only the final flow field
of the simulation. To decompose the time-averaged convective pressure drag into its direct
and turbulent contributions (see § 2.3), we determined the direct convective pressure drag
from the time-averaged velocity field and then computed the turbulent convective pressure
drag from the difference between the total and the direct contribution. The time-averaged
velocity field was estimated from the snapshots. The number of samples is given in
table 1. Since our simulation domain contains eight repetitions of the same pore geometry
(Unglehrt & Manhart 2022a), we included shifted copies of every instantaneous field into
the average. This led to a nominal increase of the sample size by a factor of eight.

We estimated the statistical error for each drag component with the Student’s
t-distribution. In all cases the 95 % confidence interval of the sample average had a
half-width smaller than 0.75 % of the average value. While the underlying assumption
of a Gaussian distribution of the sample values was not satisfied for some of the cases, we
nevertheless expect that the statistical error has in a similar order of magnitude.

3.5. Calculation of the auxiliary potential field
As the ghost cell immersed boundary method in MGLET (see 3.1) is tailored towards
flow with no-slip boundary conditions, we computed the auxiliary potential field with the
finite element method (FEM) using the FEniCS solver framework (Logg, Mardal & Wells
2012). We employed uniform meshes of linear tetrahedral elements with resolutions up to
384 cpd. From the numerical solution for the auxiliary potential Φ, we obtained the tensor
of virtual inertia

A =
⎡
⎣0.1345 0 0

0 0.1345 0
0 0 0.1329

⎤
⎦ (3.2)

where the off-diagonal terms are numerically zero. Furthermore, we computed the length
scale tensor L defined in § B.2,

L = 2 [ε I − (1 − ε) A] ·
[

1
V

∫
Afs

(I − ∇ ⊗ Φ)T · (I − ∇ ⊗ Φ) dA

]−1

=
⎡
⎣0.05886 0 0

0 0.05922 0
0 0 0.06011

⎤
⎦ d (3.3)
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Figure 7. Mesh convergence of the auxiliary potential solution. We give the difference in the high-frequency
limit of the dynamic tortuosity α∞ and the length scale Λ relative to their values at a resolution of 384 cpd.

where the off-diagonal elements are numerically zero, too.
The hexagonal sphere pack is isotropic in the x–y plane and possesses the same

arrangement of spheres as the face-centred cubic sphere pack. Therefore, we can compare
our results with the values of Chapman & Higdon (1992) who give a value 1/F = 1.612 ×
10−1 for the ‘electrical formation factor’ F, corresponding to a value α∞ = ε/F = 1.61
for the high-frequency limit of the dynamic tortuosity, and a value Λ = 0.062 d for the
length scale defined by Johnson et al. (1987). From (3.2) and (3.3), we obtain the values

α∞ =
(

1 − 1 − ε

ε

A11 + A22

2

)−1

= 1.622, (3.4)

Λ = L11 + L22

2
= 0.05904 d, (3.5)

which show a satisfactory agreement with the results of Chapman & Higdon (1992).
Figure 7 shows the convergence of α∞ and Λ over the resolution, which was

successively doubled starting from 12 cpd. At intermediate resolutions, we observe a
second-order convergence for α∞ and a first-order convergence for Λ. The value of L

is uncertain as we expect the velocity potential to behave as O(r
√

2−1) close to the contact
point, leading to a singular velocity (Cox & Cooker 2000). Consequently, we observe a
decrease in the rate of convergence. Nevertheless, we consider the numerical solution for
the auxiliary potential Φ at a resolution of 384 cpd as well converged.

4. Results

In this section, we apply the decomposition of the pressure drag (2.7) to our DNS dataset
of flow through a hexagonal sphere pack. First, we analyse the steady flow (§ 4.1) and
linear oscillatory flow cases (§ 4.2). These represent the quasisteady limit Wo → 0 and
the small amplitude limit Re → 0 and serve as a baseline for discussing of the effects of
the Reynolds number and the Womersley number in nonlinear oscillatory flow. We then
analyse the nonlinear oscillatory flow data (§ 4.3).
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Figure 8. Drag components in steady flow normalised with the imposed macroscopic pressure gradient εfx.

4.1. Stationary flow
In this section, we discuss the decomposed drag of our DNS dataset for steady nonlinear
flow. In particular, we analyse the dependence of the different drag components on
the Reynolds number. Figure 8 shows the contributions of the drag components to the
Reynolds-averaged momentum budget in the x-direction:

1
εfx

⎡
⎣ρ

d〈ū〉s

dt︸ ︷︷ ︸
=0

+ f̄ (a)
px + f̄ (v)

px + f̄ (d)
px + f̄ (t)

px︸ ︷︷ ︸
=f̄ (c)

px

+ f̄τwx

⎤
⎦ = 1. (4.1)

Since we have divided the momentum equation by the magnitude of the macroscopic
pressure gradient εfx, the terms represent the fraction of the total drag for each drag
component. The accelerative pressure drag f (a)

p is a pure function of the macroscopic
pressure gradient and the geometry due to its definition in (2.3a); its relative contribution
to the total stress balance has a value of 38.4 % independent of the Reynolds number.
The viscous pressure drag f (v)

p and the friction drag both decrease with the Reynolds
number. At low Reynolds numbers the friction drag is approximately twice as large as
the viscous pressure drag. For Reynolds numbers above 36, the ratio between the terms
remains almost constant around 1.7. The direct convective pressure drag f̄ (d)

px caused by
the time-averaged velocity field starts at zero and increases with the Reynolds number.
It overtakes the friction and pressure drag at a Reynolds number of approximately 250.
The drag f̄ (t)

px caused by the Reynolds stresses is non-zero only for the unsteady nonlinear
and turbulent cases. Its share increases with the Reynolds number and reaches 6 % of the
total drag at the highest Reynolds number (which is 22 % of the direct convective pressure
drag).

In order to investigate the scaling of the drag components with Re, we form a friction
factor-like quantity by normalising the drag with ρ, 〈u〉s and d. The result is shown
in figure 9. For small Reynolds numbers, especially between the cases L4 and L6, the
viscous pressure drag coefficient and the friction drag coefficient decrease with 1/Re,
indicating a linear dependence of these drag components on the Reynolds number. The
convective pressure drag coefficient increases proportionally to Re, corresponding to a
cubic dependence of the drag on Re. These observations are consistent with the theory of
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Figure 9. Drag components in steady flow normalised with 1
2 ρ〈u〉2

s /d. The black lines represent different
scalings with the Reynolds number: 1/Re (dotted), 1/

√
Re (dashed), 1 (dash-dotted) and Re (solid). The scaling

line for Re was anchored at the case L4, the scaling lines for 1/
√

Re were anchored at the case T4, and the
scaling line for 1 was set to the mean value of the cases UNL1–T2.

Mei & Auriault (1991). For large Reynolds numbers (T1–T4), the friction drag coefficient
and the viscous pressure drag coefficient approach a scaling with exponents −0.63 and
−0.61, respectively. This is very close to the classical laminar boundary layer scaling
1/

√
Re of the friction coefficient (dashed line). The direct convective drag due to the

mean velocity field shows a nearly perfect scaling with Re2 for Reynolds numbers between
91 and 263, as indicated by a constant drag coefficient. For higher Reynolds numbers,
the direct convective pressure drag coefficient shows a slight decrease. There is no clear
scaling for the turbulent convective pressure drag. Although we see neither a quadratic
scaling of the convective pressure drag nor a linear scaling of the friction and viscous
pressure drag in the steady nonlinear regime (Re = 10–59), the total drag can be described
by the Forchheimer equation (1.8), i.e. the sum of a linear and a quadratic term (Sakai &
Manhart 2020).

4.2. Linear oscillatory flow
In this section, we present the results of the drag decomposition for linear oscillatory flow
and compare them with theoretical results from the literature. In particular, we discuss
the cases LF1 and LF2 at Wo = 10, MF1 and MF2 at Wo = 31.62, and HF1 and HF2
at Wo = 100; all of which have been shown to exhibit linear behaviour in Unglehrt &
Manhart (2022a).

The theoretical behaviour of linear oscillatory flow is well understood (Landau &
Lifshits (1987, pp. 83f); Batchelor (2000, pp. 353f); Lafarge (2009)) and is summarised
below. The velocities and forces are directly proportional to the magnitude of the
macroscopic pressure gradient, ε fx; the velocities and forces normalised by ε fx depend
only on the Womersley number. At low frequencies (Wo → 0), the velocity is in phase with
the forcing and is governed by the steady Stokes equations. At high frequencies, the flow
has a boundary layer structure: the bulk flow is irrotational and has a phase lag of 90◦ with
respect to the forcing, and the amplitude of the bulk flow decreases as Wo−2. Near the wall,
the flow behaves like the Stokes boundary layer for which the wall shear stress is history

974 A32-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.798


L. Unglehrt and M. Manhart

–1.0
0 π/2 2π3π/2

ϕ ϕ ϕ
π 0 π/2 2π3π/2π 0 π/2 2π3π/2π

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0
(F

o
rc

es
)/

(ε
f x)

fτwxfpx
(a) fpx

(c)fpx
(v) ρ(d〈u〉s/dt)

(b)(a) (c)

Figure 10. Drag components in linear flow normalised with the amplitude of the imposed macroscopic
pressure gradient εfx for Wo = 10 (LF1), Wo = 31.62 (MF1) and Wo = 100 (HF1).

dependent and advances the outer flow velocity by 45◦ (Schlichting & Gersten 2017,
p. 142). The superficial velocity can be predicted by Darcy’s law or the unsteady Darcy
equation (Zhu & Manhart 2016) for low frequencies and by the asymptotics of Johnson
et al. (1987) for high frequencies. The well-known model of Johnson et al. (1987) blends
these asymptotes and predicts the response of the superficial velocity with good accuracy
(Chapman & Higdon 1992; Unglehrt & Manhart 2022a). Please note that the asymptotics
of Johnson et al. (1987) can be directly obtained from the drag decomposition (2.11) and
the Stokes boundary layer solution (see Appendix B.2). This calculation suggests that the
viscous pressure drag and the friction drag have the same time dependence as Wo → ∞.

In the following, we address the question of which processes take up the momentum that
is supplied to the flow by the macroscopic pressure gradient. To this end, we rearrange the
volume-averaged momentum equation like in (4.1):

1
εfx

[
ρ

d〈u〉s

dt
+ f (a)

px + f (v)
px + f (c)

px + fτwx

]
= sin(Ωt). (4.2)

Figure 10 displays the terms of this equation over the course of one period of oscillation
(ϕ := Ωt mod 2π) for the simulations LF1, MF1 and HF1. We observe that the
acceleration term increases with the Womersley number whereas the viscous pressure and
friction drag decrease with the Womersley number. By definition, the accelerative pressure
drag remains constant at 38.4 % of the macroscopic pressure gradient. At Wo = 10 more
than half of the drag is caused by friction and the viscous pressure. On the other hand,
at Wo = 100 most of the pressure drag is caused by the accelerative pressure and the
contributions of the friction and viscous pressure drag decrease. Table 3 summarises the
relative amplitudes and the phase lag of the different terms with respect to the macroscopic
pressure gradient. It can be seen that both quantities are in line with the theoretical
expectations and reflect the change of the velocity field from a Stokes flow to a potential
flow with thin boundary layers.

The convective pressure has almost no contribution to the force balance. As in the steady
state, the convective pressure drag exhibits a cubic scaling with the Reynolds number. This
is demonstrated by the collapse of the suitably normalised f (c)

px curves for LF1 and LF2,
MF1 and MF2, and HF1 and HF2 in figure 11. The relative intensity of the convective
pressure drag decreases strongly with the Womersley number. The cubic scaling follows
from the drag decomposition when the symmetries of the flow in the hexagonal sphere
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Decomposition of drag force in flow through a sphere pack

Wo → 0 Wo = 10 Wo = 31.62 Wo = 100 Wo → ∞

ρ
d〈u〉s

dt
0 % 6.6 % 33.0 % 49.9 % 61.6 %

−90◦ −80◦ −35.4◦ −11◦ 0◦

fτwx
42.8 % 43.0 % 28.5 % 11.4 % 0 %

0◦ 4.2◦ 26.1◦ 42.1◦ 45◦

f (v)
p

19.7 % 17.8 % 10.9 % 4.1 % 0 %
0◦ 2.9◦ 22.8◦ 34.1◦ 45◦

Table 3. Relative amplitude and phase lag of the acceleration, the accelerative pressure drag, the friction drag
and the viscous pressure drag with respect to to the macroscopic pressure gradient ε fx sin(Ωt) in linear flow.
The limits Wo → 0 and Wo → ∞ correspond to Stokes flow (case L4) and potential flow, respectively. Note
that the accelerative pressure drag f (a)

p always has a relative amplitude of 38.4 %; the convective pressure drag
f (c)
p is negligible in linear flow.
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Figure 11. Convective pressure drag normalised with ρ(max 〈u〉s)
3/ν corresponding to the scaling of Mei &

Auriault (1991).

pack are taken into account (see Appendix B.3). For Wo = 10 we can observe a saddle
point at the zero crossing of the convective pressure drag, which is consistent with a 〈u〉3

s
behaviour of the convective pressure drag. For Wo = 31.62 and Wo = 100, this saddle
point is absent.

4.3. Nonlinear oscillatory flow
In this section, we analyse the simulations of nonlinear oscillatory flow. The momentum
budgets for the weakly nonlinear cases LF3, MF3 and HF3 are not shown, as they differ
only slightly from the linear regime. However, it can be seen in figure 11 that for these
cases the convective pressure drag deviates from the cubic Reynolds number scaling.

For the strongly nonlinear cases, figures 12, 13 and 14 show the terms of the momentum
equation for Wo = 10, Wo = 31.62 and Wo = 100, respectively. Like in the previous
section, the forces are normalised with the amplitude εfx of the macroscopic pressure
gradient (cf. (4.2)) such that all terms sum up to sin(Ωt) and the accelerative pressure
drag appears as 0.384 sin(Ωt).

At the lowest Womersley number (figure 12), the acceleration is very small compared
with the drag forces and the drag components are mostly in phase with the macroscopic
pressure gradient. Hence, the flow can be considered quasisteady. The acceleration
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Figure 12. Drag components in nonlinear flow at Wo = 10 normalised with the amplitude of the imposed
macroscopic pressure gradient εfx for Re = 77 (LF4), Re = 158 (LF5) and Re = 306 (LF6).
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Figure 13. Drag components in nonlinear flow at Wo = 31.62 normalised with the amplitude of the imposed
macroscopic pressure gradient εfx for Re = 73 (MF4), Re = 157 (MF5) and Re = 297 (MF6).
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Figure 14. Drag components in nonlinear flow at Wo = 100 normalised with the amplitude of the imposed
macroscopic pressure gradient εfx for Re = 252 (HF4) and Re = 468 (HF5).
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Decomposition of drag force in flow through a sphere pack

shows a distinct non-sinusoidal behaviour due to the nonlinear relationship between the
macroscopic pressure gradient and the superficial velocity. The convective pressure drag
shows a short plateau at the zero crossings; the duration of the plateau decreases with the
Reynolds number. As the Reynolds number increases, the friction drag and the viscous
pressure drag decrease whereas the convective pressure drag increases. The amplitudes of
these components agree well with the results of the steady cases (figure 8). For the cases
LF5 and LF6 we can observe fluctuations in the acceleration and in the convective pressure
drag, while the friction drag and the viscous pressure drag do not show any fluctuations.
These fluctuations could be attributed to vortex shedding and the transition to turbulence.

At the intermediate Womersley number (figure 13), the acceleration is significantly
larger than at the lower Womersley number. The amplitudes of the friction drag, viscous
pressure drag and convective pressure drag are comparable to Wo = 10, but the phases
lag behind the macroscopic pressure gradient. The convective pressure drag is close to
zero during the acceleration phase of each half-cycle, the duration of which decreases
with increasing Reynolds number. This behaviour is similar to the plateaus observed at
Wo = 10. When the acceleration reaches its maximum, the convective pressure drag starts
to increase; the acceleration goes to zero and changes its sign. Consequently, the maximum
convective pressure drag occurs later than the maximum of the superficial velocity. This is
consistent with the observations in Unglehrt & Manhart (2022a) that the maximum kinetic
energy of the nonlinear part of the velocity field is delayed with respect to the maximum
of the superficial velocity.

At the highest Womersley number (figure 14), the acceleration is the dominant term in
the momentum balance. The friction drag and the viscous pressure drag are much smaller
than for the other Womersley numbers and have approximately the same magnitude as for
linear flow at the same Womersley number. Furthermore, they are shifted in phase with
respect to the macroscopic pressure gradient. For the case HF4, the convective pressure
drag has a relative magnitude of 8 % and a nearly sinusoidal waveform; for the case HF5,
the magnitude increases to 24 % and the waveform becomes triangular. The phase lag
between the convective pressure drag and the macroscopic pressure gradient decreases
with increasing Reynolds number. Remarkably, the triangular waveform of the convective
pressure drag can also be observed at low Reynolds numbers (figure 11).

In the following, we investigate the high-Reynolds-number scaling of the friction drag
and the viscous and convective pressure drag components. In particular, do the scalings
observed in steady flow extend to oscillatory flow? For this analysis we construct different
normalisations for the drag components based on the sphere diameter d, the density ρ, the
kinematic viscosity ν and the cycle maximum of the superficial velocity max 〈u〉s. For the
inertial scaling, the convective pressure drag f (c)

px is normalised with ρ(max 〈u〉s)
2/d, and

for the steady laminar boundary layer scaling, the friction drag fτw and the viscous pressure
drag f (v)

px are normalised with ρ
√

ν (max 〈u〉s)
3/2/d3/2.

Figures 15 and 16 show the friction drag and the viscous pressure drag in the steady
laminar boundary layer scaling. At Wo = 10, the curves of the viscous pressure drag
collapse for the cases LF5 and LF6. We do not observe a collapse of the friction drag,
but the curves are close. At Wo = 31.62, we find an excellent agreement of the friction
drag amplitude with the steady boundary layer scaling for the cases MF5 and MF6. The
normalised amplitudes of the viscous pressure drag also agree with the scaling, but the
shape of the curves is different between the cases. At Wo = 100, we do not observe a
collapse of the friction drag and the viscous pressure drag in the steady boundary layer
scaling.
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Figure 15. Friction drag normalised with ρ
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boundary layer scaling.
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boundary layer scaling.

Figure 17 shows the convective pressure drag in the inertial normalisation. We observe
similar amplitudes of the convective pressure drag at Wo = 10 and Wo = 31.62. Moreover,
the normalised amplitude of the cases LF6 (Re = 307) and MF6 (Re = 298) is consistent
with the normalised amplitude of the sum of the direct and turbulent convective pressure
drag for the cases T2–T4 in the same Reynolds number range (Re = 263–354). However,
we do not observe a collapse of the curves at neither Womersley number and thus we
cannot confirm the inertial scaling of the convective pressure drag for the oscillatory
cases. At Wo = 100, we do not observe an inertial scaling in the present range of Reynolds
numbers (Re � 465). A striking feature in figure 17 is the phase behaviour at Wo = 31.62.
While at low Reynolds numbers the convective pressure drag is approximately 70◦ out
of phase with the forcing, the phase shift decreases with increasing Reynolds number. At
Wo = 100, we can also observe a variation of the phase shift, but no clear trend can be
identified.

5. Discussion

In this section, we interpret our results with regard to the dynamics of the pore-scale flow.
We then discuss the implications of our findings for model descriptions of unsteady porous
media flow.
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Figure 17. Convective pressure drag normalised with ρ(max 〈u〉s)
2/d corresponding to an inertial scaling.

5.1. Steady flow
For steady flow we observed that the direct convective pressure drag due to the
time-averaged velocity field scales approximately with Re2 for high Reynolds numbers
(Re = 140–350); the friction drag and the viscous pressure drag scale with Re2–0.6 = Re1.4

for Re = 200–350. Dybbs & Edwards (1984) conducted experiments of steady flow
through a hexagonal sphere pack. They reported the emergence of boundary layers and an
‘inertial core flow’ between Re = 1 and 10. A consistent flow pattern has been observed
in the DNSs (Sakai & Manhart 2020). Similarly, for a simple cubic sphere pack Horton &
Pokrajac (2009) put forward a conceptual division of the velocity field into a high speed
‘core flow’ and low speed regions near the spheres. Using dye visualisations, Wegner,
Karabelas & Hanratty (1971) obtained the skin friction line pattern in a face-centred cubic
sphere pack. In a follow-up study, Karabelas, Wegner & Hanratty (1973) hypothesised the
presence of boundary layers between the attachment points and the separation lines along
the spheres. A simple boundary layer calculation based on a pressure profile resulted in an
approximate agreement with the experimental data. Furthermore, Jolls & Hanratty (1969)
electrochemically measured the mass transfer rate and the wall shear stress over a sphere
inside a packed bed of porosity ε = 0.41 at Reynolds numbers between 5 and 1120. ‘With
the exception of the very rearward portion of the spheres the effect of Reynolds number on
the local mass transfer rate and on the local shear stress is what is predicted by boundary
layer theory for isolated spheres. This would seem to suggest that flow over most of the
surface of the sphere could be described by a three-dimensional boundary layer flow.’

Our results seem to support this conceptual picture in that the observed scaling of the
friction drag and viscous pressure drag are consistent with the Re3/2 scaling predicted by
laminar boundary layer theory under the assumption of a Reynolds number independent
core flow. The nearly quadratic scaling of the direct convective pressure drag indeed
suggests that the time-averaged core flow varies only weakly with the Reynolds number.
Furthermore, He et al. (2019, figures 2 and 3) and Sakai & Manhart (2020, figure 15)
found that the turbulent kinetic energy is concentrated in the large pores and is low near
the walls and where the time-averaged velocity is high. This substantiates the hypothesis
of a laminar boundary layer even in the ‘turbulent’ flow regime.

Future research should attempt to confirm the applicability of the boundary layer
concept to the present flow configuration based on velocity profiles or the local momentum
budget. The presence of laminar boundary layers would allow us to extrapolate the viscous
drag to higher Reynolds numbers and would also imply a scaling for the heat and mass
transfer in the vicinity of the wall (Karabelas, Wegner & Hanratty 1971; Schlichting &
Gersten 2017, ch. 9). This could be important, for example, in the design of chemical
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reactors. It would also be interesting to extend the present analysis to higher Reynolds
numbers to investigate the scaling of the turbulent convective pressure drag.

Given that the observed low-Reynolds-number behaviour agrees with the theory of Mei
& Auriault (1991) for isotropic porous media and that the experiments in disordered packed
beds point to a quadratic scaling of the drag (Macdonald et al. 1979) and a boundary layer
scaling of the friction drag (Jolls & Hanratty 1969) at high Reynolds numbers, we expect
the present scalings to carry over qualitatively also to other kinds of sphere packs.

5.2. Oscillatory flow
For oscillatory flow at Wo = 10 we found that the amplitudes and scalings of the different
drag components are very similar to the steady case. In the cases LF5 and LF6 some
fluctuations can be observed in the convective pressure drag and in the acceleration (and
thus the superficial velocity); the friction drag and the viscous pressure drag show only
small traces of these fluctuations (figure 12). This further supports the above hypothesis
that the laminar boundary layers are only weakly influenced by inertial and turbulent
effects.

At Wo = 31.62, the amplitudes of the drag components are still close to the steady
values, but the phases differ considerably from the lower Womersley number. As
the Reynolds number increases, the friction drag and viscous pressure drag become
increasingly in phase with the macroscopic pressure gradient (figures 10 and 13). Since
the Womersley number is relatively high and since the friction and viscous pressure
drag approach a steady laminar boundary layer scaling for higher Reynolds numbers, we
explain this behaviour using the boundary layer concept. Generally, the boundary layer
thickness can be estimated as δ ∝ √

νtB where tB is the time that a fluid particle spends
inside the boundary layer (Schlichting & Gersten 2017, p. 141). In an accelerating flow,
tB is just the elapsed time t since the start of the boundary layer formation. When the
time reaches the convection time d/ 〈u〉s, the boundary layer starts to become steady
and its thickness is δ ∝ √

νd/ 〈u〉s or δ/d ∝ Re−1/2. In this case, the drag is in phase
with the superficial velocity. If the period of oscillation is shorter than the convection
time, the flow never becomes steady and the boundary layer thickness is δ ∝ √

ν/Ω or
δ/d ∝ Wo−1. In this case, the boundary layer flow is essentially linear and the drag is out
of phase with the superficial velocity (cf. § 4.2). When the Womersley number is fixed,
the Reynolds number determines if the boundary layer flow reaches a quasisteady state.
The process outlined above can be seen in the case MF5 (figure 18a). In the acceleration
phase, the boundary layer is thinner than in the steady case; consequently, the drag is
higher than in the steady case. Then, the boundary layer growth reaches the steady state
value and during the deceleration, the boundary layer remains quasisteady. Thus, the drag
coincides with the steady state curve. For the convective pressure drag (figure 18b) we
observe a non-sinusoidal time evolution with a plateau around the zero crossings and a
high magnitude in between. The shape and phase of the waveform vary considerably with
the Reynolds number (figure 17).

In order to extend our understanding of the convective pressure drag, we look at the
instantaneous velocity fields of the case MF5 at the beginning and at the end of the
steep increase of the convective pressure drag (the times are highlighted by the markers in
figure 13). At the first time (ϕ = 0.28π), the flow has an instantaneous Reynolds number
of 85 and the convective pressure drag in the x-direction is −3 % of the instantaneous
macroscopic pressure gradient ( f (c)

px /(εfx) = −0.03 sin(0.28π)). At the second time (ϕ =
0.52π), the instantaneous Reynolds number is at its peak value 157 and the convective
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Figure 18. Comparison of the relation between the instantaneous drag components and the superficial velocity
for steady and oscillatory flow in the case MF5 (Re = 157, Wo = 31.62). (a) Sum of friction and viscous
pressure drag; (b) convective pressure drag.
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Figure 19. Instantaneous velocity magnitude |u| and u = 0 contour of the case MF5 at the times marked in
figure 13. The colours are normalised with respect to the instantaneous superficial velocity. (a) Beginning of
the steep increase of the convective pressure drag (ϕ = 0.28π, Re(t) = 85). (b) End of the steep increase of the
convective pressure drag (ϕ = 0.52π, Re(t) = 157).

pressure drag in the x-direction is −27 % of the instantaneous macroscopic pressure
gradient ( f (c)

px /(εfx) = −0.26 sin(0.52π)). It can be seen in figure 19 that at the beginning
of the increase the distribution of the velocity magnitude is roughly fore–aft symmetric
with respect to the planes x = d/2 and x = 3d/2. Since a symmetric velocity field has a
symmetric distribution of the Q-invariant, which is then multiplied with the antisymmetric
auxiliary potential Φx, a relatively low convective pressure drag is produced. On the other
hand, a non-symmetric velocity magnitude distribution can be observed at the end of the
increase of the convective pressure drag. The zero contour of the streamwise velocity
component (u = 0) indicates that the latter field exhibits a large separation region behind
the contact points in the oblique cut plane. The comparison of the two velocity fields
shown in figure 19 suggests that the steep increase in convective pressure drag is caused
by the emergence of the flow separation regions. The plateaus near the zero crossings of
the convective pressure drag could thus be seen as attached flow whereas the parts of the
cycle with a large convective pressure drag would correspond to separated flow.
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At Wo = 100, the drag components do not follow the same scalings as at the lower
Womersley numbers and clear phase differences between the drag components can be
observed. A possible explanation for these discrepancies is that at low Womersley numbers
the boundary layers are quasisteady if the Reynolds number is high enough, whereas the
boundary layers do not become steady at the highest Womersley number in the considered
Reynolds number range. The convective pressure drag has an almost triangular waveform
at low Reynolds numbers (figure 11) and at high Reynolds numbers (figure 17). This
qualitatively different behaviour of the convective pressure drag in comparison with the
lower Womersley numbers could be understood if one assumes a finite formation time
for the drag producing structures. Then, at Wo = 10 the formation time would be small
compared with the period of oscillation, resulting in a small phase lag of the convective
pressure drag. At Wo = 31.62, the formation time would be relatively large compared with
the period of oscillation (similar to the duration of the plateaus at the zero crossings),
resulting in a larger phase lag of the convective pressure drag. Figure 17(b) suggests
that the formation time would decrease with increasing Reynolds numbers. Finally, at
Wo = 100 the frequency of oscillation is so high that the formation and destruction in
subsequent half-cycles overlaps in time. Thus, the plateau would disappear.

5.3. Implications for modelling
We have presented a new form (2.11) of the volume-averaged momentum equation for
a spatially constant macroscopic pressure gradient f where we can express the drag in
terms of the wall shear stress and the second invariant of the velocity gradient tensor. The
auxiliary potential Φ (and derived from it the tensor of virtual inertia A) only depends
on the geometry of the porous medium. In this formulation, the components of the
pressure drag with a viscous scaling, an inertial scaling and a direct proportionality to
the macroscopic pressure gradient are separated. We have shown in Appendix B.2 how
this form of the volume-averaged momentum equation can be used to directly derive the
asymptotic drag behaviour at high Womersley numbers of Johnson et al. (1987).

For steady flow, we found that the friction drag and the viscous pressure drag depend
linearly on Re at low Reynolds numbers and scale with Re1.4 at high Reynolds numbers.
The convective pressure drag scales with Re3 at low Reynolds numbers and with Re2 at
high Reynolds numbers. At low Reynolds numbers, these results are in line with Darcy’s
law (1.6) and its correction (1.7) by Mei & Auriault (1991). However, the Forchheimer
equation (1.8) is incompatible with the low-Reynolds-number behaviour of the convective
pressure drag and with the high-Reynolds-number behaviour of the friction drag and of
the viscous pressure drag.

In nonlinear oscillatory flow at Wo = 10 the drag components show the same scaling
as in steady flow. Moreover, the momentum balance indicates that the flow is quasisteady.
This flow can thus be modelled by extending the steady state drag law with an acceleration
term (Zhu et al. 2014; Zhu & Manhart 2016). At Wo = 31.62 the Reynolds number scalings
of the drag components are similar to the steady case, but the drag components are
out of phase with the superficial velocity (figure 18). To model the friction and viscous
pressure drag, a promising approach could be to blend the parametrisation of Johnson et al.
(1987) with the Re3/2 behaviour of the laminar boundary layer. As the convective pressure
drag cannot be expressed as a function of the instantaneous superficial velocity alone
and, furthermore, scales with Re3 at low Reynolds numbers, it seems necessary to think
beyond the traditional parametrisation in terms of 〈u〉2

s . In particular, we could observe
a smaller hysteresis between the convective pressure drag and a time-lagged superficial
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Decomposition of drag force in flow through a sphere pack

velocity or the instantaneous kinetic energy. For the simulation cases at Wo = 100 no
clear high-Reynolds-number scalings could be identified; thus, further research is required
in this direction. As a starting point for the development of improved models, we provide
the time series of the superficial velocity and the drag components from our simulations
as supplementary material available at https://doi.org/10.1017/jfm.2023.798.

Finally, our decomposition provides a new point of view on the time constant in the
volume-averaged momentum equation. In most model equations for unsteady porous
media flow, the resistance of the bulk flow to acceleration has been incorporated with
the ad hoc addition of a ‘virtual mass coefficient’ (Sollitt & Cross 1972; Burcharth &
Andersen 1995) or ‘acceleration coefficient tensor’ (Nield 1991) to the volume-averaged
momentum equation. This was done by analogy to the added-mass effect in inviscid flow.
For example, Nield (1991) suggested an unsteady extension to Darcy’s law (1.6),

ρCa · d〈u〉s

dt
= −μ

K
〈u〉s + f (5.1)

where the acceleration coefficient tensor is assumed to be of the form Ca = ε−1I + N;
the tensor N representing ‘the contribution from “fractures” ’. The volume-averaged
momentum equation (2.11) can also be brought to such a form by multiplying the equation
with Ca := [εI − (1 − ε)A]−1. Then, the accelerative pressure drag is absorbed into the
prefactor of the acceleration and all other drag terms are rescaled:

ρCa · d〈u〉s

dt
= Ca ·

[
− 1

V

∫
Afs

(I − ∇ ⊗ Φ)T · τw dA + 1
V

∫
Vf

Φ 2ρQ dV

]
+ f . (5.2)

The term −μ/K 〈u〉s in (5.1) can be identified as a parametrisation of the first term on
the right-hand side of (5.2) with the Darcy expression for the drag. Our decomposition
thus gives a new interpretation to the ‘virtual mass’ in a porous medium in terms of the
accelerative pressure drag, which possesses a clear physical meaning also for viscous flow.
As discussed in Appendix B.1, this definition of the acceleration coefficient reduces to the
‘high-frequency limit of the dynamic tortuosity’ by Johnson et al. (1987) in the isotropic
case, i.e. Ca = α∞/ε I .

6. Conclusion

In this paper, we studied the behaviour of the drag force in steady and oscillatory flow
through a hexagonal sphere pack. Based on the pressure decomposition of Graham (2019)
we derived a new form of the volume-averaged momentum equation in which the pressure
drag force is split into three contributions. The accelerative pressure drag is a reaction
force directly proportional the macroscopic pressure gradient. It prevents the macroscopic
pressure gradient from accelerating the fluid normal to the wall. The viscous pressure drag
results from unbalanced viscous stresses and can be expressed to a weighted integral of
the wall shear stress. The convective pressure drag can be expressed as a weighted volume
integral of the Q-invariant of the velocity gradient tensor representing effects like vortices,
shear layers and flow separation.

Using this decomposition, the drag law for high Womersley numbers (Johnson et al.
1987) and the Re dependence of the drag for low Reynolds numbers could be derived
using relatively simple arguments (see §§ B.2 and B.3). Moreover, we could provide a
new theoretical basis for the virtual mass coefficient commonly employed in models for
unsteady porous media flow (see § 5.3).
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We then applied the drag decomposition to a DNS dataset of steady and oscillatory
flow through a hexagonal sphere pack. We investigated the contributions of the different
drag terms to the volume-averaged momentum budget. The accelerative pressure drag is
proportional to the macroscopic pressure gradient and thus has a fixed contribution of
38.4 % to the momentum budget. For steady flow, the remaining drag is dominated by the
friction and viscous pressure drag at low Reynolds numbers and by the convective pressure
drag at high Reynolds numbers. For the considered Reynolds numbers, the Reynolds
stresses only have a minor effect on the drag. For oscillatory flow at low and medium
Womersley numbers, the friction drag, viscous pressure drag and convective pressure
drag have a similar magnitude as in the steady case. At high Womersley numbers, the
friction and viscous pressure drag are significantly smaller than in the steady case. Thus,
the drag at high Womersley numbers is made up mostly by the accelerative and the
convective pressure drag. An important feature of the drag in oscillatory flow is that the
drag components are not in phase with the body force and the superficial velocity. The
phase differences increase with the Womersley number.

We investigated the Reynolds number scalings of the friction drag, the viscous pressure
drag and the convective pressure drag. In the steady case, the friction and viscous pressure
drag are proportional to Re at small Reynolds numbers and scale with Re1.4 for Reynolds
numbers between 200 and 350. The convective pressure drag of the time-averaged velocity
field scales with Re3 up to a Reynolds number of 10 and with Re2 for Re = 140–350. For
oscillatory flow, the same amplitude scalings can be observed at Wo = 10 and Wo = 31.62,
whereas no clear high Re scaling could be found for the cases at Wo = 100.

These scalings support the picture of Dybbs & Edwards (1984) who divided the flow
at higher Reynolds numbers into an inertial core flow and viscous boundary layers, where
we linked the former with the convective pressure drag and the latter with the friction
and viscous pressure drag. The visualisation of instantaneous velocity fields suggests
that the convective pressure drag in the hexagonal sphere pack is caused by large flow
separations. Moreover, the clear scalings of the friction and viscous pressure drag and of
the convective pressure drag indicate that the inertial core and the boundary layers are only
weakly affected by the turbulence for Re = 200–350.

In future work, the present theory for periodic porous media could be extended to
non-periodic porous media. This might be realised by rewriting the identity

〈Φ �P〉s = 〈∇ · (∇P ⊗ Φ)〉s − 〈∇ · [(∇ ⊗ Φ)P]〉s (6.1)

with the spatial averaging theorem (Whitaker 1985); together with the volume-averaged
Navier–Stokes equations (Whitaker 1986, 1996) a generalisation of (2.11) would be
obtained.

Supplementary material. The time series of the volume-averaged momentum budget terms are provided
for all simulation cases. Moreover, the time series of the superficial velocity and kinetic energy components
are provided for the cases LF5, LF6, MF5, MF6 and HF5. Supplementary material is available at https://doi.
org/10.1017/jfm.2023.798.
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Decomposition of drag force in flow through a sphere pack

(b)

t
n n

t × n τw
ωw

(a)

Figure 20. (a) Orientation of the normal vector n, the tangent vector t and their cross product t × n with
respect to the surface patch A. The normal vector points from the fluid outside into the sphere. (b) Orientation
of the normal vector n, the wall shear stress τw and the wall vorticity ωw with respect to the surface.
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Appendix A. Notes on the viscous pressure drag

This appendix discusses some aspects of the relationship between the viscous pressure and
the wall shear stress. In § A.1, we show that the boundary condition of the viscous pressure
p(v) can be expressed in terms of the wall shear stress divergence. In § A.2, we show that
the mean value of the viscous pressure source term is zero for a periodic domain. Finally,
in § A.3 we derive an alternative expression for the viscous pressure drag as a weighted
integral of the wall shear stress.

A.1. Relationship between the viscous pressure and the wall shear stress divergence
The boundary condition of the viscous pressure (2.3b) can be rewritten using the identity
�u = −∇ × (∇ × u) and Stokes’ theorem as

∇p(v) · n = μ�u · n = −μ [∇ × (∇ × u)] · n = −μ lim
A→0

1
A

∫
∂A

(∇ × u) · t ds, (A1)

where n is the normal vector pointing from the fluid towards the wall, A is an small surface
patch on the wall and t represents the tangent vector on its boundary ∂A. The vorticity on
the wall is related to the wall shear stress by the equation

ωw = ∇ × u|w = τw

μ
× n (A2)

where the cross product expresses a clockwise rotation of the wall shear stress by 90◦
around the normal. Figure 20 shows the orientation of the vectors with respect to a single
sphere.
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Using Lagrange’s identity for the cross product (Bronstein et al. 1991, p. 556), we can
establish the relation

[(∇ × u) × n] · [t × n] = [(∇ × u) · t] [n · n]︸ ︷︷ ︸
=1

− [(∇ × u) · n]︸ ︷︷ ︸
=0

[n · t]︸ ︷︷ ︸
=0

= (∇ × u) · t

(A3)
and by combining the two expressions, we obtain

(∇ × u) · t =
[(

τw

μ
× n

)
× n

]
· [t × n] = −τw

μ
· (t × n). (A4)

Finally, we arrive at the boundary condition

∇p(v) · n = lim
A→0

1
A

∫
∂A

τw · (t × n) ds (A5)

where the right-hand side can be understood as the divergence of the wall shear stress,
since the vector t × n represents the outward normal vector on the boundary ∂A of
the surface patch along the wall. Consequently, the viscous pressure p(v) is caused by
imbalances in the wall shear stress. For example, a stagnation point represents a source of
the wall shear stress, hence ∇p(v) · n > 0 and the viscous pressure increases towards the
wall. This is indeed observed in the analytical solution (Graham 2019).

A.2. Zero-mean property of the wall-normal friction force for a periodic domain
We apply Gauss’s integral theorem to the vector field �u:∫

∂Vf

�u · n dA =
∫

Vf

∇ · (�u) dV =
∫

Vf

Δ(∇ · u) dV = 0. (A6)

As the velocity field is periodic, we can further simplify this to∫
Afs

�u · n dA = 0, (A7)

where Afs represents the fluid–solid interface.

A.3. Alternative expression for the viscous pressure drag
We can rewrite viscous pressure drag (2.7b) using the periodic boundary conditions and
Gauss’s theorem as

− 1
V

∫
Afs

p(v) n dA = − 1
V

∫
Afs

Φ (μ�u · n) dA = − 1
V

∫
∂Vf

Φ (μ�u · n) dA

= − 1
V

∫
Vf

∇ · (μ�u ⊗ Φ) dV

= 1
V

∫
Vf

Φ μΔ(∇ · u) dV︸ ︷︷ ︸
=0

− 1
V

∫
Vf

μ�u · (∇ ⊗ Φ) dV. (A8)

The first term vanishes due to incompressibility. For the second term, we can apply Green’s
second identity componentwise to move the Laplacian onto the auxiliary potential Φ,
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Decomposition of drag force in flow through a sphere pack

which satisfies the Laplace equation. We obtain

− 1
V

∫
Vf

μ�u · (∇ ⊗ Φ) dV = − 1
V

∫
Afs

(∇ ⊗ Φ)T · [μ (∇ ⊗ u)T · n
]

dA

+ 1
V

∫
Afs

μ u · [n · (∇ ⊗ (∇ ⊗ Φ))] dA. (A9)

With the no-slip condition u = 0 and the definition of the wall shear stress, we arrive at

− 1
V

∫
Afs

p(v) n dA = 1
V

∫
Afs

(∇ ⊗ Φ)T · τw dA. (A10)

This equation expresses the viscous pressure drag as a weighted integral of the wall shear
stress. As the function (∇ ⊗ Φ)T solely depends on the geometry, we expect that the
viscous pressure drag has the same scaling as the wall shear stress and the friction drag.

Appendix B. Asymptotic behaviour of oscillatory flow

This appendix contains a discussion of the behaviour of oscillatory flow in potential flow
(§ B.1), at high Womersley numbers (§ B.2) and at low Reynolds numbers (§ B.3). In
particular, §§ B.1 and B.2 establish a link between our pressure drag decomposition and the
established theory of Johnson et al. (1987) for oscillatory porous media flow. Section B.3
generalises the theory of Mei & Auriault (1991) and Firdaouss et al. (1997) to oscillatory
flow.

B.1. Potential flow
In this section, we derive the potential flow solution in response to a spatially constant
macroscopic pressure gradient f using the pressure decomposition (2.3). By comparing
the boundary value problems for Φ and p(a) (2.3a) we find that p(a) = Φ · f . Since the
flow is inviscid, the pressure p(v) is zero. It can be shown that for a potential flow the
Q-invariant can be computed as 4Q = −Δ|u|2. Therefore, we have p(c) = −1

2ρ|u|2. Note
that p(c) satisfies different boundary conditions due to the slip walls where only u · n = 0.
We can now use the momentum equation to determine the velocity:

∂u
∂t

+ ∇
(

1
2
|u|2

)
= − 1

ρ
∇p(a) − 1

ρ
∇p(c) + 1

ρ
f . (B1)

The convective term and ∇p(c) cancel and we are left with

∂u
∂t

= − 1
ρ

∇p(a) + 1
ρ

f = 1
ρ

(I − ∇ ⊗ Φ) · f . (B2)

From (B2), the volume-averaged momentum equation in potential flow follows as

ρ
d〈u〉s

dt
= 〈I − ∇ ⊗ Φ〉s · f =

[
εI − 1

V

∫
Vf

∇ ⊗ Φ dV

]
· f (B3)

which we can transform using Gauss’s theorem and the periodic boundary conditions of
Φ into

ρ
d〈u〉s

dt
=
[
εI − 1

V

∫
Afs

n ⊗ Φ dA

]
· f . (B4)
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With the tensor of added mass (which is symmetric), we can simplify the volume-averaged
momentum equation (1.3) to

ρ
d〈u〉s

dt
= [ε I − (1 − ε) A] · f . (B5)

On the other hand, if the porous medium is isotropic, the theory of Johnson et al. (1987)
gives

ρ
α∞
ε

d〈u〉s

dt
= f (B6)

in inviscid flow. Consequently, we have A = ε(1 − α−1∞ )/(1 − ε)I with the high-frequency
limit of the dynamic tortuosity α∞ (Johnson et al. 1987).

B.2. Behaviour in the high Womersley number limit
In this section, we show how the pressure decomposition can be used to derive the
high-frequency asymptotics of oscillatory flow in a porous medium (Johnson et al. 1987).
These can be written in the time domain as

ρ
d〈u〉s

dt
= −ρ

√
ν

2
Λ

∫ t

0

d〈u〉s

dτ

1√
π(t − τ)

dτ + ε

α∞
f . (B7)

We begin the derivation from the volume-averaged momentum equation (1.3) in which
we insert the decomposition (2.11) to get

ρ
d〈u〉s

dt
= − 1

V

∫
Afs

(I − ∇ ⊗ Φ)T · τw dA + 1
V

∫
Vf

Φ 2ρQ dV︸ ︷︷ ︸
≈0

+ [εI − (1 − ε) A] · f .

(B8)

For linear flow, the convective pressure drag can be neglected as it contains the square of
the velocity.

In the high-frequency limit, the flow has a boundary layer character and the boundary
layer is locally identical to a Stokes boundary layer (Schlichting & Gersten 2017, pp. 352f,
pp. 126f). The wall shear stress in the Stokes boundary layer can be written as

τw = ρ
√

ν

∫ t

0

∂up

∂τ

∣∣∣∣
w

1√
π(t − τ)

dτ, (B9)

where up is the potential flow velocity in the core flow. Combining (B2) and (B5), we can
establish a one-to-one correspondence between the velocity field in potential flow and its
superficial average:

ρ
∂up

∂t
= (I − ∇ ⊗ Φ) · [ε I − (1 − ε) A]−1 · ρ

d〈up〉s

dt
. (B10)

With this relation, the wall shear stress can be expressed in terms of the superficial velocity
of the potential flow:

τw = ρ
√

ν (I − ∇ ⊗ Φ) · [ε I − (1 − ε) A]−1 ·
∫ t

0

d〈up〉s

dτ

1√
π(t − τ)

dτ. (B11)
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Using (2.10), we can compute the total viscous drag force as

− 1
V

∫
Afs

( p(v) n + τw) dA = −ρ
√

ν 2 L−1 ·
∫ t

0

d〈up〉s

dτ

1√
π(t − τ)

dτ (B12)

with the tensor

2L−1 = 1
V

∫
Afs

(I − ∇ ⊗ Φ)T · (I − ∇ ⊗ Φ) dA · [ε I − (1 − ε) A]−1 . (B13)

Finally, when the potential flow velocity is replaced with the actual fluid velocity, we
obtain the volume-averaged momentum equation

ρ
d〈u〉s

dt
= −ρ

√
ν 2 L−1 ·

∫ t

0

d〈u〉s

dτ

1√
π(t − τ)

dτ + [ε I − (1 − ε) A] · f . (B14)

Comparing this result with the high-frequency asymptotics of Johnson et al. (1987) given
in (B7), it is readily apparent that the former is just a tensorial generalisation of the latter.

B.3. Behaviour at finite Reynolds numbers
In this section, we derive the Re3 dependence of the first nonlinear correction to the linear
drag behaviour from the fore–aft symmetry of the hexagonal sphere pack for oscillatory
flow in the x-direction. The derivation is based on our new representation of the drag in the
volume-averaged momentum equation (2.11) and assumes a macroscopic pressure gradient
along the x-direction. This extends the results of Mei & Auriault (1991) and Firdaouss et al.
(1997) for steady flow at finite Reynolds numbers (see (1.7)) to oscillatory flow.

The viscous pressure drag in the x-direction is given by (2.10)

f (v)
px = − 1

V

∫
Afs

p(v) nx dA = 1
V

∫
Afs

∇Φx · τw dA, (B15)

the friction drag is given by the integral of the wall shear stress

fτwx = − 1
V

∫
Afs

τwx dA (B16)

and the convective pressure drag is given by (2.7c)

− 1
V

∫
Afs

p(c) nx dA = 1
V

∫
Vf

Φx 2ρQ dV. (B17)

The auxiliary potential Φx is fore–aft antisymmetric with respect to the planes
x = 0, x = d/2, x = d, . . ., i.e. an odd function with respect to x. Therefore, the partial
derivative ∂Φx/∂x is an even function whereas ∂Φx/∂y and ∂Φx/∂z are odd functions.
Thus, the friction and viscous pressure drag are generated by the even part of τwx and by
the odd part of τwy and τwz; the convective pressure drag is generated by the odd part of
the Q-invariant. Below we discuss how these parts depend on the Reynolds number.

Like in our previous work (Unglehrt & Manhart 2022a), we decompose the velocity field
into a symmetric part usym = 1

2 (u + Su) and an antisymmetric part uanti = 1
2 (u − Su)
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with respect to the fore–aft symmetry

Su(x, t) =
⎡
⎣ u(2d − x, y, z, t)

−v(2d − x, y, z, t)
−w(2d − x, y, z, t)

⎤
⎦ (B18)

with respect to the plane x = d. In laminar flow, the velocity field is d-periodic in the
x-direction. Consequently, this symmetry operation also expresses the fore–aft symmetries
with respect to the planes x = 0, x = d/2, x = 3/2 d and x = 2 d.

The wall shear stress points in the direction of the velocity vector near the wall.
Consequently, the x-component of the wall shear stress of the symmetric part usym of the
velocity field is an even function whereas the y- and z-components are odd functions. The
wall shear stress components of the antisymmetric part uanti of the velocity field behave in
the opposite way. So we find that the friction and viscous pressure drag arise solely from
the symmetric part usym.

Using the decomposition of the velocity field the Q-invariant can be rewritten as

Q = − 1
2 (∇ ⊗ usym) : (∇ ⊗ usym)T︸ ︷︷ ︸

fore–aft symmetric

−(∇ ⊗ usym) : (∇ ⊗ uanti)
T︸ ︷︷ ︸

fore–aft antisymmetric

− 1
2 (∇ ⊗ uanti) : (∇ ⊗ uanti)

T︸ ︷︷ ︸
fore–aft symmetric

.

(B19)

We find that the quadratic contributions in usym and uanti lead to a fore–aft symmetric
distribution of Q and hence do not cause any convective pressure drag. On the other hand,
the interaction between usym and uanti is fore–aft antisymmetric and can cause a convective
pressure drag.

For small Reynolds numbers, the velocity field can be described by as the sum of
the velocity field in linear flow and corrections proportional to powers of the Reynolds
number:

usym = u1|sym Re + u2|sym Re2 + O(Re3), (B20a)

uanti = u1|anti Re + u2|anti Re2 + O(Re3). (B20b)

Since the velocity field in linear flow is fore–aft symmetric (Unglehrt & Manhart
2022a), the antisymmetric first-order contribution u1|anti is zero. The self-interaction
of the symmetric first-order contribution (u1|sym · ∇)u1|sym creates the antisymmetric
second-order contribution u2|anti whereas the symmetric second-order contribution u2|sym
is zero. Then, we have that the symmetric part usym is proportional to Re and causes a
friction drag and viscous pressure drag proportional to Re with a higher-order contribution
of order Re3. The antisymmetric part uanti is proportional to Re2 and does not cause any
friction and viscous pressure drag. The convective pressure drag arises from the part of the
Q-invariant due to the interaction of usym and uanti and is therefore proportional to Re3. In
conclusion, like in steady flow (Mei & Auriault 1991) the drag in oscillatory flow at small
Reynolds numbers consists of a linear and a cubic part in Re.

Appendix C. Grid resolution of the simulations

In this appendix, we discuss the grid resolution of the simulation cases LF5, LF6, MF5,
MF6 and HF5. For the other oscillatory cases LF1–LF4, MF1–MF4, HF1–HF4 and for the
steady cases, convergence with respect to grid resolution was demonstrated in the previous
publications, Unglehrt & Manhart (2022a) and Sakai & Manhart (2020), respectively.
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C.1. Estimate of the required grid resolution
For turbulent flow driven by a constant pressure gradient, the required grid resolution can
be estimated following Finn (2013) and He et al. (2019). It is assumed that a grid spacing
in wall units

�x+ = uτ �x
ν

≈ 1–3 (C1)

is necessary to resolve all scales in the flow, where the friction velocity uτ = √〈τwx〉Afs/ρ

is defined in terms of the wall shear stress 〈τwx〉Afs averaged over the fluid–solid interface.
He et al. (2019) approximate the average wall shear stress as a fraction β ≈ 0.25 of the
total stress 〈σwx〉Afs which they find from equilibrium as

〈σwx〉Afs = fx
d
6

ε

1 − ε
. (C2)

Combining (C1) and (C2), the required grid resolution for turbulent flow at a given Hagen
number can be estimated as

d
�x

= 1
�x+

√
β

6
ε

1 − ε
Hg. (C3)

For the cases LF6 and MF6, the acceleration is close to zero when the convective pressure
drag is large. Therefore, it seems plausible that these cases behave similar to a flow with a
constant pressure gradient. Taking a dimensionless grid spacing �x+ = 1 and setting β =
0.2 (which was taken from the momentum budgets in the figures 12 and 13), the estimate
results in a required grid resolution of 342 cpd for the cases LF6 and MF6 (Hg = 107).
Consequently, the employed grid resolution of 384 cpd for the cases LF6 and MF6 seems
to be sufficient. For the case HF5, the estimate is not applicable, as the flow is far from an
equilibrium with the imposed pressure gradient and the wall shear stress is out of phase
with the convective pressure drag (figure 14).

C.2. Grid study
In this section, we present a grid study for the cases LF5, LF6, MF5, MF6 and HF5. For
each case the simulations were conducted at the resolutions 48 cpd, 96 cpd, 192 cpd and
384 cpd; for the case HF5 an additional simulation at 768 cpd was performed.

For consistency, the discretisation error is assessed using the same procedure as in our
previous publication (Unglehrt & Manhart 2022a). We first consider the Reynolds number
based on the maximum superficial velocity in the last cycle and the sphere diameter, which
is defined in (1.4). As can be seen in table 4, for every case the Reynolds numbers differ
less than 1 % between the two finest grid resolutions. We then consider the space–time
L2-norm of the velocity field over the last simulated period,

‖u‖2
L2 =

∫
Vf

∫
T

|u|2 dt dV, (C4)

corresponding to the signal energy of the velocity field. For all cases the relative difference
of the space–time L2-norm between the second-finest grid to the finest grid is below 1.8 %
(cf. table 4). Consequently, we consider the simulations at the finest grid resolution as
converged.
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Case TsimΩ/(2π) e48 e96 e192 e384 Re48 Re96 Re192 Re384 Re768

LF5 2.274 −10.66 % 2.46 % 1.79 % — 138 157 159 157.7 —
LF6 1.562 −18.62 % −8.26 % 1.43 % — 255.4 282.6 310.5 306.6 —
MF5 6.397 −13.95 % −0.91 % 0.04 % — 133.6 154.5 157.3 157.1 —
MF6 2.261 −18.49 % −6.61 % 0.37 % — 252.3 277.2 297.1 297.6 —
HF5 6 −22.47 % −14.11 % −2.55 % −1.02 % 375.1 415.9 459.6 464 465

Table 4. Grid convergence of the velocity field u(x, t) in steady oscillation. The relative error in ‖u‖2
L2 is

defined as eres = (‖ures‖2
L2 − ‖u384‖2

L2 )/‖u384‖2
L2 and as eres = (‖ures‖2

L2 − ‖u768‖2
L2 )/‖u768‖2

L2 for HF5. The
Reynolds number Re is defined according to (1.4).
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