# BOUNDS FOR SOLUTIONS OF A SYSTEM OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS ON DOMAINS WITH BERGMAN-SILOV BOUNDARY

### JOSEPHINE MITCHELL

## 1. Introduction.

1. The method of integral operators has been used by Bergman and others (4; 6; 7; 10; 12) to obtain many properties of solutions of linear partial differential equations. In the case of equations in two variables with entire coefficients various integral operators have been introduced which transform holomorphic functions of one complex variable into solutions of the equation. This approach has been extended to differential equations in more variables and systems of differential equations. Recently Bergman (6; 4) obtained an integral operator transforming certain combinations of holomorphic functions of two complex variables into functions of solutions of solutions of solutions of two complex variables into functions of four real variables which are the real parts of solutions of the system

(1)

. 2 .

where  $z_1$ ,  $z_1^*$ ,  $z_2$ ,  $z_2^*$  are independent complex variables and the functions  $F_j$  (j = 1, 2) are entire functions of the indicated variables. (In general, j takes the values 1 and 2. Note that if the variables  $x_1$ ,  $y_1$ ,  $x_2$ ,  $y_2$  are introduced in the usual manner by writing  $z_j = x_j + iy_j$ ,  $z_j^* = x_j - iy_j$  and if the new variables are restricted to real values,  $z_j^*$  coincides with the conjugate  $\bar{z}_j$  of  $z_j$ ).

Bergman showed that there exist four functions  $T_j(z_j, z_j^*, \zeta_j)$  and  $P_j(z_j, z_j^*, \zeta_j)$  which are entire functions of the indicated variables such that every real solution of (1), regular at the origin, can be represented in a neighbourhood of the origin in the form

(2) 
$$\psi(z_1, \bar{z}_1, z_2, \bar{z}_2) = \operatorname{Re}[\psi'(z_1, \bar{z}_1, z_2, \bar{z}_2) + \psi''(z_1, \bar{z}_1, z_2, \bar{z}_2)]$$

where

Received October 19, 1965. This research was completed while the author held an NSF Senior Postdoctoral Fellowship and is a revised form of Technical Summary Report No. 535, December 1964, Math. Research Center, U.S. Army, Madison, Wisconsin.

$$\begin{aligned} (2a) \quad \psi'(z_1, \bar{z}_1, z_2, \bar{z}_2) &= g_1(z_1, z_2) + \int_{\zeta_1=0}^{z_1} T_1(z_1, \bar{z}_1, \zeta_1) g_1(\zeta_1, z_2) d\zeta_1 \\ &+ \int_{\zeta_2=0}^{z_2} T_2(z_2, \bar{z}_2, \zeta_2) g_1(z_1, \zeta_2) d\zeta_2 \\ &+ \int_{\zeta_1=0}^{z_1} \int_{\zeta_2=0}^{z_2} \prod_j T_j(z_j, \bar{z}_j, \zeta_j) g_1(\zeta_1, \zeta_2) d\zeta_1 d\zeta_2, \end{aligned} \\ (2b) \quad \psi''(z_1, \bar{z}_1, z_2, \bar{z}_2) &= g_2(z_1, \bar{z}_2) + \int_{\zeta_1=0}^{z_1} P_1(z_1, \bar{z}_1, \zeta_1) g_2(\zeta_1, \bar{z}_2) d\zeta_1 \\ &+ \int_{\zeta_2=0}^{\bar{z}_2} P_2(z_2, \bar{z}_2, \zeta_2) g_2(z_1, \zeta_2) d\zeta_2 \\ &+ \int_{\zeta_1=0}^{z_2} \prod_j P_j(z_j, \bar{z}_j, \zeta_j) g_2(\zeta_1, \zeta_2) d\zeta_1 d\zeta_2 \end{aligned}$$

and  $g_1$  and  $g_2$  are arbitrary functions of  $z_1$ ,  $z_2$  and  $z_1$ ,  $\bar{z}_2$  respectively, holomorphic in a neighbourhood of the origin.

In this paper we assume that  $g_i$  are defined on a domain lying in the space  $C^2$  of two complex variables whose boundary consists of a finite number of segments of analytic hypersurfaces. The intersections of these hypersurfaces form a 2-dimensional manifold called the Bergman-Silov boundary of the domain on which a function holomorphic on the domain takes the maximum of its absolute value. The closed domain consists of the interior  $\mathfrak{M}^4$ , the Bergman–Silov boundary  $\mathfrak{D}^2$ , and the complementary part  $\mathfrak{b}^3$  of the 3-dimensional boundary m<sup>3</sup>. (The superscript indicates the dimension of the set.) We investigate what properties of the solution on  $\mathfrak{b}^{\mathfrak{s}}$  can be used to obtain bounds for the solution on  $\mathfrak{M}^4$ . In §§2 and 3 bounds for the solution in a set  $\mathfrak{N}^4 \subset \mathfrak{M}^4$ , where  $z = (z_1, z_2) \in \mathfrak{N}^4$  implies that a 2-dimensional set  $\mathfrak{S}^2(z)$  lies in  $\mathfrak{M}^4$  (see (3)), are obtained by means of the Schottky inequality for holomorphic functions of one complex variable. In §2 it is assumed that through every point  $\zeta$  of  $\mathfrak{S}^2(z)$  there passes an analytic surface  $\mathfrak{A}^2(\zeta)$  which intersects the boundary of  $\mathfrak{M}^4$  in a set lying on one analytic hypersurface only. In §3 this is extended to the case that  $\mathfrak{A}^2(\zeta)$  meets  $\mathfrak{m}^3$  in a Jordan curve which cuts the Bergman–Silov boundary in a finite number of points if the functions  $g_i$  in (2) are bounded in a neighbourhood of the Bergman-Silov boundary lying on m<sup>3</sup>. For other possible bounds for holomorphic functions of two complex variables, see (9; 13).

The author wishes to thank Professor Bergman for several helpful discussions in the preparation of the paper.

2. Geometry of the problem. Let  $\mathfrak{M}^4$  be a domain in  $C^2$  with boundary  $\mathfrak{m}^3$  and  $0 \in \mathfrak{M}^4$ , which possesses a distinguished piece of boundary  $\mathfrak{D}^2$  in the sense of Bergman-Silov boundary.  $\mathfrak{D}^2$  is constructed as follows (3; 5):

$$\mathbf{m}^3 = \bigcup_{k=1}^n \overline{\mathbf{i}}_k^3,$$

JOSEPHINE MITCHELL

where  $i_k^3$  is a closed segment of analytic hypersurface and *n* is finite:

$$\overline{\mathfrak{i}}_k{}^3 = igcup_{0\leqslant\lambda_k\leqslant 2\pi} \overline{\mathfrak{F}}_k{}^2(\lambda_k),$$

 $\overline{\mathfrak{Z}}_{k}^{2}(\lambda_{k})$  being a segment of analytic surface given by

$$\overline{\mathfrak{Z}}_{k}^{2}(\lambda_{k}) = [z|z_{j} = h_{kj}(Z_{k},\lambda_{k}), j = 1, 2, |Z_{k}| \leq 1],$$

 $H_k = (h_{k1}, h_{k2})$  a 1 to 1 continuous map of  $D_k^3 = [|Z_k| \leq 1] \times [0 \leq \lambda_k \leq 2\pi]$ onto  $\overline{\mathfrak{i}}_k^3$ , each  $h_{kj}$  being a continuously differentiable function on  $D_k^3$  and holomorphic on  $|Z_k| < 1$  for each  $\lambda_k$  in  $[0, 2\pi]$ . Since  $D_k^3$  is compact, the set  $\overline{\mathfrak{i}}_k^3$  is compact and  $H_k$  is a homeomorphism. Hence  $\mathfrak{m}^3$  is compact and since  $0 \in \mathfrak{M}^4$ and  $\mathfrak{M}^4$  is connected,  $\mathfrak{M}^4$  is bounded. For fixed  $\lambda_k$  let  $A_k(\lambda_k)$  be the point  $(h_{k1}(0, \lambda_k), h_{k2}(0, \lambda_k))$  corresponding to  $Z_k = 0$  and call

$$l_k^{-1} = \bigcup A_k(\lambda_k) \ (0 \leqslant \lambda_k \leqslant 2\pi)$$

the axis of  $i_k^3$ . The representation of  $i_k^3$  given here is said to be normalized with respect to the axis  $l_k^1$  (3, p. 186). On m<sup>3</sup> there are two kinds of points, namely those that belong to one  $i_k^3$  only and those that belong to the intersection of two or more  $i_k^{3^*}$ s. Bergman has shown that every point of the boundary curve  $i_k^1(\lambda_k)$  of  $\overline{\mathfrak{F}}_k^2(\lambda_k)$  must belong to the intersection of two or more  $i_k^{3^*}$ s (2). Thus

$$\dot{\mathfrak{t}}_k^{\ 1}(\lambda_k) = \bigcup_{s=1}^n \dot{\mathfrak{t}}_{ks}^{\ 1}(\lambda_k), \qquad \dot{\mathfrak{t}}_{ks}^{\ 1}(\lambda_k) = \dot{\mathfrak{t}}_k^{\ 1}(\lambda_k) \cap \overline{\dot{\mathfrak{t}}}_s^{\ 3} \qquad (s \neq k).$$

Set

$$\mathfrak{G}_{ks}^{2} = \bigcup_{0 \leqslant \lambda_{k} \leqslant 2\pi} \mathfrak{i}_{ks}^{1}(\lambda_{k}) = \bigcup_{0 \leqslant \lambda_{s} \leqslant 2\pi} \mathfrak{i}_{ks}^{1}(\lambda_{s}),$$

and

$$\mathfrak{D}^2 = \bigcup_{k=1}^n \bigcup_{s=1}^n \mathfrak{G}_{ks}^2 \qquad (s \neq k)$$

is the Bergman–Silov boundary of  $\mathfrak{M}^4$ .

If we assume for every s in  $(0, s_0]$  with  $s_0$  sufficiently small that the sets

$$[z| z_j = h_{kj}(Z_j, \lambda_k - is), Z_k \in B_k^2(\lambda_k, s), k = 1, \ldots, n]$$

form the boundary of a domain  $\mathfrak{M}_s$  with  $\mathfrak{\overline{M}}_s \subset \mathfrak{M}^4$ , where  $B_k^2(\lambda_k, s)$  are simply connected domains which for s = 0 become the unit disk  $|Z_k| < 1$ , and for each  $\lambda_k$ ,  $h_{kj}(Z_k, \lambda_k - is)$  are continuous in  $Z_k$  and s on  $|Z_k| \leq 1$ ,  $0 \leq s \leq s_0$ , then it follows from Cauchy and Morera's theorems that  $f(z_1, z_2)$ , holomorphic in  $\mathfrak{M}^4$  and continuous on  $\mathfrak{\overline{M}}^4$ , implies  $f[h_{k1}(Z_k, \lambda_k), h_{k2}(Z_k, \lambda_k)]$ holomorphic on  $|Z_k| < 1$  for every  $\lambda_k \in [0, 2\pi]$  (3, p. 188).

Let  $\mathfrak{G}_{j^1}(z_j)$  be a curve in the  $z_j$ -plane connecting 0 to  $z_j$  whose points  $\zeta_j$  are such that  $|\zeta_j| \leq |z_j|$ . Set

(3) 
$$\mathfrak{S}^{2}(z) = \mathfrak{C}_{1}^{1}(z_{1}) \times \mathfrak{C}_{2}^{1}(z_{2}) = [\zeta = (\zeta_{1}, \zeta_{2}) | \zeta_{j} \in \mathfrak{C}_{j}^{1}(z_{j})].$$

1274

Then for each  $z \in \mathfrak{M}^4$  for which  $\mathfrak{S}^2(z) \subset \mathfrak{M}^4$ , bounds can be obtained for the functions  $g_j$  in (2). Let  $\mathfrak{N}^4$  be the largest subset of  $\mathfrak{M}^4$  such that  $z \in \mathfrak{N}^4$  implies that  $\mathfrak{S}^2(z) \subset \mathfrak{M}^4$ . (Notice that for any bicylinder or complete Reinhardt circular domain with center at the origin  $\mathfrak{N}^4 = \mathfrak{M}^4$ .)

Let  $\mathfrak{A}_0^2 = [w| w_j = f_j(t)]$  be an analytic surface through the point z, that is,  $f_j$  are holomorphic functions of the complex variables t, chosen so that the boundary  $\mathfrak{a}^1$  of the set  $\mathfrak{A}^2 = \mathfrak{A}_0^2 \cap \mathfrak{M}^4$  lies on  $\mathfrak{m}^3$  and the inverse image of  $\overline{\mathfrak{A}}^2$ under the mapping  $F = (f_1, f_2)$  is a compact set in the t-plane. (The boundary of  $\mathfrak{A}^2$  could lie partly in  $\mathfrak{M}^4$ .) Similarly assume that through every point  $\zeta$  of  $\mathfrak{S}^2(z)$ , there is an analytic surface  $\mathfrak{A}_0^2(\zeta)$  with the same properties as  $\mathfrak{A}_0^2$ .

The representation (2b) is valid for  $\psi''$  only if the domain  $\mathfrak{M}^4$  is symmetric with respect to  $x_1 y_1 x_2$ -space; that is,  $(z_1, z_2) \in \mathfrak{M}^4$  implies  $(z_1, \overline{z}_2) \in \mathfrak{M}^4$ , and we may take the curve joining 0 to  $\overline{z}_2$  in the  $z_2$ -plane as the reflection of  $\mathfrak{C}_2^{1}(z_2)$ with respect to the  $x_2$ -axis. Also the functions  $g_1(z_1, 0)$  and  $g_2(0, z_2)$  are assumed to be holomorphic on  $\mathfrak{M}^4$  and continuous on  $\mathfrak{M}^4$ .

# 2. Bounds for solutions of system (1.1) on analytic surfaces $\mathfrak{A}_0^2$ which meet the boundary hypersurfaces of $\mathfrak{M}^4$ along sets lying in one segment $i_k^3$ .

1. If the curve  $\mathfrak{a}^1$  lies entirely in one segment  $\mathfrak{i}_k^3$ , then there exists an r < 1such that  $|Z_k| \leq r$  for all points on  $\mathfrak{a}^1$ . Otherwise there is a sequence  $P^{(n)} \in \mathfrak{a}^1$ such that the corresponding coordinate  $Z_k^{(n)} \to Z_k^0$  and  $|Z_k^0| = 1$ . Let  $\lambda_k^{(n)}$  be the corresponding value of  $\lambda_k$  for  $P^{(n)}$ . There exists a convergent subsequence of  $\lambda_k^{(n)}$  converging to  $\lambda_k^0 \in [0, 2\pi]$  and the corresponding subsequence of  $Z_k^{(n)}$ converges to  $Z_k^0$ . Reletter these subsequences as  $(Z_k^{(n)}, \lambda_k^{(n)})$ . By continuity of  $h_{kj}$ , the corresponding coordinate of  $P^{(n)}$  converges to  $h_{kj}(Z_k^0, \lambda_k^0)$  with  $|Z_k^0| = 1$ , but the point P<sup>0</sup> with these coordinates lies on the boundary of  $\mathfrak{i}_k^3$  since  $H_k = (h_{k1}, h_{k2})$  is a homeomorphism. Since  $P^0$  is a limit point of the closed set  $\mathfrak{a}^1$ ,  $P^0 \in \mathfrak{a}^1$ , which is a contradiction. Thus such an r < 1 exists. Let

(1) 
$$t_k^3 = [z| z_j = h_{kj}(Z_k, \lambda_k), |Z_k| < r].$$

and say that  $t_k^3$  has a representation normalized with respect to the axis  $l_k^1$  and in this representation is of radius r. We also assume that the boundary  $\mathfrak{a}^1(\zeta)$ of  $\mathfrak{A}^2(\zeta) = \mathfrak{A}_0^2(\zeta) \cap \mathfrak{M}^4$  lies in  $t_k^3$  for each  $\zeta \in \mathfrak{S}^2(z)$ .

Since  $T_j$  and  $P_j$  in (1.2) are entire functions of  $z_j, z_j^*, \zeta_j$ , there exist functions  $\tilde{T}_j, \tilde{P}_j$  depending on  $|z_j|, |z_j^*|$ , and  $\mathfrak{M}^4$  such that

(2)  $|T_j(z_j, z_j^*, \zeta_j)| \leq \tilde{T}_j(|z_j|, |z_j^*|), \qquad |P_j(z_j, z_j^*, \zeta_j)| \leq \tilde{P}_j(|z_j|, |z_j^*|)$ 

on  $\mathfrak{M}^4$  for  $|\zeta_j| \leq |z_j|$ .

2. We now obtain a bound for solutions  $\psi$  of (1.1) in terms of the bounds (2),  $g_0 = |g_1(0, 0)|$  and various quantities connected with the boundary segment  $i_k^3$ .

THEOREM 2.1. (a) Let  $\mathfrak{M}^4$  be a domain with a Bergman-Silov boundary surface satisfying the hypotheses of §1.2 and symmetric with respect to  $x_1 y_1 x_2$ -space.

#### JOSEPHINE MITCHELL

(b) Let  $\psi$  be a solution of (1.1) with the representation (1.2), where  $g_1, g_2, g_1(z_1, 0)$ , and  $g_1(0, z_2)$  are holomorphic on  $\mathfrak{M}^4$  and continuous on  $\mathfrak{M}^4$  and  $g_1(0, 0)$  is real, and such that (i)  $\psi_1(z_1, z_2) = \psi(z_1, 0, z_2, 0)$  and  $\psi_2(z_1, z_2) = \psi(z_1, 0, 0, z_2)$  omit the values  $e_{1j}(\lambda_k)$ ,  $e_{2j}(\lambda_k)$  resepctively on the lamina  $\mathfrak{F}_k^2(\lambda_k)$  where

(3) 
$$\begin{aligned} |e_{\nu 1}(\lambda_k)| + |e_{\nu 2}(\lambda_k)| &\leq E_{k\nu} < \infty \\ |e_{\nu 1}(\lambda_k) - e_{\nu 2}(\lambda_k)| \geq F_{k\nu} > 0 \end{aligned} \qquad (\nu = 1, 2),$$

 $E_{k\nu}$ ,  $F_{k\nu}$  constants depending only on k and  $\nu$ ; (ii) on the axis  $l_k^1$  of  $i_k^3$ ,  $\psi'$  and  $\psi''$ are bounded by  $A_{kj}(l_k^1)$  (j = 1, 2) respectively. (c) Let  $\mathfrak{A}^2 = \mathfrak{A}_0^2 \cap \mathfrak{M}^4$  be a segment of analytic surface whose boundary  $\mathfrak{a}^1$  lies in the segment  $\mathfrak{t}_k^3$  of  $i_k^3$  of radius r when the representation of  $\mathfrak{t}_k^3$  is normalized with respect to the axis  $l_k^1$ and similarly for the boundary  $\mathfrak{a}^1(\zeta)$  of  $\mathfrak{A}^2(\zeta)$  for all  $\zeta \in \mathfrak{S}^2(z)$  (see (1.3)).

Then for any  $z \in \mathfrak{N}^4$ 

(4) 
$$|\psi(z_1, \bar{z}_1, z_2, \bar{z}_2)| \leq \prod_{j=1}^2 [1 + \tilde{T}_j(|z_j|)|z_j|] C_{kl}[g_0, \mathbf{r}, E_{kl}, F_{kl}, A_{kl}(l_k^1)]$$
  
  $+ \prod_{j=1}^2 [1 + \tilde{P}_j(|z_j|)|z_j|] C_{k2}[g_0, \mathbf{r}, E_{kl}, E_{k2}, F_{k1}, F_{k2}, A_{kl}(l_k^1), A_{k2}(l_k^1)],$ 

where  $C_{kj}$  are constants depending only on the indicated quantities.

*Proof.* Continue  $x_j$ ,  $y_j$ ,  $z_j = x_j + iy_j$  to complex values. Using the bounds (2) for  $T_j$  and  $P_j$  we need bounds on  $\mathfrak{M}^4$  for the functions  $g_1$  and  $g_2$ .

By (4, formula (16))

(5) 
$$g_1(z_1, z_2) + \bar{g}_1(0, 0) = 2\psi_1(z_1, z_2).$$

Setting  $z_1 = z_2 = 0$  in (5) gives, since  $g_1(0, 0)$  is real,  $g_1(0, 0) = \psi_1(0, 0)$ . From (5) and the hypothesis of the theorem,  $\psi_1$  is holomorphic on  $\mathfrak{M}^4$  and continuous on  $\mathfrak{M}^4$ . Hence by the second paragraph of §1.2 the function

(6) 
$$\Psi_{k1}(Z_k,\lambda_k) = \psi_1[h_{k1}(Z_k,\lambda_k), h_{k2}(Z_k,\lambda_k)]$$

is holomorphic on  $|Z_k| < 1$  for each  $\lambda_k \in [0, 2\pi]$  and omits there the values  $e_{1j}(\lambda_k)$ . Then  $\Psi_{k1}^* = (\Psi_{k1} - e_{11})(e_{12} - e_{11})^{-1}$  is holomorphic on  $|Z_k| < 1$  and omits there the values 0 and 1 so that Ahlfors' form of Schottky's theorem (1) gives for  $|Z_k| \leq r$ 

$$|\Psi_{k1}^*(Z_k,\lambda_k)| < \exp \frac{1+r}{1-r} (7 + \log^+ |\Psi_{k1}^*(0,\lambda_k)|).$$

By (6) and (ii) of the theorem,  $|\Psi_{k1}(0, \lambda_k)| \leq A_{k1}(l_k^1)$ , which gives a bound for  $\Psi_{k1}^*(0, \lambda_k)$ . Thus, using (3) for  $|Z_k| \leq r$ ,

(7) 
$$|\psi_{1}[h_{k1}(Z_{k},\lambda_{k}),h_{k2}(Z_{k},\lambda_{k})]| = |\Psi_{k1}(Z_{k},\lambda_{k})|$$
$$\leqslant E_{k1} \left\{ 1 + \exp \frac{1+r}{1-r} \left(7 + \log^{+}(A_{k1}(l_{k}^{-1}) + E_{k1})/F_{k1}\right) \right\}$$
$$\equiv B_{k}(r,E_{k1},F_{k1},A_{k1}(l_{k}^{-1})).$$

Since the boundary  $\mathfrak{a}^1$  of  $\mathfrak{A}^2$  lies in the segment  $t_k{}^3$  of  $\mathfrak{i}_k{}^3$  with  $|Z_k| < r$  and the domain of the mapping F in the *t*-plane is compact when F is restricted to  $\overline{\mathfrak{A}}^2$ ,  $\psi_1[f_1(t), f_2(t)]$  is an analytic function of t for  $z \in \mathfrak{A}^2$  and continuous on a compact set. Hence by the maximum modulus theorem,  $|\psi_1|$  takes its maximum on the boundary of the set in the *t*-plane which corresponds to  $\mathfrak{a}^1$  under the holomorphic transformation F (8, p. 86). Thus

(8) 
$$|g_1(z_1, z_2)| \leq g_0 + 2B_k(r, E_{k1}, F_{k1}, A_{k1}(l_k^1)) \\ \equiv C_{k1}[g_0, r, E_{k1}, F_{k1}, A_{k1}(l_k^1)].$$

Similarly by the hypotheses on  $\mathfrak{A}^2(\zeta)$  and  $\mathfrak{a}^1(\zeta)$ ,  $g_1(\zeta_1, \zeta_2)$  satisfies inequality (8) for  $\zeta \in \mathfrak{S}^2(z)$ . Thus  $\psi'$  in (1.2) is bounded for all  $z \in \mathfrak{N}^4$  and  $z^* \in \mathfrak{M}^4$ .

To get bounds for  $\psi''$  in (1.2) we need bounds for the functions  $g_2$ . By (4, formula (17))

(9) 
$$\psi_2(z_1, z_2^*) = \frac{1}{2}[g_2(z_1, z_2^*) + g_1(z_1, 0) + \bar{g}_1(0, z_2^*)].$$

By hypothesis (b),  $\psi_2$  is holomorphic on  $\mathfrak{M}^4$  and continuous on  $\mathfrak{M}^4$ . Thus as for  $\psi_1$  the function  $\psi_2[h_{k1}(Z_k, \lambda_k), h_{k2}(Z_k, \lambda_k)]$  is holomorphic on  $|Z_k| < 1$  and bounded in absolute value on  $|Z_k| \leq r$  for  $\lambda_k \in [0, 2\pi]$  by  $B_k(r, E_{k2}, F_{k2}, A_{k2}(l_k^1))$  (see (7)). Since by hypothesis any point  $(z_1, z_2^*)$  of  $\mathfrak{N}^4$  lies in the analytic segment  $\mathfrak{N}^2$ , similarly as for  $\psi_1$ , the function  $\psi_2(z_1, z_2^*)$  has the same bound. Since also  $(z_1, 0) \in \mathfrak{S}^2(z), g_1(z_1, 0)$  satisfies the bound (8) and similarly for  $g_1(0, z_2^*)$ . Thus

(10) 
$$|g_2(z_1, z_2^*)| \leq 2B_k(r, E_{k2}, F_{k2}, A_{k2}(l_k^1)) + 2C_{k1}[g_0, r, E_{k1}, F_{k1}, A_{k1}(l_k^1)]$$
  

$$\equiv C_{k2}[g_0, r, E_{k1}, E_{k2}, F_{k1}, F_{k2}, A_{k1}(l_k^1), A_{k2}(l_k^1)].$$

Similarly  $g_2(\zeta_1, \zeta_2)$  satisfies (10) for all  $\zeta \in \mathfrak{S}^2(z)$ . Thus by inequalities (2), (8), and (10), on setting  $z_j^* = \overline{z}_j$ ,  $\widetilde{P}_j(|z_j|, |z_j|) = \widetilde{P}_j(|z_j|)$  and similarly for  $T_j$ , we obtain (4) as a bound for  $\psi$ .

3. Bounds for solutions of (1.1) if the analytic surface  $\mathfrak{A}_0^2$  meets  $\mathfrak{m}^3$ in a closed curve lying on more than one segment  $\mathfrak{i}_k^3$ . Suppose that the analytic surface  $\mathfrak{A}_0^2$  meets  $\mathfrak{m}^3$  in a Jordan curve  $\mathfrak{a}^1$  and the Bergman-Silov boundary  $\mathfrak{D}^2$  in a finite number of points; also there exists a number  $r_k$ ,  $0 < r_k < 1$  such that  $\mathfrak{a}^1$  crosses the set

(1) 
$$t_{k}^{2} = [z | z_{j} = h_{kj}(Z_{k}, \lambda_{k}), |Z_{k}| = r_{k}, 0 \leq \lambda_{k} \leq 2\pi]$$

 $\subset \mathfrak{i}_k^3$  at most a finite number of times, although a piece of  $\mathfrak{a}^1$  may lie on  $\mathfrak{t}_k^2$ . The curve  $\mathfrak{a}^1(\zeta)$  for  $\zeta \in \mathfrak{S}^2(z)$  is assumed to have similar properties. Then

THEOREM 3.1. In addition to hypotheses (a) and (b) of Theorem 2.1, (ci) the analytic surface  $\mathfrak{A}_0^2$  meets  $\mathfrak{m}^3$  in a Jordan curve  $\mathfrak{a}^1$  which intersects the Bergman– Silov boundary  $\mathfrak{D}^2$  in a finite number of points and crosses the set  $\mathfrak{t}_k^2$  given by (1) at most a finite number of times; similarly for the curve  $\mathfrak{a}^1(\zeta)$  for  $\zeta \in \mathfrak{S}^2(z)$ ; (cii) the functions  $\psi_j$  are bounded on that part of  $\tilde{\mathfrak{l}}_k^3$  such that  $\mathfrak{A}_0^4(z) \cap \mathfrak{l}_k^3 \neq \emptyset$ , where

$$\mathfrak{A}_0^{\ 4}(z) \ = \ \bigcup_{\zeta \in \mathfrak{S}^2(z)} \mathfrak{A}_0^{\ 2}(z), \qquad z \in \, \mathfrak{N}^4$$

and  $r_k \leqslant |Z_k| \leqslant 1$  (k = 1, ..., n). Then for all  $z \in \mathfrak{N}^4$ 

(2) 
$$|\psi(z_1, \bar{z}_1, z_2, \bar{z}_2)|$$
  
 $\leq \max_{\{k\}} \mathbf{B}_{k1}[g_0, r_k, E_{k1}, F_{k1}, A_{k1}(l_k^{-1}), D_{k1}] \prod_{j=1}^2 [1 + \tilde{T}_j(|z_j|)|z_j|]$   
 $+ \max_{\{k\}} \mathbf{B}_{k2}[g_0, r_k, E_{k1}, E_{k2}, F_{k1}, F_{k2}, A_{k1}(l_k^{-1}), A_{k2}(l_k^{-1}), D_{k1}, D_{k2}]$   
 $\times \prod_{j=1}^2 [1 + \tilde{P}_j(|z_j|)|z_j|],$ 

where  $\mathbf{B}_{kj}$  are constants depending only on the indicated quantities.

*Proof.* For points on  $i_k^3$  for which  $|Z_k| \leq r_k$ ,  $g_1$  has the bound (2.8) and for points on  $i_k^3$  for which  $r_k \leq |Z_k| \leq 1$ 

(3) 
$$|g[h_{k1}(Z_k, \lambda_k), h_{k2}(Z_k, \lambda_k)]| \leq g_0 + 2D_{k1},$$

where  $|\psi_1| \leq D_{k1}$  for all  $\lambda_k$  and  $Z_k$  given in (cii) of the theorem.

The Jordan curve  $\mathfrak{a}^1$  has a representation  $\mathfrak{a}^1 = [z| z_j = f_j(e^{i\phi}), 0 \leq \phi < 2\pi]$ ,  $f_j$  continuous functions of  $e^{i\phi}$  and  $\mathfrak{a}^1$  a 1 to 1 map of  $[0, 2\pi)$ . Thus

$$\mathfrak{A}^2 = [z | z_j = f_j(t), |t| < 1].$$

By (ci)  $\mathfrak{a}^1$  meets  $\mathfrak{D}^2$  at points corresponding to  $\phi_{\nu}$  ( $\nu = 1, \ldots, q$ ) say,  $0 \leqslant \phi_1 < \phi_2 < \ldots < \phi_q < 2\pi, \quad q < \infty.$  Let  $\mathfrak{a}_{r^1} \subset \mathfrak{a}^1$  correspond to  $\phi_{\nu} < \phi < \phi_{\nu+1}$  ( $\nu = 1, \ldots, q-1$ ). Then  $\mathfrak{a}_{\nu}$  lies entirely in one segment  $\mathfrak{i}_k$  of  $\mathfrak{m}^3$ , and the points  $P_{\nu}$ ,  $P_{\nu+1}$  on  $\overline{\mathfrak{a}}_{\nu}^{-1}$  corresponding to  $\phi_{\nu}$ ,  $\phi_{\nu+1}$  respectively lie on the boundary of  $i_k^3$  and correspond to values of  $Z_k$  with  $|Z_k| = 1$ . Also  $\mathfrak{a}_{r}$ crosses  $t_k^2$  a finite number of times, say at points  $Q_1, Q_2, \ldots, Q_p$ . Since  $\mathfrak{a}^1$  is a Jordan curve, to each  $Q_i$  corresponds a distinct  $\phi^{(i)}$  with the possible exception of  $\phi^{(i)} = 0$ . Now for all  $\phi \in (\phi^{(i)}, \phi^{(i+1)})$  such that the corresponding piece of  $\mathfrak{a}^1$  does not lie on  $\mathfrak{t}_k^2$ , either  $|Z_k| > r_k$  or  $|Z_k| < r_k$  but not both. This can be seen as follows. Since  $H_k = (h_{k1}, h_{k2})$  is a homeomorphism and hence 1 to 1,  $t_k^2$  subdivides  $\tilde{i}_k^3$  into two disjoint sets  $t_{k1}^3$  with  $|Z_k| < r_k$  and  $t_{k2}^3$  with  $|Z_k| > r_k$ . Also  $t_{k_i}$  is connected since  $H_k^{-1}(t_{k_i})$  is connected, but  $H_k^{-1}(t_{k_i}) \cup t_{k_i}$  is not connected so that  $t_{k1}^3 \cup t_{k2}^3$  is not connected. Now the set  $\mathfrak{a}_{\nu i}^1 = F[(\phi^{(i)}, \phi^{(i+1)})]$ is connected since  $f_j$  are continuous so that  $\mathfrak{a}_{ri}$  cannot intersect both  $t_{k1}$  and  $t_{k^2}$ . Hence  $(\phi_{\nu}, \phi_{\nu+1})$  is further subdivided into a finite number of intervals in each of which only one of  $|Z_k| > r_k$ ,  $|Z_k| \leq r_k$  holds:

$$\phi_{\nu} < \phi_{\nu}^{(1)} < \ldots < \phi_{\nu}^{(p)} < \phi_{\nu+1}.$$

Let  $t = e^{i\phi}$ ,  $\phi \in (\phi_{\nu}^{(i)}, \phi_{\nu}^{(i+1)})$ , which either corresponds to  $Z_k$  with  $|Z_k| \leq r_k$ or with  $r_k < |Z_k| \leq 1$ . For intervals of the first type,  $g_1[f_1(e^{i\phi}), f_2(e^{i\phi})]$  has the

1278

bound (2.8) and for intervals of the second the bound (3). Since  $g_1$  is a holomorphic function of t on |t| < 1 for  $z \in \mathfrak{A}^2$  and continuous on  $|t| \leq 1$ , the Poisson integral for the unit disk may be used and gives

$$|g_1(z_1, z_2)| \leqslant \int_0^{2\pi} |g_1[f_1(e^{i\phi}), f_2(e^{i\phi})] P(e^{i\phi}, \zeta)| d\phi = \int_{I_1} + \int_{I_2}$$

where  $I_1$  is the sum of a finite number of integrals whose points correspond to  $|Z_k| \leq r_k$  (k = 1, ..., n) and  $I_2$  is similar with  $|Z_k| > r_k$ . Thus from the bounds for  $g_1$  and well-known properties of the Poisson kernel we deduce that

$$|g_1(z_1, z_2)| \leq \max_k \mathbf{B}_{k1}[g_0, r_k, E_{k1}, F_{k1}, A_{k1}(l_k^{-1}), D_{k1}].$$

Since  $\mathfrak{a}^1(\zeta)$  is also a Jordan curve for  $\zeta \in \mathfrak{S}^2(z)$ ,  $g_1(\zeta_1, \zeta_2)$  has the same bound for such  $\zeta$ .

As in §2,  $\psi_2[h_{k1}(Z_k, \lambda_k), h_{k2}(Z_k, \lambda_k)]$  is bounded by  $B_k$  for all points on  $i_k^3$  with  $|Z_k| \leq r_k$ . As in the case of  $g_1$  for those intervals with  $|Z_k| \leq r_k$  for some k,  $\psi_2[f_1(e^{i\phi}), f_2(e^{i\phi})]$  has the same bound  $B_k$  and for intervals with  $r_k < |Z_k| \leq 1$  by (cii) a bound  $D_{k2}$ . Since  $\psi_2$  is holomorphic in  $(z_1, z_2^*)$  on  $\mathfrak{A}^2$  and continuous on  $\mathfrak{M}^4, \psi_2[f_1(t), f_2(t)]$  is holomorphic in t on |t| < 1 and continuous on  $|t| \leq 1$ . Thus from these bounds for  $\psi_2$  and the bound for  $g_1$  we obtain from (2.9), by using the Poisson integral formula, that

$$|g_2(z_1, z_2^*)| \leq \max_k \mathbf{B}_{k2}[g_0, r_k, E_{k1}, E_{k2}, F_{k1}, F_{k2}, A_{k1}(l_k^{-1}), A_{k2}(l_k^{-1}), D_{k1}, D_{k2}]$$

and the bound is valid for  $g_2(\zeta_1, \zeta_2)$  if  $\zeta \in \mathfrak{S}^2(z)$ . Thus we obtain a bound for  $\psi''(z_1, z_1^*, z_2, z_2^*)$ , and replacing  $z_j^*$  by  $\overline{z}_j$ , (2) follows for all  $(z_1, z_2) \in \mathfrak{N}^4$ .

### References

- 1. L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
- S. Bergman, Über eine in gewissen Bereichen gültige Integraldarstellung der Funktionen zweier komplexer Variablen, Math. Z., 39 (1934), 76-94, 605-608.
- 3. —— Bounds for analytic functions in domains with a distinguished boundary surface, Math. Z., 63 (1955), 173–194.
- **4.** ——— Bounds for solutions of a system of partial differential equations, J. Rational Mech. and Anal., δ, (1956), 993–1002.
- 5. ——— Sur les fonctions orthogonales de plusieurs variables complexes (Paris, 1947).
- 6. Integral operators in the theory of linear partial differential equations (Berlin, 1961).
- 7. S. Bergman and M. Schiffer, *Properties of solutions of a system of partial differential equations*, Studies in Math. and Mech. presented to Richard von Mises (New York, 1954), 79-87.
- 8. C. Carathéodory, Conformal representation (Cambridge, 1941).
- 9. Z. Charyński, Bounds for analytic functions of two complex variables, Math. Z., 75 (1961), 29-35.
- 10. R. P. Gilbert, Some properties of generalized axially symmetric potentials, Amer. J. Math., 84 (1962), 475–484.

### JOSEPHINE MITCHELL

- 11. J. L. Kelley, General topology (Princeton, N.J., 1955).
- 12. J. Mitchell, Properties of harmonic functions of 3 real variables given by Bergman-Whittaker operators, Can. J. Math., 15 (1963), 157-168.
- 13. J. Śladkowska, Bounds of analytic functions of two complex variables in domains with the Bergman-Silov boundary, Pacific J. Math., 12 (1962), 1435-1451.

MRC, University of Wisconsin, and Pennsylvania State University

1280