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1. Introduction. 

1. The method of integral operators has been used by Bergman and others 
(4; 6; 7; 10; 12) to obtain many properties of solutions of linear partial differen
tial equations. In the case of equations in two variables with entire coefficients 
various integral operators have been introduced which transform holomorphic 
functions of one complex variable into solutions of the equation. This approach 
has been extended to differential equations in more variables and systems of 
differential equations. Recently Bergman (6; 4) obtained an integral operator 
transforming certain combinations of holomorphic functions of two complex 
variables into functions of four real variables which are the real parts of solu
tions of the system 

( 1 ) * & - * < » • * • > * 

where zu 2i*, 22, 22* are independent complex variables and the functions 
Fj (J = 1,2) are entire functions of the indicated variables. (In general, j 
takes the values 1 and 2. Note that if the variables xi, yi, x2, 3̂2 are introduced 
in the usual manner by writing Zj = Xj + iyjy z* = Xj — iyi and if the new 
variables are restricted to real values, zj* coincides with the conjugate zi of Zj). 

Bergman showed that there exist four functions Tj(zj1 z*, f^) and 
Pj(zj, z*> fy) which are entire functions of the indicated variables such that 
every real solution of (1), regular at the origin, can be represented in a neigh
bourhood of the origin in the form 

(2) \p(zu zi, z2, 22) = Re[^'(2i, zi, 22, 22) + ^"(21, zi, 22, z2)], 

where 
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(2a) 

+ 

lA'Ol, Zl, 22, 22) = glfci, 22) + I Ti(zlt 2i, fl)gl(fl , *2)#1 
*/f1=0 

J122 

^2(22,22, f 2)gl («1, f2)^f 2 

J»21 ^«22 

n ^ i f e , «i, f i)gl(f !, ?2)#1 * 2 , 
fl=0 «^2=0 

J* 2 i 

P i (2i, 2i, f i ) g 2 ( f l , 2 2 )^f l 
fl=0 

J»22 

P2 (22, 22, f 2)g2(2l, f 2 ) ^ 2 
f2=0 

J»21 /»22 

I l A ( * * 2i. f;)g2(f 1, f2)^1 # , 
fl=0 t / f 2 =0 

and gi and g2 are arbi t rary functions of z1} z2 and Zi, 22 respectively, holo-
morphic in a neighbourhood of the origin. 

In this paper we assume tha t gj are defined on a domain lying in the space 
C2 of two complex variables whose boundary consists of a finite number of 
segments of analytic hypersurfaces. T h e intersections of these hypersurfaces 
form a 2-dimensional manifold called the Bergman-Silov boundary of the 
domain on which a function holomorphic on the domain takes the maximum 
of its absolute value. T h e closed domain consists of the interior SO?4, the 
Bergman-Silov boundary 5D2, and the complementary par t b3 of the 3-dimen-
sional boundary m3. (The superscript indicates the dimension of the set.) W e 
investigate wha t properties of the solution on b3 can be used to obtain bounds 
for the solution on 3K4. In §§2 and 3 bounds for the solution in a set Sft4 C 9ÎJ4, 
where 2 = (si, 22) G 5ft4 implies t ha t a 2-dimensional set ©2(z) lies in 93Î4 (see 
(3)), are obtained by means of the Schot tky inequality for holomorphic 
functions of one complex variable. In §2 it is assumed t h a t through every 
point f of @2(s) there passes an analytic surface 2l2(f) which intersects the 
boundary of Sft4 in a set lying on one analyt ic hypersurface only. In §3 this is 
extended to the case t ha t 3l2(f) meets m3 in a Jordan curve which cuts the 
Bergman-Silov boundary in a finite number of points if the functions gj in (2) 
are bounded in a neighbourhood of the Bergman-Silov boundary lying on m3. 
For other possible bounds for holomorphic functions of two complex variables, 
see (9 ; 13). 

T h e author wishes to thank Professor Bergman for several helpful discussions 
in the preparat ion of the paper. 

2. Geometry of the problem. Let 9K4 be a domain in C2 with boundary m3 and 
0 G 3W4, which possesses a distinguished piece of boundary 3)2 in the sense of 
Bergman-Silov boundary . 352 is constructed as follows (3 ; 5 ) : 

m3 = U V, 
*=i 
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where xk
z is a closed segment of analytic hypersurface and n is finite: 

V = U S*2 (A*), 
0<X/fc<27T 

3k
2(Xk) being a segment of analytic surface given by 

3*20O = [z\zj = Afĉ Zit, Xk)J = 1, 2, |ZA| < 1], 

# * = (A*i» hk2) a 1 to 1 continuous map of Dk
z = [|ZA| < 1] X [0 < \k < 2w] 

onto t/c3, each / ^ being a continuously differentiable function on Dk* and holo-
morphic on \Zk\ < 1 for each Xk in [0, 27r]. Since Dk

z is compact, the set ik* is 
compact and Hk is a homeomorphism. Hence m3 is compact and since 0 6 9J?4 

and 5DÎ4 is connected, 9JÎ4 is bounded. For fixed \k let ylA(Xfc) be the point 
(hki(0j Xk), ^2(0, X*)) corresponding to Z& = 0 and call 

Z*1 = Ui4*(Xt) (0 < X, < 2 T T ) 

the axis of t&3. The representation of t*3 given here is said to be normalized 
with respect to the axis lk

l (3, p. 186). On m3 there are two kinds of points, 
namely those that belong to one t^3 only and those that belong to the inter
section of two or more t^'s. Bergman has shown that every point of the 
boundary curve U1^*) of 3k2Q^k) must belong to the intersection of two or 
more t^'s (2). Thus 

n _ 

tft̂ Xft) = u t*/(x*), t*/(x*) = u 1 ^ ) o ts
3 (s ?* k). 

s=l 

Set 

®J = U U/CX*) = U i*/(X,)f 
0<XA;<27r 0<X S <27T 

and 
n n 

®2 = U U @*5
2 (s ^ k) 

JC=1 5 = 1 

is the Bergman-Silov boundary of 39Î4. 
If we assume for every 5 in (0, s0] with s0 sufficiently small that the sets 

[z\ Zj = hkj(Zj, Xk - is), Zk e Bk
2(Xkj 5), * = 1, . . . , n] 

form the boundary of a domain 9Ï?S with $ls C 9)î4, where Bk
2(Xkjs) are 

simply connected domains wiiich for 5 = 0 become the unit disk \Zk\ < 1, 
and for each \k, hkj(Zk, \k — is) are continuous in Zk and 5 on \Zk\ < 1, 
0 < 5 < So, then it follows from Cauchy and Morera's theorems that/(JSI, z2), 
holomorphic in 9J?4 and continuous on 9JÎ4, implies f[hki(Zk, Xk), }iki(Zk, \k)] 
holomorphic on \Zk\ < 1 for every Xk Ç [0, 2w] (3, p. 188). 

Let Qi^izj) be a curve in the s rplane connecting 0 to Zj whose points fy are 
such that |f̂ | < \ZJ\. Set 

(3) ©2(2) = EiKsi) x e^fe) = [f = (fi,roi^ e e/OOL 
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Then for each z G 9ft4 for which @2(JS) C 9ft4, bounds can be obtained for the 
functions gj in (2). Let 5ft4 be the largest subset of 9ft4 such that z G 9Î4 implies 
that ©2(;s) C 9ft4. (Notice that for any bicylinder or complete Reinhardt 
circular domain with center at the origin 9t4 = 9ft4.) 

Let SIo2 = [w\ Wj = fj(t)] be an analytic surface through the point z, that is, 
fj are holomorphic functions of the complex variables ty chosen so that the 
boundary a1 of the set §l2 = 2lo2 ^ 9ft4 lies on m3 and the inverse image of W 
under the mapping F = (fuf2) is a compact set in the /-plane. (The boundary 
of 2I2 could lie partly in 9ft4.) Similarly assume that through every point f of 
©2(z), there is an analytic surface 2to2G") with the same properties as §I0

2. 
The representation (2b) is valid for \f," only if the domain 9ft4 is symmetric 

with respect to Xi yi x2-space; that is, (zi, z2) G 9ft4 implies (zi, z2) G 9ft4, and 
we may take the curve joining 0 to z2 in the 22-plane as the reflection of 621 (z2) 
with respect to the X2-axis. Also the functions gi(zh 0) and #2(0, £2) are assumed 
to be holomorphic on 9ft4 and continuous on 9ft4. 

2. Bounds for solutions of system (1.1) on analytic surfaces §I0
2 

which meet the boundary hypersurfaces of 9ft4 along sets lying in 
one segment ik

3. 
1. If the curve a1 lies entirely in one segment i&3, then there exists an r < 1 

such that \Zk\ < r for all points on a1. Otherwise there is a sequence P{n) G a1 

such that the corresponding coordinate Z^n) —» Zk° and \Zk°\ = 1. Let Xk
(n) be 

the corresponding value of X* for P(7Z). There exists a convergent subsequence of 
\k

w converging to X*0 G [0, 2T] and the corresponding subsequence of ZkW 
converges to Zk°. Reletter these subsequences as (Zk

w, \k
(n)). By continuity 

of hkj, the corresponding coordinate of P(w) converges to hkj(Zk°, Xk°) with 
\Zk°\ = 1, but the point P° with these coordinates lies on the boundary of 
ifc3 since Hk = (hki, hk2) is a homeomorphism. Since P° is a limit point of the 
closed set a1, P° G a1, which is a contradiction. Thus such an r < 1 exists. Let 

(1) t,3 = [z\zj = hkj(Zk1\k), \Zk\ <r). 

and say that tk
3 has a representation normalized with respect to the axis lk

l and 
in this representation is of radius r. We also assume that the boundary ax(f) 
of §l2(f) = 2Io2(f) H 9ft4 lies in t*3 for each f G &(z). 

Since Tj and Pj in (1.2) are entire functions of zj7 z*, f y, there exist functions 
Tj, Pj depending on \z3\, | z / | , and 9ft4 such that 

(2) | r , ( s„ *,*, f,)| < T,(|,,|, | , ,* | ) , |P,(*„ *,*, f,)| < ^ - ( N , |*,*|) 

on 9ft4 for |f ,| < \Zj\. 

2. We now obtain a bound for solutions \f of (1.1) in terms of the bounds (2), 
go = |gi(0, 0) I and various quantities connected with the boundary segment t^3. 

THEOREM 2.1. (a) Let 9ft4 be a domain with a Bergman-Silov boundary surface 
satisfying the hypotheses of §1.2 and symmetric with respect to Xi 3/1 x2-space. 
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(b) Let ^ be a solution of (1.1) with the representation (1.2), where gi, g2, gi(zi, 0), 
and gi(0, z2) are holomorphic on 9W4 and continuous on Wl4 and gi(0, 0) is real, 
and such that (i) ^i(zh z2) = ^(zi, 0, z2, 0) and ^2(21, 22) = ^(zi, 0, 0, z2) 0wi£ 
/fee values eij(Xk), e2j(\k) resepctively on the lamina Sk

2(Xk) where 

/ON |^i(X*)| + k„2(X,0| < £ * „ < « > / = 1 o\ 
W |^i(X*) - e , 2 ( X * ) | > / ^ > 0 ^ 1 , Z ; ' 

•Etv» ^ constants depending only on k and v; (ii) on the axis lk
l of Û3, ^' and ^" 

are bounded by Akj(lk
l) (j = 1,2) respectively, (c) Let W = 2I0

2 H 9W4 5e a 
segment of analytic surface whose boundary a1 /ies iw /fee segment tk

z of ik
s of 

radius r when the representation of tfc
3 is normalized with respect to the axis lk

l 

and similarly for the boundary ax(f) of 2l2(?) for all f G ©2(s) (see (1.3)). 
Tfeew /or any 2Ç 3Î4 

2 

(4) \*(zhzhz2,z2)\ < ] 1 [1 + TjQzjDlzjlJC^lgo^r, Ekh Fkh A^l,1)] 
2 

+ n [1 +^(W)ta|]C^ 
3=1 

where Ckj are constants depending only on the indicated quantities. 

Proof. Continue xjt yjy Zj = Xj + iyj to complex values. Using the bounds 
(2) for Tj and Pj we need bounds on 9ÏÎ4 for the functions gi and g2. 

By (4, formula (16)) 

(5) gi(zhz2) + fi (0,0) = 2^1(zhz2). 

Setting Zi = z2 = 0 in (5) gives, since gi(0, 0) is real, gi(0, 0) = ^i(0, 0). 
From (5) and the hypothesis of the theorem, ^1 is holomorphic on 2J?4 and 
continuous on 2)?4. Hence by the second paragraph of §1.2 the function 

(6) VkiiZt, \k) = ti[hki(Zk, Xfc), hk2(Zk, \k)] 

is holomorphic on \Zk\ < 1 for each \k £ [0, 2T] and omits there the values 
eij(\k). Then Sf̂ i* = ( ^ 1 — en)(e12 — e n ) - 1 is holomorphic on \Zk\ < 1 and 
omits there the values 0 and 1 so that Ahlfors' form of Schottky's theorem (1) 
gives for \Zk\ < r 

\**i*(Zk, X*)| < e x p ^ - J (7 + log+|^!*(0, Xt)|). 

By (6) and (ii) of the theorem, | ^ i ( 0 , Xfc)| < A^Q,^), which gives a bound for 
**i*(0, X,). Thus, using (3) for \Zk\ < r, 

(7) |^i[fe*i(Z*, X,), hk2(Zkj \k)]\= \*kl(Zk, \k)\ 

< Ekl\l + e x p ^ ^ (7 + log+^ufe 1 ) + Ekl)/Fkl)j 

= Bk(r, Ekh Fkh Akï(lk )). 
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Since the boundary a1 of SI2 lies in the segment tk
s of i*3 with \Zk\ < r and 

the domain of the mapping F in the /-plane is compact when F is restricted to 
S2, ii[fi(t),f2(t)] is an analytic function of / for z G SI2 and continuous on a 
compact set. Hence by the maximum modulus theorem, |^i| takes its maximum 
on the boundary of the set in the /-plane which corresponds to a1 under the 
holomorphic transformation F (8, p. 86). Thus 

(8) \gi(z1} z2)\ <g0 + 2Bk(r, Ekl, Fkl9 Akl(lJ)) 

= Cki[g0, r, Ekl, Fkh Anil*1)]. 

Similarly by the hypotheses on 2l2(f) and ax(f)» gi(?i» fo) satisfies inequality 
(8) for r £ @2(s). Thus i' in (1.2) is bounded for all z 6 9Î4 and z* £ 2ft4. 

To get bounds for \f,f in (1.2) we need bounds for the functions g2. By 
(4, formula (17)) 

(9) tf2(*i, 22*) = *[g2(*i, 22*) + *i(si, 0) + | ! ( 0 , 22*)]. 

By hypothesis (b), \p2 is holomorphic on 2)?4 and continuous on 2ft4. Thus as 
for ^1 the function \f2[hki(Zk1 \k), hk2(Zk, \k)] is holomorphic on \Zk\ < 1 and 
bounded in absolute value on \Zk\ < r for \k £ [0,2ir] by Bk(r, Ek2, Fk2, 
Ak2(lk

1)) (see (7)). Since by hypothesis any point (zu z2*) of 9Î4 lies in the 
analytic segment 2l2, similarly as for ^1 , the function ^2(21, z2*) has the same 
bound. Since also (zly 0) £ @2(z), gi(si, 0) satisfies the bound (8) and similarly 
for gi(0, 22*). Thus 

(10) |g2(si, 22*)I < 25* (r, £,2 , 7^ , i lwft1)) + 2C*i[g0, r, £ t l l Fkl, Akl(lk
1)] 

= Ck2[g0, r, Ekl, Ek2j FkU Fk2, Akl(lk
l)y Ak2{lk

1)]. 

Similarly £2(^1, f 2) satisfies (10) for all f £ @2(s). Thus by inequalities (2), 
(8), and (10), on setting zj* = zJ} PJ(\ZJ\, \zj\) = PJ(\ZJ\) and similarly for Tjt 

we obtain (4) as a bound for ^. 

3. Bounds for solutions of (1.1) if the analytic surface 2I0
2 meets m3 

in a closed curve lying on more than one segment ik
d. Suppose that the 

analytic surface Sto2 meets m3 in a Jordan curve a1 and the Bergman-Silov 
boundary 5D2 in a finite number of points; also there exists a number rk, 
0 < rk < 1 such that a1 crosses the set 

(1) tk2 = [z\ Zj = hkJ(Zk, X*), \Zk\ = rk, 0 < \k < 2TT] 

C û3 at most a finite number of times, although a piece of a1 may lie on tk
2. 

The curve ax(f) f° r f € ©2(z) is assumed to have similar properties. Then 

THEOREM 3.1. In addition to hypotheses (a) and (b) 0/ Theorem 2.1, (ci) /Ae 
analytic surface §l0

2 w^efo m3 iw a Jordan curve a1 which intersects the Bergman-
Silov boundary S)2 in a finite number of points and crosses the set tk

2 given by (1 ) 
at most a finite number of times; similarly for the curve a1 (f ) for f G ©2 (z) ; 
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(cii) the functions ^j are bounded on that part of ik
z such that Sïo4(s) (^ U3 ?* 0, 

where 

»o4(s) = U 3Io2(^), z G 5ft4 

f€©2(z) 

and rk < \Zk\ < 1 (k = 1, . . . , n). Then for all z G 5ft4 

(2) | ^ ( 2 i , 2 l , 2 2 , 2 2 ) | 
2 

< maxBafo , r*, £*i, ^*i, ̂ a f e 1 ) , Ai lTT t1 + ^ i ( W ) W l 

+ max B*2[go, r*, E*i, £*2, J7*!, Fk2, ^ a f e 1 ) , ^ (Z* 1 ) , Ati, A*] 

x n [ i + ^(W)wi, 
wfeere Tijcj are constants depending only on the indicated quantities. 

Proof. For points on \k
z for which \Zk\ < rkl g\ has the bound (2.8) and for 

points on ik
z for which rk < \Zk\ < 1 

(3) \g[hki(Zk, \k), hk2(Zk, \k)]\ < go + 2DkU 

where |^i| < Dk\ for all \k and Zk given in (cii) of the theorem. 
The Jordan curve a1 has a representation a1 = [z\ Zj = fj(el<i>), 0 < <j> < 2ir]y 

fj continuous functions of ei<f> and a1 a 1 to 1 map of [0, 2w). Thus 

2 Ï 2 = lz\*,=f,(t),\t\ < ! ] • 

By (ci) a1 meets £)2 at points corresponding to <j>v (v = 1, . . . , q) say, 
0 < 0i < 02 < . . . < (t>q < 2ir, q < 00. Let eu1 C a1 correspond to 
<£„ < 4> < 4>v+i (̂  = 1 , . . . , ^ — 1). Then a / lies entirely in one segment ik

z of 
m3, and the points P„, P„+i on a,1 corresponding to </>„, <£„+i respectively lie on 
the boundary of ik

z and correspond to values of Zk with \Zk\ = 1. Also a / 
crosses tk

2 a finite number of times, say at points Qi, Q2y . . . , Qv. Since a1 is a 
Jordan curve, to each Qi corresponds a distinct <j>{i) with the possible exception 
of 4>{i) = 0. Now for all <j> G (<t>(i\ </>(m)) such that the corresponding piece of 
a1 does not lie on tk

2, either \Zk\ > rk or \Zk\ < rk but not both. This can be 
seen as follows. Since Hk = (hki, hk2) is a homeomorphism and hence 1 to 1, 
tk

2 subdivides ik
z into two disjoint sets t^i3 with \Zk\ < rk and tk2

s with \Zk\ > rk. 
Also tkj

z is connected since Hf1^^) is connected, but H^Çt^ U t^23) is not 
connected so that t^i3 U t&23 is not connected. Now the set avi

l = F[(<j)(i), 0(z+1))] 
is connected since fj are continuous so that a^1 cannot intersect both t^i3 and 
tk2

s- Henca (<£„, <t>v+i) is further subdivided into a finite number of intervals in 
each of which only one of \Zk\ > rk, \Zk\ < rk holds: 

0, < 0,(1) < • • . < <t>v
{P) < 0„+i. 

Let t = e1*, $ G {<i>v
{i\ <t>v

{i+1)), which either corresponds to Zk with \Zk\ < rk 

or with rk < \Zk\ < 1. For intervals of the first type, gi[/i(e**), . M ^ ) ] has the 
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bound (2.8) and for intervals of the second the bound (3). Since gi is a holo-
morphic function of t on \t\ < 1 for z £ SÏ2 and continuous on \t\ < 1, the 
Poisson integral for the unit disk may be used and gives 

\gi[fi(.ei*),Mel*)]P(ei*,Ç)\d<j> = + , 

where I\ is the sum of a finite number of integrals whose points correspond to 
\Zk\ < rk (k = 1, . . . , n) and I2 is similar with \Zk\ > rk. Thus from the 
bounds for gx and well-known properties of the Poisson kernel we deduce that 

|gi(*i, z2)\ < m ax Bfcifeo, rk, Ekh Fkh Akl(lk), Dkl]. 
k 

Since a1^") is also a Jordan curve for f Ç ©2(s), gi(fi, f2) has the same bound 
for such f. 

As in §2, \f2[hkl(Zkf \k), hk2(Zk, \k)] is bounded by .B* for all points on ik
z 

with |Zfc| < rk. As in the case of gi for those intervals with \Zk\ < rfc for some k, 
^2[fi(eicl>)ff2(e

i<l>)] has the same bound Bk and for intervals with rk < |Zfc| < 1 
by (cii) a bound Dk2. Since ^2 is holomorphic in (zi, z2*) on 2l2 and continuous 
on 5ffJ4, ^2[/i(0»/2(0] is holomorphic in £ on \t\ < 1 and continuous on \t\ < 1. 
Thus from these bounds for \p2 and the bound for gi we obtain from (2.9), by 
using the Poisson integral formula, that 

|g2(£i, 22*) | < max Bk2[g0, rk, Ekh Ek2, Fkl, Fk2, Aki(lk
l), A^^1), Dkh Dk2] 

k 

and the bound is valid for g2(fi, f2) if f G ©2(^). Thus we obtain a bound for 
Ï" (zi, Zi*, z2} s2*), and replacing z* by 2;-, (2) follows for all (zh z2) Ç S^4. 
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