A CELLULAR CONSTRAINT IN SUPERCOMPACT HAUSDORFF SPACES

MURRAY G. BELL

1. Introduction. In this paper we prove a cardinal inequality for supercompact Hausdorff spaces which gives insight into the cellular structure of such spaces and yields new examples of compact Hausdorff non-supercompact spaces.

The notion of supercompactness was introduced by J. de Groot in [6]. A family of sets is *linked* if every two members have non-empty intersection. A family of sets is *binary* if every linked subcollection has non-empty intersection. A space X is *supercompact* if X possesses a binary closed subbase. By Alexander's lemma, a supercompact space is compact. Many compact spaces are supercompact, for example; all compact ordered spaces, all compact metric spaces [11] and [3] and all compact tree-like spaces [2] and [9]. Moreover, supercompactness is a productive property. Thus, all Tychonov cubes I^* and all Cantor cubes 2^* are supercompact. Also, every space has many supercompact extensions, known as *superextensions*—see A. Verbeek's book [12].

J. de Groot had asked whether all compact Hausdorff spaces were supercompact (at the times, A. Verbeek had an example of a compact T_1 nonsupercompact space). It is now known that there are numerous compact Hausdorff non-supercompact spaces. The author [1] has shown that for X non-pseudocompact, βX is non-supercompact. The following two results were subsequently established in [4].

[A] (J. van Mill). Let X be a supercompact Hausdorff space. If Y is a continuous image of a closed neighbourhood retract of X, then for all countably infinite subsets K of Y, all but countably many cluster points of K are the limit of some non-trivial sequence in Y (not necessarily in K).

[B] (E. van Douwen). Let X be a supercompact Hausdorff space. Then, no continuous image of a closed neighbourhood retract of X is homeomorphic to any compactification of a κ -Cantor tree (cf. M. E. Rudin [10]) where $\omega < \kappa \leq c$.

J. van Mill used [A] to give a different proof that βX supercompact implies X pseudocompact, furthermore he showed that an infinite supercompact Hausdorff space has a non-trivial convergent sequence. E. van Douwen used [B] to construct a compact Hausdorff non-supercompact space of cardinality ω_1 and a compact Hausdorff non-supercompact first countable space of cardinality c.

Received March 1, 1977 and in revised form, November 7, 1977. This research was supported by a scholarship from the NRC of canada.

The author would like to thank these two gentlemen for sending copies of their work.

All spaces considered are completely regular, infinite and Hausdorff. N denotes the countably infinite discrete space and βX denotes the Čech-Stone compactification of X. The *weight* of a space, w(X), is the least cardinal of an open base for X. The *cellularity* of a space X, c(X), is the supremum of $|\mathcal{G}|$, where \mathcal{G} is a disjoint collection of open sets of X. The *density* of a space X, d(X), is the least cardinal of a dense subspace of X. The *spread* of a space X, s(X), is the supremum of |D|, where D is a discrete subspace of X. For a cardinal κ , κ^+ denotes the smallest cardinal larger than κ . ω is the first infinite ordinal, ω_1 is the first uncountable ordinal and c is the cardinality of the continuum.

2. Cellularity in supercompact spaces.

2.1 LEMMA. Let X be a subspace of weight κ of a space Y. Let $\{V_{\alpha}: \alpha < \kappa^+\}$ $\{U_{\alpha}: \alpha < \kappa^+\}$ be open sets of Y such that

(1) For $\alpha < \beta < \kappa^+$, $\operatorname{Cl}_Y V_{\alpha} \cap \operatorname{Cl}_Y V_{\beta}$ is a compact set of X.

(2) For $\alpha < \kappa^{\perp}$, $\operatorname{Cl}_{Y} V_{\alpha} \subseteq U_{\beta}$.

Then, there exists $\{U_n: n \ge 0\} \subseteq \{U_\alpha: \alpha < \kappa^+\}$ (relabelled for convenience) such that $\sup \{m: U_0 \text{ contains all } 2\text{-fold intersections of } m \operatorname{Cl}_Y V_n$'s, $n \ge 1\} = \omega$.

Proof. Let \mathscr{B} be an open base for X, closed under finite unions, of cardinality κ . For $\alpha < \beta < \kappa^+$, choose $B_{\alpha\beta} \in \mathscr{B}$ such that

 $\operatorname{Cl}_Y V_{\alpha} \cap \operatorname{Cl}_Y V_{\beta} \subseteq B_{\alpha\beta} \subseteq U_{\alpha} \cap U_{\beta}.$

For $2 \leq m < \omega$, define $D_m = \{\alpha < \kappa^+: U_\alpha$ contains all 2-fold intersections of m other $\operatorname{Cl}_Y V_\beta$'s}. It suffices to show that for each $m \geq 2$, $|\{\alpha < \kappa^+: \alpha \notin D_m\}| \leq \kappa$. For then, just choose $0 \in \bigcap \{D_m: m \geq 2\}$ and the corresponding finite collections to make up the U_n 's for $n \geq 1$. To this end, the proof for D_3 is given, the general case is identical only longer.

Assume $F_0 = \{\alpha < \kappa^+: \alpha \notin D_3\}$ has cardinality κ^+ . Choose $\alpha \in F_0$ and consider $\{B_{\alpha\beta}: \beta \in F_0 - \{\alpha\}\}$. There exists $F_1 \subseteq F_0 - \{\alpha\}, |F_1| = \kappa^+$, such that for distinct β and γ in $F_1, B_{\alpha\beta} = B_{\alpha\gamma}$. Choose $\beta \in F_1$ and consider $\{B_{\beta\gamma}: \gamma \in F_1 - \{\beta\}\}$. There exists $F_2 \subseteq F_1 - \{\beta\}, |F_2| = \kappa^+$, such that for distinct γ and δ in F_2 , $B_{\beta\gamma} = B_{\beta\delta}$. Choose distinct γ and δ from F_2 . Then

$$(\operatorname{Cl}_{Y}V_{\alpha} \cap \operatorname{Cl}_{Y}V_{\beta}) \cup (\operatorname{Cl}_{Y}V_{\alpha} \cap \operatorname{Cl}_{Y}V_{\gamma}) \cup (\operatorname{Cl}_{Y}V_{\beta} \cap \operatorname{Cl}_{Y}V_{\gamma})$$
$$\subseteq B_{\alpha\beta} \cap B_{\alpha\gamma} \cap B_{\beta\gamma} \subseteq U_{\delta}.$$

Hence $\delta \in D_3$, a contradiction. Consequently, $|F_0| \leq \kappa$.

Remark. At this point, let us note that if \mathscr{S} is a binary closed subbase for X, then without loss of generality, we may assume that \mathscr{S} is closed under finite intersections. Also, a collection \mathscr{S} , closed under finite intersections, of closed subsets of a compact space, is a closed subbase if and only if for each closed set

MURRAY G. BELL

C contained in an open set U, there exists a finite subcollection \mathscr{F} of \mathscr{S} such that $C \subseteq \bigcup \mathscr{F} \subseteq U$.

Here is our main result.

2.2. THEOREM. Let X be a supercompact Hausdorff space and let f be a continuous mapping from an open set O of X onto a compact Hausdorff space Y. If there exists a compact subset K of 0 such that f(K) = Y, then for all dense subsets D of Y, $c(Y - D) \leq w(D)$.

Proof. Let \mathscr{S} be a binary closed subbase for X that is closed under finite intersections. Assume $w(D) = \kappa$ and choose a dense subset E of D with $|E| \leq \kappa$. Striving for a contradiction, assume $c(Y - D) > \kappa$. Let $\{C_{\alpha} : \alpha < \kappa^+\}$ be a family of disjoint non-empty open subsets of Y - D. Pick $P_{\alpha} \in C_{\alpha}$ and since Y is regular, choose an open set W_{α} of Y such that $P_{\alpha} \in W_{\alpha}$ and $\operatorname{Cl}_Y W_{\alpha} \cap (Y - D) \subseteq C_{\alpha}$. Again using the regularity of Y, find $E_{\alpha} \subseteq E$ and open sets V_{α} and U_{α} of Y such that

$$P_{\alpha} \in \operatorname{Cl}_{Y} E_{\alpha} \subseteq V_{\alpha} \subseteq \operatorname{Cl}_{Y} V_{\alpha} \subseteq U_{\alpha} \subseteq \operatorname{Cl}_{Y} U_{\alpha} \subseteq W_{\alpha}.$$

For each $e \in E$, choose an \overline{e} in K such that $f(\overline{e}) = e$. Choose

 $q_{\alpha} \in \operatorname{Cl}_{K}\{\bar{e}: e \in E_{\alpha}\} - (f|K)^{-1}(D).$

This is possible because f|K is a closed map onto Y and $(\operatorname{Cl}_Y E_{\alpha} - D) \neq \emptyset$. By continuity of f|K,

$$q_{\alpha} \in \operatorname{Cl}_{K}\{\bar{e}: e \in E_{\alpha}\} \subseteq (f|K)^{-1}(\operatorname{Cl}_{Y}E_{\alpha}) \subseteq f^{-1}(V_{\alpha}).$$

Notice that $\operatorname{Cl}_{K}\{\bar{e}: e \in E_{\alpha}\}$ is a closed set of X contained in the open set $f^{-1}(V_{\alpha})$ of X. Using the fact that \mathscr{S} is a subbase for X, get $S_{\alpha} \in \mathscr{S}$ such that $S_{\alpha} \subseteq f^{-1}(V_{\alpha})$ and $q_{\alpha} \in \operatorname{Cl}_{K}[\{\bar{e}: e \in E_{\alpha}\} \cap S_{\alpha}]$. Let $F_{\alpha} = \{e \in E_{\alpha}: \bar{e} \in S_{\alpha}\}$. Therefore, $f(q_{\alpha}) \in \operatorname{Cl}_{Y}F_{\alpha} \cap (Y - D)$. Since $|E| \leq \kappa$ and there are $\kappa^{+} \alpha$'s, without loss of generality we may assume there exists $x \in \bigcap_{\alpha < \kappa^{+}} F_{\alpha}$ and thus $\bar{x} \in \bigcap_{\alpha < \kappa^{+}} S_{\alpha}$.

For $\alpha < \beta < \kappa^+$, $\operatorname{Cl}_Y U_{\alpha} \cap \operatorname{Cl}_Y U_{\beta}$ is a compact subset of D, for if not, then it would meet Y - D which is impossible since $C_{\alpha} \cap C_{\beta} = \emptyset$. It follows from Lemma 2.1. that there exists $\{U_n: n \ge 0\} \subseteq \{U_{\alpha}: \alpha < \kappa^+\}$ such that sup $\{m: U_0 \text{ contains all 2-fold intersections of } m \operatorname{Cl}_Y V_n$'s, $n \ge 1\} = \omega$. Because

$$\operatorname{Cl}_Y W_0 \cap \bigcup_{n \ge 1} [\operatorname{Cl}_Y F_n \cap (Y - D)] = \emptyset,$$

there exists U open in Y such that

$$U \cap \operatorname{Cl}_Y W_0 = \emptyset$$
 and $\bigcup_{n \ge 1} [\operatorname{Cl}_Y F_n \cup (Y - D)] \subseteq U.$

Notice that

$$Cl_{Y}\{f(q_{n}): n \ge 1\} \subseteq Cl_{Y}U \subseteq Cl_{Y}(Y - Cl_{Y}W_{0})$$
$$\subseteq Y - W_{0} \subseteq Y - Cl_{Y}U_{0}.$$

Therefore,

$$\operatorname{Cl}_{K}\{q_{n}: n \geq 1\} \subseteq (f|K)^{-1} \operatorname{Cl}_{Y}\{f(q_{n}): n \geq 1\} \subseteq f^{-1}(Y - \operatorname{Cl}_{Y}U_{0}).$$

Hence, there exists $\{T_i: 1 \leq i \leq k\} \subseteq \mathscr{S}$ with

$$\operatorname{Cl}_{K}\{q_{n}: n \geq 1\} \subseteq \bigcup_{i=1}^{k} T_{i} \subseteq f^{-1}(Y - \operatorname{Cl}_{Y}U_{0}).$$

Choose k + 1 $\operatorname{Cl}_Y V_n$'s such that U_0 contains all 2-fold intersections of the $\operatorname{Cl}_Y V_n$'s. By the pigeon hole principle, there exist $n \neq m$ and an $1 \leq i \leq k$ such that $\{q_n, q_m\} \subseteq T_i$ and $\operatorname{Cl}_Y V_n \cap \operatorname{Cl}_Y V_m \subseteq U_0$.

The Contradiction. $\{S_n, S_m, T_i\}$ is linked yet has empty intersection. $\bar{x} \in S_n \cap S_m$, $q_n \in S_n \cap T_i$ and $q_m \in S_m \cap T_i$. However,

$$S_n \cap S_m \cap T_i \subseteq f^{-1}(V_n) \cap f^{-1}(V_m) \cap f^{-1}(Y - \operatorname{Cl}_Y U_0)$$
$$\subseteq f^{-1}[V_n \cap V_m \cap (Y - \operatorname{Cl}_Y U_0)] = \emptyset.$$

In particular, if Y is a closed neighbourhood retract of X, a continuous image of a closed neighbourhood retract of X, a closed neighbourhood retract of a continuous image of a closed neighbourhood retract of X, etc., there exist a mapping f, an open set O and a compact set K such that the hypotheses of the theorem hold. Notice that [B] is a consequence of Theorem 2.2, since any compactification X of a κ -Cantor tree ($\omega < \kappa \leq c$) is a compactification of N with $c(X - N) > \omega$ while $w(N) = \omega$. Both [A] and Theorem 2.2, show that for X non-pseudocompact, neither βX nor $\beta X - X$ (when X is locally compact) are supercompact, since it is easy to show that in this case both βX and $\beta X - X$ contain a neighbourhood retract homeomorphic to βN and $c(\beta N - N)$ > w(N). We now give two examples to illustrate the sharpness of the inequality.

2.3. *Example.* In the theorem, cellularity cannot be replaced by spread. J. van Mill [8] has shown (in particular) that there exists a supercompactification γN of N such that $\gamma N - N = 2^{e}$. Since 2^{e} contains a copy of βN , $s(2^{e}) = c$. Hence, $s(\gamma N - N) \leq w(N)$.

2.4. *Example.* In the theorem, weight cannot be replaced by density. Let βN be a copy of βN in 2^c . Let $D = N \cup (2^c - \beta N)$. Then D is open in 2^c and therefore separable, i.e., $d(D) = \omega$. However, $c(2^c - D) = c(\beta N - N) = c$. Hence, $c(2^c - D) \leq d(D)$.

Our concern now is to display numerous examples of compact Hausdorff non-supercompact spaces which are not covered by [A] or [B]. They will all be first countable compactifications of N, γN , such that $\gamma N - N$ is connected and locally connected. We use the following result of E. van Douwen and T. C. Pryzymusínski [5].

[C] Let \mathscr{B} be an open base for a compact Hausdorff space Y with $|\mathscr{B}| \leq c$, $Y \in \mathscr{B}$ and $\emptyset \notin \mathscr{B}$. Assume there is a function $h: \mathscr{B} \to \mathscr{P}(N)$ such that

MURRAY G. BELL

(0) h(Y) = N;

(1) h(B) is infinite for $B \in \mathscr{B}$;

(2) if $A, B \in \mathscr{B}$ are disjoint, $h(A) \cap h(B)$ is finite;

(3) if $A \in \mathcal{B}$ and if $\mathscr{F} \subseteq \mathscr{B}$ is finite, and if $A \subseteq \bigcup \mathscr{F}$, then $h(A) - \bigcup \{h(B): B \in \mathscr{F}\}$ is finite.

Then there is a Hausdorff compactification γN of N such that $\gamma N - N$ and Y are homeomorphic. Furthermore γN is first countable if Y is first countable.

Indeed, as the authors show, the family $\{B \cup (h(B) - F): B \in \mathscr{B}, F \subseteq N \text{ finite}\} \cup \{\{n\}: n \in N\}$ is an open base for the required topology on $\gamma N = N \cup Y$.

We make use of the following general construction. Let $f: X \to Y$ where X and Y are T_1 spaces. Define XfY to be the space with underlying set $X \times Y$ and topology as follows: Basic open neighbourhoods of (x, y) where $y \neq f(x)$ are of the form $\{x\} \times (U_y - \{f(x)\})$ where U_y is an open neighbourhood of y in Y. Basic open neighbourhoods of (x, f(x)) are of the form $[(U_x - \{x\}) \times Y] \cup [\{x\} \times U_{f(x)}]$ where $U_x(U_{f(x)})$ is an open neighbourhood of x(f(x)) in X(Y). XfY is a T_1 space. Properties that XfY inherits from both X and Y include compactness, Hausdorffness, connectedness, local connectedness and first countability. Furthermore, the following cardinal equalities hold if |Y| > 1:

 $c(XfY) = |X| \cdot c(Y)$ and $w(XfY) = |X| \cdot w(X) \cdot w(Y)$.

Recall that a space X is *sequentially separable* if it has a countable dense subset D such that every point of X is the limit of some convergent sequence of points from D.

2.4. PROPOSITION. Let X be an infinite sequentially separable compact Hausdorff space with no isolated points and Y be a separable compact Hausdorff space with no isolated points. Then, there exists a Hausdorff compactification of N, γN , such that $\gamma N - N$ and XfY are homeomorphic (for any f).

Proof. Let \mathscr{U} be a base for X with $|\mathscr{U}| \leq c, \emptyset \notin \mathscr{U}$ and \mathscr{V} be a base for Y with $|\mathscr{V}| \leq c, \emptyset \notin \mathscr{V}$. Since X is sequentially separable, note that $|X| \leq c$. Define

$$\mathcal{B}_1 = \{\{x\} \times (V - \{f(x)\}) \colon x \in X, V \in \mathscr{V}\} \text{ and} \\ \mathcal{B}_2 = \{[(U - \{x\}) \times Y] \cup [\{x\} \times V] \colon x \in U \in \mathscr{U} \text{ and} \\ f(x) \in V \in \mathscr{V}\}.$$

Let $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2 \cup \{XfY\}$. \mathscr{B} is a base for the open sets of XfY with $|\mathscr{B}| \leq c$. Let D be a countable dense subset of X rendering X sequentially separable and E be a countable dense subset of Y. Let $g: N \to D$ be a bijection. For each $x \in X$ choose a non-trivial sequence $\{d_k^x: k < \omega\} \subseteq D$ such that (d_k^x) converges to x. Consider $N_x = \{n: g(n) \in \{d_k^x: k < \omega\}\}$. $\{N_x: x \in X\}$ is an almost disjoint family. For each $x \in X$, let $g_x: N_x \to E$ be a bijection.

1148

For $x \in X$ and $V \in \mathscr{V}$ define

 $h(\{x\} \times (V - \{f(x)\})) = \{n: n \in N_x \text{ and } g_x(n) \in E \cap V\}.$

For $x \in U \in \mathscr{U}$ and $f(x) \in V \in \mathscr{V}$ define

$$h([(U - \{x\}) \times Y] \cup [\{x\} \times V]) = \{n: n \notin N_x \text{ and } g(n) \in D \cap U\}$$
$$\cup \{n: n \in N_x \text{ and } g_x(n) \in E \cap V\}.$$

Define h(XfY) = N. It is now a straightforward exercise that $h: \mathscr{B} \to \mathscr{P}(N)$ satisfies all the hypotheses of [C] and thus there exists a compactification of N, γN , such that $\gamma N - N$ and XfY are homeomorphic.

Hence if X and Y are infinite Peano spaces (compact, connected, locally connected metrizable spaces) and $f: X \to Y$ is an arbitrary correspondence, then γN where $\gamma N - N = XfY$ is an example of a compact Hausdorff first countable non-supercompact (since c(XfY) = c) space.

We remark that two further examples can be found in the theory of lexicographic order. Consider the long line and the lexicographic ordered square (cf. S. Willard [14]). Both have cellularity $> \omega$ and both are remainders of Nin some compactification. These compactifications are not supercompact.

Supercompactness is not preserved in closed subspaces – witness βN in I^c – and it is unknown whether it is preserved by continuous maps with Hausdorff range; moreover, it is unknown if $X \times X$ supercompact implies X is supercompact.

3. Supercompactness in the Vietoris topology. Our attention is now diverted to the exponential or finite topology of Vietoris [13]. The author would like to thank A. Arhangel'skii for his motivation in this direction. An excellent background on the Vietoris topology can be found in E. Michael's paper [7]. For a space X, Exp (X) denotes the collection of all nonvoid closed subsets of X. Let

$$\langle U_1, \ldots, U_n \rangle = \{ F \in \text{Exp}(X) \colon F \subseteq \bigcup \{ U_i \colon 1 \leq i \leq n \} \text{ and for each}$$

 $1 \leq i \leq n, F \cap U_i \neq \emptyset \}.$

Then $\{\langle U_1, \ldots, U_n \rangle$: for $1 \leq i \leq n$, U_i is open in $X\}$ serves as a base for the open sets of Exp (X). For $A \subseteq X$, let Exp (A) = $\{F \in \text{Exp } (X): F \subseteq A\}$. Then Exp (A) is open (closed) in Exp (X) if A is open (closed) in X. In [7], E. Michael has shown that Exp (X) is compact Hausdorff if and only if X is compact Hausdorff.

Let X be compact Hausdorff and let f be a continuous mapping from an open subspace O of X onto a compact Hausdorff space Y. Consider Exp (O) as a subspace of Exp (X). Then the map \hat{f} : Exp (O) \rightarrow Exp (Y) defined by $\hat{f}(F) = \{f(x): x \in F\}$ is continuous. Furthermore, if K is a compact subset of O and f maps K onto Y, then \hat{f} maps Exp (K) onto Exp (Y).

MURRAY G. BELL

3.1. PROPOSITION. Let Exp (X) be a supercompact Hausdorff space and let f be a continuous mapping from an open set O of X onto a compact Hausdorff space Y. If there exists a compact subset K of O such that f(K) = Y, then for all dense subsets D of Y, $c(Y - D) \leq w(D)$.

Proof. Let \hat{f} : Exp $(O) \to \text{Exp}(Y)$ be as above. Assume D is a dense subspace of Y and define $\mathscr{C}(D) = \{\text{all compact subsets of } D\}$. Then $\mathscr{C}(D)$ is dense in Exp (Y). Also, $\hat{f}(\text{Exp}(K)) = \text{Exp}(Y)$. Hence, by Theorem 2.2., $c(\text{Exp}(Y) - \mathscr{C}(D)) \leq w(\mathscr{C}(D))$. However, $c(Y - D) \leq c(\text{Exp}(Y) - \mathscr{C}(D))$. To see this, note that if \mathscr{U} is a collection of open sets of Y such that $\{U \cap (Y - D): U \in \mathscr{U}\}$ is cellular in Y - D, then $\{\text{Exp}(U): U \in \mathscr{U}\}$ is a collection of open sets of Exp (Y) such that $\{\text{Exp}(U) \cap (\text{Exp}(Y) - \mathscr{C}(D)): U \in \mathscr{U}\}$ is cellular in Exp $(Y) - \mathscr{C}(D)$. Also, if \mathscr{B} is an open base for D, closed under finite unions, of cardinality w(D), then

$$\{ \langle \operatorname{Int}_{Y}(\operatorname{Cl}_{Y}B_{1}), \ldots, \operatorname{Int}_{Y}(\operatorname{Cl}_{Y}B_{n}) \rangle \cap \mathscr{C}(D) \colon \{B_{1}, \ldots, B_{n}\} \subseteq \mathscr{B} \}$$

is an open base for $\mathscr{C}(D)$ of cardinality w(D). Hence $w(\mathscr{C}(D)) = w(D)$. Consequently, $c(Y - D) \leq w(D)$.

It now follows that spaces like Exp (βN) , Exp $(\beta N - N)$ and Exp (γN) (where $\gamma N - N$ is the long line) are non-supercompact. A relevant open question at this point is whether the supercompactness of X is equivalent to the supercompactness of Exp (X).

References

- 1. M. G. Bell, Not all compact Hausdorff spaces are supercompact, to appear, Gen. Topology Appl. (1977).
- A. E. Brouwer and A. Schrijver, A characterization of supercompactness with an application to tree-like spaces, Report Mathematical Centre ZW 34/74, Amsterdam (1974).
- 3. E. van Douwen, Special bases in compact metrizable spaces, manuscript.
- 4. E. van Douwen and J. van Mill, *Supercompact spaces*, Rapport 46, Wiskundig Seminarium der Vrije Universiteit, Amsterdam (1976).
- 5. E. van Douwen and T. C. Pryzymusiński, Separable extensions of first countable spaces, to appear.
- J. de Groot, Supercompactness and superextensions, Proc. 1. Interm. Symp. on Extension Theory of Topological Structures (VEB Deutscher Verlag Wiss., Berlin 1969), 89–90.
- 7. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-183.
- 8. J. van Mill, On supercompactness and superextensions, Rapport 37, Wiskundig Seminarium der Vrije Universiteit, Amsterdam (1975).
- A topological characterization of products of compact tree-like spaces, Rapport 36, Wiskundig Seminarium der Vrije Universiteit, Amsterdam, (1975).
- M. E. Rudin, Lectures on set theoretic topology, Regional Conf. Ser. in Math., Providence, R.I., Amer. Math. Soc. 23 (1975).
- M. Strok and A. Szymánski, Compact metric spaces have binary bases, Fund. Math. 89 (1975), 81-91.

HAUSDORFF SPACES

- 12. A. Verbeek, Superextensions of topological spaces, Math. Centre Tracts 41 (1972).
- L. Vietoris, Bereiche Zweiter Ordnung, Monatshefte f
 ür Mathematik und Physik 33 (1923), 49–62.
- 14. S. Willard, General topology (Addison-Wesley Publishing Co., Reading, Mass., 1970).

University of Alberta, Edmonton, Alberta.