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SPHERICAL H A R M O N I C S ON T H E 
H E I S E N B E R G G R O U P 

BY 

PETER C. GREINER* 

1. The Heisenberg group, H^ Equip U3 with the group law 

(1.1) (z9t)(z',t') = (z + z',t + t' + 21mzz'), 

where (z, t) stands for (x, y, 0- This is a nilpotent Lie group, usually referred to 
as the first Heisenberg group, Hx. In general Hk denotes U2k+1 equipped with a 
similar group law, namely 

(1.2) (z, f)(z\ t') = (z + z', t +1' + 2 Im z • f ) , 

where z = (z 1 ? . . . , zk), z,- = x,- + iyp j = 1 , . . . , k and z - z' = J^=1 zxz\. In this 
article we work only on Hu although everything we say carries over to Hk. A 
basis for the left-invariant vector fields on Hx is given by Z, Z and T, where 

•1.4) r-i 

and, as usual 

3z 2 \dx ay > 

A real basis is given by X, Y and T, where Z = (X-iY)/2 i.e. 

: 2 Vox ldy/ 

d d d d 
X = — + 2y-, Y = 2 x - . 

dx V ay dt 
Let j£0 denote the following second order left-invariant differential operator 

on Hx: 

(1.5) *o=-è(ZZ + ZZ)=-^+i|(z|-4)Hz| 2 P 
2* 

a*2 
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i£o is not elliptic. Nevertheless, Folland showed in [2], that 

(1.6) 3V*>o = S, 

where 

(i.7) *o=^-dzi4+t2r1/2, 

and 8 stands for the delta function at the origin. Translating <ï>0 on H1 yields 
the fundamental solution of £gQ on R3. This suggests that, in analogy with the 
theory of the Laplacian on R3, (|z|4+12)1/4 may be thought of as the distance of 
(z, t) from the origin, and via left translation one obtains a distance function on 

Hi-
Given R > 0 , one introduces the dilation R :(z, t)^(Rz, R2t). Then J£0 is a 

homogeneous differential operator of degree two, in the sense that 

(1.8) S£Qf(Rz9 R2t) = R2(<ej)(Rz, R2t). 

Continuing in this vein there is a great deal of similarity between the 
behaviour of «2Q on Hx and that of the Laplacian on (R3. This is the theme of 
this article, namely, to exploit this analogy in introducing solid spherical 
harmonics for operators like «Sf0 on Hx. 

2. Parallels between Hx and R3. I shall begin by constructing two tables, one 
for R3 and one for Hl9 of analogous properties and results. 

R3: 

(2.1E) Euclidean translation, i.e., vector addition. 

(2.2E) Euclidean dilation: 

JR :(*!, x2, x3)^>(Rxl9 Rx2, Rx3), R>0. 

/^ o x A & , a2 , d2 

the Laplacian, is a second order, (left and right) invariant differential operator 
on R3, homogeneous of degree two with respect to Euclidean dilation, i.e. 
Af(Rx) = R\Af)(Rx). 

(2 .4E) r = r(x) = (xl + xl + xj)1/2 is the distance of x = (x1,x2,x3) from the 
origin. Then r(x — x') is the Euclidean distance of x and x'. 

(2.5E) The Euclidean unit ball, BE(1), is defined by r(x) = (x2 + xi + x | ) 1 / 2 < 
1. 

(2.6E) The Dirichlet problem is solvable for A on BE(1): 

Let 4>eC\bBu(l)\ i.e., <f) is a continuous function on the boundary of BE(1). 
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Then there is a unique continuous function u on the closure of EE(1), so that 
u[bBE(l)] = c|>, and Au = 0 in BE(l) in the sense of distributions. 

(2.7E) A is real-analytic hypoelliptic, i.e. Aw = / => u is real-analytic whenever / 
is. 

Hi: 

(2.1H) The Heisenberg group law (1.1) replaces Euclidean translation. 

(2.2H) The Heisenberg dilation is given by 

R : (z,t)->(Rz,R2t), R>0. 

(2.3H) 5£Q- -\{ZZ + ZZ)—see (1.5)—is a second order differential operator 
on IR3, left-invariant on H1? homogeneous of degree two with respect to the 
Heisenberg dilation, i.e. £0f(Rz9R

2t) = R2(<e0f)(Rz, R2t\ R>0. 

(2.4H) p = p(z, t) = (|z|4+ r2)1/4 denotes the Heisenberg distance of (z, 0 from 
the origin. Then ( | z -z ' | 4 + ( f - f ' - 2 I m zz')2)1/4 is the Heisenberg distance of 
(z, t) from (z\ t'). 

(2.5H) The Heisenberg unit ball is defined by p = ( |z | 4+f 2) 1 / 4<l. In the 
French literature this is often referred to as "Boule de Korànyi" 

(2.6H) The Dirichlet problem is solvable for 5£0 on BH(1): 

Let 4>ebBu(l). Then there is a unique continuous function u on the closure 
of BH(1), SO that u(bBH(l)) = cf>, and J£ou = 0 in BH(l) in the sense of 
distributions. 

(2.7H) i£0 is real-analytic hypoelliptic, i.e., ££Qu = f^u is real-analytic 
whenever / is. 

A few remarks are in order. Properties (2.1), (2.2), (2.3), (2.4) and (2.5) are 
formal structures. (2.6) and (2.7) are deep results. In particular (2.6E) and 
(2.7E) are classical. A proof of (2.6H) can be found in [4] and Folland's 
fundamental solution—see [2]—gives (2.7H). 

3. Spherical harmonics: heuristics. Properties (2. l)-(2.7) suggest the study of 
spherical harmonics on the respective unit balls. Here we shall sketch an 
argument which justifies this statement. Consider A first. 

Let <£> G C[bBE(l)]. By (2.6E) there is a unique function u, continuous on the 
closure of JBE(1), such that u(bBE(l)) = <f>, and au = 0 in BE(1) in the sense of 
distributions. 

According to (2.7E) u is real-analytic in BE(1). In particular, u can be 
represented as uniformly and absolutely convergent power series in some 
neighbourhood of the origin. Applying A to the power series term-by-term, 
(2.3E) implies that homogeneous parts of the power series must be in the 
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null-space of A. Thus in some neighbourhood of the origin u can be written as 
a (usually infinite) sum of homogeneous harmonic polynomials. This argument 
suggests that it is of some importance to study homogeneous harmonic polyno
mials, i.e., the solid spherical harmonics and their boundary values, the 
spherical harmonics. In particular this leads to the representation of harmonic 
functions in terms of their boundary value via the Poisson kernel. 

This argument carries over, word for word, to <2?0 as long as homogeneity is 
understood in the Heisenberg sense—see (2.2H)—i.e., z, z are H-
homogeneous of degree one and t is H-homogeneous of degree two. Thus we 
see that j^o-harmonic functions have a representation near the origin as a 
(usually infinite) sum of H-homogeneous polynomials which are cS?0-harmonic. 

(3.1) DEFINITION. A solid i£0-spherical harmonic of degree m, m = 0 , 1, 
2 , . . . is a polynomial in z, z and t, which is harmonic with respect to <â?0 and 
which is homogeneous of degree m with respect to the Heisenberg dilation, 
(2.2H). 

The purpose of this article is to compute explicitly the H-homogeneous 
.^-harmonic polynomials, i.e., the solid cS?0-spherical harmonics and their 
boundary value on W3H(1), the ^-spherical harmonics. 

4. Spherical coordinates on Hx. Imitating U3 we set 

(4.1) x = p sin172 c/> cos 0, y = p sin172 cj> sin 0, 

(4.2) t = p2 cos </>, 

with 0 < p < o ° , 0<</><7r and O<0<27r. In other words 

(4.3) P = (|z|4+r2)174, 

(4.4) z H z | e i 0 = psin172<Ke, 

(4.5) f + i |z |2 = pV* . 

A bit of calculation yields 

~ d . a 
Z = — +iz — 

dz dt 
(4.6) 

- i e / 1 • • i/2 t id> d sin1/2c£ .. a 1 . 1 a \ 
= e ie(- i sin172 4>e~l<t> — + e~l4> — - - i——TT^ l 

\2 dp p dcf> 2 psm1/2ct>dOJ 
We shall also need 

(4-7) . . . . . . 2 
a _ cos eft a sin (f> a 
at 2p dp p2 dcf>' 

5. The differential operators i ^ . In [3] Folland and Stein introduced the 
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operators cS?a, a e C , given by 

(5.1) ^ a = - | ( Z Z + ZZ) + i a | -
ot 

= ^ 0 - | a [ Z , Z ] , 

where [Z,Z] = ZZ-ZZ. These operators behave like <£Q. Thus sea is left-
invariant on H1 and homogeneous of degree two, i.e. 

(5.2) 2a(f(Rz, R2t)) = R2(2J)(Rz, R2t), R>0. 

This follows easily, e.g., from (4.6) and (4.7). Furthermore 5£a is hypoelliptic, 
i.e., <£au = fe C~=> u e C°°, and solvable if and only if a * ± 1, ± 3 , ± 5 , . . . . 
When ±a = 1, 3, 5 , . . . «S?a has a fundamental solution given by <ï>«(z - z', t-
t ' - 2 I m z z ' ) , i.e. 

(5.3) ^ « ( z - z', t-t'-2 Im zz') = 8(z,,t>h 

where ô(z»^ is the delta function of (z\ f') and where 

(5.4) * „ u o=cŒ(|z|
4+<T1/2(Jfjrrf ^ 

with 

When a = ± l , ± 3 , ± 5 , . . . one obtains so-called relative fundamental 
solutions—see [5], [6] and [7]. 

6. The spherical harmonics for j£a, ± « ^ 1 , 3 , 5 , . . . . Instead of studying ££0 

we shall compute the spherical harmonics for J£a. Since the interest in spherical 
harmonics is mainly to understand Dirichlet's problem on the unit ball from 
now on we shall assume that J£a is solvable, i.e. ±a¥= 1, 3, 5 , . . . . In trying to 
find homogeneous harmonic polynomials for J£a the first problem one encoun
ters is that ££a does not separate in (p, 0, </>) coordinates. To get an idea of what 
these solid spherical harmonics for j£a look like I computed some explicitly for 
J£0. This turned out to be useful. Here are some of the examples. 

Let ^ 0 ) denote the set of homogeneous harmonic polynomials of degree m 
for &0. Then 

X^ = {1}9 

^ i 0 ) = {z,z-}, 

^ 0 ) = {z2 ,z2 ,r} 

Wi0) = {z\ z\ z(\z\2-2it), z(|z|2 + 2if)}, 

^ = {z\ z\ z 2 ( | z | 2 - l it), z2(|z|2 + § it), \z\4-2t2}, . . . etc. 
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Here {a, ft . . . } denotes the linear span of a, ft . . . . Introducing spherical 
coordinates we obtain 

^o )=u}, 
^ 0 ) = WP sin1/2 <}>, e-»p sin1/2 <f>}, 

W(
2
0) = {e2iep2 sin 4>, e'2iep2 sin <*>, p2 cos <£}, 

^ 0 ) = ( e 3 V sin3/2 <fc e"3wp3 sin3/2 <J>, ewp3 sin3'2 <*>(l - 2 i j i ) , 

C-Vsin3'24>(l + 2i^p)}, 

3(fi0) = [e4 i 9p4 sin2 <fc e-4 iep4 sin2 t/>, e2iep4 sin2 JI - | i p A 

e " 2 V s i n 2 * ( l + | j | ^ ) , p4sin2 4 > ( l - 2 ( ^ ) 2 ) } , . . . etc. 

From these formulas we can immediately make a guess at the form of the 
general solid spherical harmonic of J£0, and, also, of that of J£a. It turns out to 
be correct. First a definition. 

(6.1) DEFINITION. A solid i^-spherical harmonic of degree m, m = 
0 , 1 , 2 , . . . is a polynomial in z, z and t which is harmonic with respect to <£a 

and which is homogeneous with respect to the Heisenberg dilation, (2.2H), i.e. 
H-homogenous. 

(6.2) PROPOSITION. All solid spherical harmonics of S£a of degree m, m = 
0 , 1 , 2 , . . . are sums of H-homogeneous ^-harmonic polynomials of degree m 
of the form 

(6.3) einepm sinm/2 <t>h(cot <£>), 

where | n |<m, m = n ( m o d 2 ) and h(x) is some polynomial in x—which, of 
course depends on a, n and m. 

Proof: We note that 

(6.4) <Ue i n 7(M, t)) = eine^nf(\z\, t), 

where J£an is a second order differential operator in r = \z\ and t. Let u(z, t) be 
a H-homogeneous «â?a -harmonic polynomial of degree m. We may write it, 
uniquely, as follows. 

(6.5) u(z,r) = Ic i n e i i n ( | z | , r ) . 
n 

Then 

(6.6) <ea(u) = I eine ^ , n M n ( | z | , r) = 0, 
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which implies that i^Unflzl, 0 = 0 for all n. Therefore, from (6.4) we have 

(6.7) ^«(elnOMn(|zU)) = 0 

for all n. The general term of u is some constant times 

( t \ m 3 

where m1 + m2 + 2 m 3 = m and n = m1-m2. In particular m=rc(mod2), | n |< 
m, and since |z|m = pm sinm/2 <£ and t/|z|2 = cot </>, we have derived Proposition 
6.2. 

7. Calculating ft(x) = ft&J-inD^M- This requires the explicit computation of 

(7.1) £a(u)=-ZZu + i(a-l)yr 

where 

(7.2) u = einepm sinm/2 <^y(cot <£). 

With a certain amount of work we obtain 

(7.3) <ea(u) = - e inepm sinm/2 <MU + cot2 4>)y"(cot <£) 
- [(m - l)cot </> + i(a + n)]y'(cot 4>) 
+ Km2-n2)y(cotc^)}. 

We assume «S?a(u) = 0 and then look for a polynomial solution, y(x), of 

(7.4) (1 + x2)y"(x) - (i(a + n) + (m- l)x)y'(x) + \{m2 - n2)y (x) = 0. 

To find the required solution we substitute 

(7.5) y = £ av(x-i)v 

v = 0 

in (7.4). This leads to 

(7.6) (x + 0 l K v - l K t x - O ^ M K a + rO + t m - l w f ; v a v ( x - i ) v _ 1 

v = 2 v = l 

+ - — — I a„ (x- i ) v = 0, 
^ v = 0 

which yields the recurrence relation 

(7.7) i(2v-a-n-m + l)(v + 1K+1 + (v2 - m ^ m 2 " n \ = 0 

for ^ = 0, 1, 2, 3 , . . . . Now ra + n is even and by hypothesis ± a ^ l , 3, 5, 
7 , . . . . Therefore the coefficient of av+1 in (7.7) never vanishes. Thus y(x) is a 
polynomial if and only if the coefficient of av in (7.7) vanishes at some point, 
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i.e. 
,_ _N n 2 .m2-n2 ( m-\n\\( m + |nl\ 
(7.8) 0=v2-mv + — - — = [ v 2 A * 2 ) ' 

Since | n |<m, (7.4) has a polynomial solution, which is unique up to a 
constant multiplier, of degree 

(7.9) fc=è(m-|n|), 

exactly. We set a0= 1 in (7.5). Then 

( m-\n\\ (_m±]n\\ 
' ÎY V 2 M 2 / 1 

(7.10) av -®" / m + n a - l \ v! ' 

\ 2 2 ~ / v 

v=l, 2, 3 , . . . where we used the standard notation 

(7.11) (fl)0=l,(fl)n = fl(a + l ) - - - ( a + n - l ) , n = 1, 2, 3 , . . . . 

Thus the polynomial solution of (7.4) is given by 

/ m - | n | \ / m + |n | \ 

m . ,. i /2Vn,) (lX^ 2 ^ 2 '* {x~i)v 

(7.12) y(x)= 2- U ; 1 77 T " 
v=o \ 2 / / m + n a - l \ v! 

\ 2 2~/„ 
_ / m —|n| m + |n| m + n a - 1 1 l . \ 

\ 2~' 2 ~ " ; 2 2 ~ ; 2 + 2 I X | 
Here F(a, b; c; z) stands for Gauss' hypergeometric function defined by 

(7.13) F(a,b;c;z) = 2, —7^ T 

as long as c 5^0, - 1 , - 2 , - 3 , . . . . We note that in our case 

m+n a-\ „ 
c= r - ^ 0 , - 1 , - 2 , - 3 , . . . 

2 2 

since ± a ^ 1, 3, 5 , . . . . For sufficiently small z 

(7.14) F ( a , b ; c ; z ) = ( l - z ) - a F ( a , c - f e ; c ; ^ - J , 

as long as c # 0 , - 1 , - 2 , - 3 , .. .—see [1], v. 1, p. 105(3). If a = 0, - 1 , - 2 , 
- 3 , . . . both sides of (7.14) are polynomials, hence (7.14) holds for all z e C . In 
our case a = - f c = - ( m - |n|)/2 is a nonpositive integer, therefore, disregarding 
constant multipliers, (7.12) can be written in the following form 

(7.15) y ( x ) = (x + 0 < ^ > ' 2 F ( - ^ , ^ _ £ ^ ; _«±»_fLZl.fiziY 
V 2 2 2 2 2 x + i / 

https://doi.org/10.4153/CMB-1980-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1980-057-9


1980] SPHERICAL HARMONICS 391 

This formula can be further simplified in the following way. With k a 
non-negative integer we have 

(7.16) (k+
k
b)(x + in(-k,-k-a;b + l ; ^ ) 

\ k ) ( X + l) „%(b + l)(b + 2)---(b + v)\ v )\x + i) 

j . ( t + W»^-l)-(t + , + l ) / t + . y ^ 
v=0 1-2- - - (k-v) \ v l\x + i) 

Thus, with k = (m-\n\)/2, k + a = - ( | n | - n ) / 2 + ( a - 1 ) / 2 and b = 
- (m + n)/2-(a + l)/2 we derived 

(7.17) PROPOSITION. h{x) = hfan\m{x), with (m- |n | ) /2 = 0, 1, 2 , . . . , is the 
unique, up to a constant multiplier, polynomial solution of (7.4). hj^'^ (x), k = 0, 
1, 2 , . . . is exactly of degree k. Explicitly, one has 

I |n| + n a + l \ / \n\-n a-l\ 

(7.18) h^n\x)= t \ 2
 y

 2 j \ \ _ v
2 )(x + iy{x-if-\ 

8. The i?a-spherical harmonics: final version. Using Propositions 6.2 and 
7.17 the basis elements of the solid 5£a-spherical harmonics of degree m have 
the form 

(8.1) e i n V sinm/2 cfrfefc-Wcot <f>), 

where n = 0, ±1, ±2, ±3,... such that (m - \n\)/2 = 0, 1, 2, 3,... . W e shall 
simplify this. With x = cot <£> 

cos</> ei4> . e'i<f> 

xJri=-r—rJri=-r—r,x-i=-r—. 
sin <p sin <p sin <p 

Therefore 

(8.2) sink # j ^ n ) (cot </>) 

k 

\n\ + n a + l\/ \n\-n a-l\ 

„=n > V 

2 2 2 2 
k-v 

piv4> p—i(k—v)4> 

|n| + n a+\\t \n\-n a-\\ 

=l\ \2K \-*2h— 
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We set 

( \n\ + n <* + l \ / \n\-n ( a-l\ 

2 v 2 A \-v 2 r ~k)-
Then 

(8.4) sink <t>h(
k
a>n)(cot <j>) = ( - l ) f cH^ n ) (e^) . 

Now we are ready to state our main result. Collecting the formulas we 
obtained so far, we have derived 

(8.5) THEOREM. Set 

2a = -ZZ + i(a-l)^, ± a * l , 3 , 5 , . . . . 
or 

Then the linear space $f^} of H-homogeneous 5Ea-harmonic polynomials of 
degree m, m = 0, 1, 2 , . . . has dimension m + 1 . A basis for Sif̂ 0 can be found 
as follows: 

For each n and k, such that m-2k + \n\ with k = 0 , 1 , 2, 3 , . . . and n = 0, ± 1, 
±2 , ± 3 , . . . set 

(8.6) ^ - > ( p , 6, 4>) = ein+pm sin1"172 <f>H[^%m(e^)9 

where H^'n)(e i4>) is defined by the generating function 

(O >J\ M _ i4>\-(|n|+n)/2-(ot + l)/2Q _ -i<f>\-(|n|-n)/2+(c*-l)/2 

= Î pkH^"Xei4>), 
k=0 

with the right hand side converging for p < l . 
Then {^'n\ all possible n} is a basis for %%\ 

(8.8) DEFINITION. The «2̂  -spherical harmonics are obtained by restricting 
H-homogeneous J£tt-harmonic polynomials to bBH(l), i.e. to p= 1. 

(8.9) THEOREM. Each J£a-spherical harmonic is a unique linear combination 
of functions of the form 

(8.10) eine sinln|/2 QH^Xe*) 

with k = 0, 1, 2, 3 , . . . and n = 0, ± 1 , ±2 , ± 3 , . . . 

9. Solid spherical harmonics of A. It is interesting to recall the homogeneous 
harmonic polynomials of degree m, m = 0, 1, 2 , . . . of the Laplacian A in (R3. In 
spherical coordinates they are 

(9.1) einerm sin |n| QPt-ffi (cos <£), 

https://doi.org/10.4153/CMB-1980-057-9 Published online by Cambridge University Press

file:///n/-n
https://doi.org/10.4153/CMB-1980-057-9


1980] SPHERICAL HARMONICS 393 

O<0<27r, 0<<£<7T and 0<r<oo, where n = 0, ± 1 , ± 2 , . . . , ± m and the 
ultraspherical (or Gegenbauer) polynomials, P£(x), - 1 < x < 1, are defined via 
the generating function 

(9.2) (1 - re i 4 T x ( l - re'*)-* = (1 - 2r cos </> + r2)"x = £ rkP£(cos <£), 

see [10], section 4.7. P£ are sometimes denoted by C£—see e.g. [1], v. 2, p. 
240 (22, 23) and p. 177 (29). The central result in the theory of the 
polynomials P£(x) is 

(9.3) PROPOSITION. For each A > -\the polynomials P£(x), k = 0, 1, 2, 3 , . . . 
form an orthogonal basis for L 2 ( [ -1 ,1]) with measure ( l -x 2 ) x ~ 1 7 2 dx. Further
more 

(9.4) ( « W l - ^ à - ^ y t - 0 . 1 , 2 

For a proof of Proposition 9.3, sections 10.3 and 10.9 of [1], v. 2, may be 
consulted. It follows easily from (9.2) that with I = 0, 1, 2, 3 , . . . 

(9.5) P<+172(cos 4>) = H i "*" 2 V * ) , k = 0 ,1 , 2 , . . . . 

In particular,-when 1 = 0 we obtain the Legendre polynomials 

(9.6) Pk(cos 4>) = P£/2(cos <f>) = H(
k

0 '°V*), k = 0 , 1 , 2 , . . . 

10. On the convergence of solid spherical harmonic expansions. We shall 
exhibit a ^ -harmonie function on the whole open Heisenberg unit ball, BH(1), 
whose expansion in solid spherical harmonics near the origin does not converge 
on all of BH(1). This is in contrast to the classical spherical harmonic expan
sions of the Laplacian in the Euclidean unit ball. 

We choose 2TT<Ï>0 ( Z - 1 , f - 2 I m z ) for our harmonic function in BH(1), 
where <ï>0(z- 1, t-2 Im z) is the fundamental solution of 5£Q with the singular
ity at (z \ t') = (1, 0). Thus <ï>o is real analytic in all of BH(1), in particular it is 
real analytic on bBH(p) for all p < 1, and has an expansion in solid i^-spherical 
harmonics which converges near the origin. This can be written as 

(10.1) 27r<D0(z - 1 , t-2 Im z) = (|z - l|4 + ( f - 2 Im z)2)"172 

= (ip2e~i<s> - 2p sin172 <t>eie +l)" 1 7 2 

• ( - i pV* - 2p sin172 <t>e~ie +1)~172 

oo 

= I Pkvk{<\>, e), 

where pkuk(</>, 0) are the solid iÇ0-spherical harmonics of degree fc. The right 
hand side of (10.1) converges for all <f> and 0 if p is sufficiently small. The 
explicit form of vk(<f>, 0) is irrelevant for this discussion. Fix a direction, (<£, 0), 
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in (10.1) and let p take on complex values. Then the radius of convergence of 
the power series in p, in (10.1), is the minimum of the lengths of the complex 
p-solutions of 

(10.2) ip2e-i4> - 2p sin172 <t>eie + 1 - 0 . 

In particular, choosing <j> = 6 = IT/2, the solutions of 

(10.3) p 2 - 2 i p + l = 0 

are i( l±V2) and the minimum length of these is V 2 - l < § , which proves our 
contention. Thus we have derived 

(10.4) PROPOSITION. The solid ^£0-spherical harmonic expansion of 2TT4>0(Z — 
1, t — 2 Im z) converges in some BH(p), p > 0 . The largest such p is less than \. 

Of course, the first part of Proposition 10.4 follows from (2.7H). 
As we mentioned earlier this is in contrast to the classical case of the 

Laplacian in U3, whose harmonic functions in the Euclidean unit ball, BH(1), 
have a solid spherical harmonic expansion which converges in all of BE(1). To 
be more precise, we shall give a quick sketch of the relevant result following 
Muller's treatment of this subject in [9]. 

Let H3 denote bBE(l) in U3 and a)3 its surface area. If F ( | ) is a continuous 
function on fl3 then the Poisson integral 

represents the unique harmonic function in J3E(1) which is continuous on the 
closure of JBE(1), and whose restriction to fl3 = b£H(l) is F(£). Now 

(10.6) 

where 

(10.7) 

a-2rl^\r^\iN*rkP^-^ 

£^fc=7S> 
and Pk(x) are the Legendre polynomials—see (9.6). Since | P ( J C ) | < 1 on - 1 < 
x < l , (10.7) implies that for all r<\ (10.6) converges, uniformly in £, r\Gfl3. 
Integrating on fl3 we obtain 

(10.8) PROPOSITION. Let F(£) be a continuous function on fl3. Then 

(10.9) u(r,è)= I rkSk(C), 

https://doi.org/10.4153/CMB-1980-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1980-057-9


1980] SPHERICAL HARMONICS 395 

with 

(10.10) Sk(£) = ^ [ Pk(f-Tj)F(T,)du)3(T|), 

converges for all r < 1, uniformly in £ef l 3 , and represents the harmonic function 
in BE(1) with F(f) for its boundary value. rkSk(tj) are the solid spherical 
harmonics of degree fc. 

Finally, to use the analogy with Proposition 10.4, we compute the roots of 
the denominator of the Poisson kernel in (10.5). Thus 

r2-2r(t-r))+l = 0^>rU2 = e ^ \ 

and both roots have unit length. This should be compared to the behaviour of 
solutions of (10.3). 

REMARK. Proposition 10.4 suggests the possibility that the i£a-spherical 
harmonics, or, more specifically H^^ie1*), k = 0, 1, 2, 3 , . . . may not form an 
orthogonal system. 

A more elaborate study of O0(z - w, t - s - 2 Im zw) may yield an answer to 
the following question. 

QUESTION. What is the largest p, call it pmax, with the property, that all 
functions which are J^-harmonic in BH(1) and continuous on the closure of 
BH(1) have a convergent solid J£0-spherical harmonic expansion in BH(pmax)? j 

11. Conclusion. An interesting question is whether the functions Hla,n) 

(el<t>), k = 0 , 1 , 2 , . . . , with n = 0, ± 1 , ± 2 , . . . fixed, are complete on 
0<<£<7r—e.g. the solvability of the Dirichlet problem for 5£Q on BH(1) is 
strong evidence for the probable completeness of Hi°,n\ k = 0, 1, 2 , . . . . Such 
a result would allow one to construct the Poisson kernel for the Dirichlet 
problem for «2 ,̂ a^ ± 1 , ± 3 , ± 5 , . . . on BH(1). It may also yield information 
about the db -Neumann problem for «^n_2 in the unit Heisenberg ball in Hn, 
n > 1—see [8]. At this moment this is idle speculation, which may, however, 
lead to interesting results in the future. 
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