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Abstract

Much work has shown that differences in the timecourse of language processing are central
to comparing native (L1) and non-native (L2) speakers. However, estimating the onset of
experimental effects in timecourse data presents several statistical problems including
multiple comparisons and autocorrelation. We compare several approaches to tackling
these problems and illustrate them using an L1-L2 visual world eye-tracking dataset. We
then present a bootstrapping procedure that allows not only estimation of an effect onset,
but also of a temporal confidence interval around this divergence point. We describe how
divergence points can be used to demonstrate timecourse differences between speaker groups
or between experimental manipulations, two important issues in evaluating L2 processing
accounts. We discuss possible extensions of the bootstrapping procedure, including
determining divergence points for individual speakers and correlating them with individual
factors like L2 exposure and proficiency. Data and an analysis tutorial are available at
https://osf.io/exbmk/.

1. Introduction

Studying the timecourse of comprehension is a central goal in bilingual processing research,
which has been significantly fostered by the use of time-sensitive methods such as self-paced
reading, eye-tracking, and event-related potentials. The importance of timing is highlighted by
findings showing that comprehension is often slower in a non-native than in a native language,
in both lexical and sentence domains. For example, compared to monolinguals, even highly
proficient bilinguals show slower lexical access (Duyck, Vanderelst, Desmet & Hartsuiker,
2008; Gollan, Slattery, Goldenberg, Van Assche, Duyck & Rayner, 2011; Lehtonen,
Hultén, Rodríguez-Fornells, Cunillera, Tuomainen & Laine, 2012; Lemhöfer, Spalek &
Schriefers, 2008; Ransdell & Fischler, 1987). Similarly, sentence processing studies often
find that when a word violates a grammatical constraint or a previously established parse,
monolinguals display processing disruptions soon after the violation, while disruptions in
bilinguals are often delayed (Boxell & Felser, 2017; Felser & Cunnings, 2012; Grüter,
Lew-Williams & Fernald, 2012; Hopp, 2017; Steinhauer, White & Drury, 2009; White,
Genesee & Steinhauer, 2012).

Despite the rich data generated by current methods, our inferences about L1-L2 temporal
asymmetries are often limited by using methods demonstrating that differences in native vs.
non-native processing affect different sentence regions (in self-paced reading), different tem-
poral windows (in event-related potentials), or different reading measures (in eye-tracking).
Instead, it would be preferable to establish the precise timepoint at which an effect onsets
in order to directly compare timing differences between speaker groups or between experimen-
tal manipulations. This article summarizes several techniques for achieving this goal. Such
information is relevant to testing a variety of L2 accounts. For example, some accounts propose
that L1-L2 processing differences concern the relative timing of grammatical versus non-
grammatical information (Clahsen & Felser, 2018). Meanwhile, capacity-based accounts link
timing delays to differential proficiency, lexical access speed, and working memory
(Dekydtspotter & Renaud, 2014; Hopp, 2013; McDonald, 2006). Establishing numeric diver-
gence points rather than dichotomous contrasts (effect present/absent) would allow testing of
whether timing delays are predicted by such variables.

To encourage the use of divergence point analyses, we provide a practical introduction
using a L1-L2 visual world eye-tracking dataset. The data and a step-by-step R analysis tutorial
are available at https://osf.io/exbmk/. Finally, we note that divergence point analyses differ
from another set of techniques which examine timeseries data by modeling the shape
(i.e., functional form) of change across time (e.g., Mirman, 2017; Porretta, Kyröläinen, van
Rij & Järvikivi, 2018). When characterizing timeseries data, both types of techniques are useful
and provide complementary information.
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2. A practical example

Our L1-L2 dataset belongs to a visual world experiment examin-
ing the use of syntactic gender information to make noun predic-
tions. The visual world paradigm involves tracking eye
movements to objects on a computer screen while participants
hear a sentence, with the assumption that there is a close link
between eye movements and language processes (Huettig,
Rommers & Meyer, 2011). The visual world paradigm is thus par-
ticularly useful in L1-L2 timecourse research because it measures
how language processing unfolds over time.

We tested a group of L1 German speakers and two groups of
intermediate-to-advanced L2 German speakers, whose L1 was
either Spanish or English (for demographic details see Appendix
S1, Supplementary Materials). Participants saw four objects on a
computer display and heard a German instruction to click on
one of the objects as quickly as possible, e.g., Click on the blue but-
ton (Figure 1A). The determiner and adjective in the instruction
agreed in gender and color with only one of the objects (henceforth
the “target”), allowing participants to identify it prior to its pronun-
ciation; namely, at the adjective (Hopp & Lemmerth, 2018;
Lemmerth & Hopp, 2019). The properties of the other objects
were manipulated such that they matched the target only in
color (“color competitor”), only in gender (“gender competitor”),
or neither (“distractor”).

The critical time window for assessing gender predictions was
from the onset of the adjective to 200ms after the onset of the
noun, to account for the time taken to program and launch an
eye movement (Hallett, 1986; Salverda, Kleinschmidt &
Tanenhaus, 2014). As Figure 1B shows, fixations before the adjec-
tive were distributed similarly between the four objects. At the
adjective, fixations to the target and the color competitor increased,
while looks to the gender competitor and distractor abruptly
decayed. Given this pattern, we focused on the divergence between
the target and color competitor (henceforth, “competitor”). As
both objects match the color of the adjective, but only the target
has the appropriate gender, any target-over-competitor advantage
should reflect the predictive use of gender.

We used a divergence point analysis to establish how soon
after the adjective a target-over-competitor advantage appeared
(i.e., a predictive effect), and whether this divergence occurred
later in L2 than L1 speakers, consistent with previous findings
(Dussias, Valdés Kroff, Guzzardo Tamargo & Gerfen, 2013;
Grüter et al., 2012; Hopp, 2013; Lew-Williams & Fernald,
2010). We also wanted to determine whether gender predictions
were modulated by participants’ native language. If so, Spanish
speakers may benefit from the rich morphosyntactic gender
agreement of their L1 and show faster predictions than English
speakers, whose L1 lacks syntactic gender agreement.

3. Divergence point analyses: an intuitive approach

One possible approach to determine the divergence point between
looks to the target vs. competitor is to statistically compare the
difference in fixation proportions at each timepoint and find
the earliest significant test statistic. To illustrate this, we use our
data where eye positions were sampled at 50 Hz, i.e., every 20
ms. At each sampled timepoint, we fit a generalized logistic
mixed-effects model with a binomial distribution to compare
the proportion of fixations to the target vs. competitor (GLMM;
Barr, 2008). The divergence point was defined as the earliest
point with a significant positive estimate (Figure 2).

Although this approach is intuitive, it involves as many statis-
tical comparisons as there are timepoints and thus runs a risk of
false positives (Type 1 error). For example, at an alpha of 0.05, the
probability of a single test delivering a false positive is 5%. But
with 45 timepoints in our window of interest, this probability
rises to 90% (1 - 0.9545). The combined probability of a false posi-
tive over an entire set of tests is known as the family-wise error
rate (FWER; Hochberg & Tamhane, 1987).

A common way to control for multiple comparisons is the
Bonferroni correction, which lowers the alpha-level by dividing
the desired alpha by the number of tests (Bonferroni, 1936).
Thus, the alpha-level for 45 tests becomes 0.001 and the FWER
at this adjusted alpha is around 5%. The downside of the
Bonferroni correction is that lowering alpha necessarily decreases
statistical power, because it becomes more difficult for an effect
(true or otherwise) to reach the significance threshold. Thus, the lar-
ger the number of tests, the lower the power to detect a true effect.

A second type of correction that preserves power is false dis-
covery rate (FDR) control (Benjamini & Hochberg, 1995).
Instead of correcting the alpha level, FDR control restricts the pro-
portion of false discoveries among the significant results. To apply
FDR control, we take the p-values from the 45 tests and sort them
from smallest to largest. A critical value for each p-value is then
calculated via a suitable method (e.g., some methods account for
autocorrelated data, others for data with many significant results;
Benjamini, Krieger & Yekutieli, 2006; Benjamini & Yekutieli,
2001). The largest p-value below this critical value is then chosen
as the new significance cut-off for the original p-values.

Both the Bonferroni correction and FDR control can be easily
implemented (code §2). Figure 2 shows the corrected and uncor-
rected divergence point estimates for our data. As expected, cor-
rected estimates are always later than uncorrected estimates,
suggesting that the latter are false positives. The higher power
of FDR control over Bonferroni is visible in the German and
English groups; whereas in the Spanish group, where the differ-
ence in fixation proportions arises more abruptly, both correc-
tions yield similar results.

While the corrections account for FWER, an additional issue
in visual world data is autocorrelation. Autocorrelation occurs
because modern eye-trackers can record eye fixations at high fre-
quencies (e.g., once per millisecond), but planning and executing
an eye movement takes around 200 milliseconds. Thus, neighbor-
ing datapoints often reflect the same stage of cognitive processing
and so are strongly correlated. Applying parametric tests at mul-
tiple timepoints will overestimate variance in the data and can
influence the Type 1 error rate, because parametric tests assume
independent observations. Importantly, grouping observations
into larger bins can reduce (Mirman, 2014:18), but not eliminate
autocorrelation; Figure 3, code §3).

A second dependency issue in our data is the contingency of
fixations to the target and competitor, since a participant cannot
simultaneously look at both objects. For the same reasons as auto-
correlation, this can inflate the Type 1 error rate. Finally, the
approach above does not estimate the temporal uncertainty
around a divergence point because the latter is based on a single
statistical test. While we can estimate the 95% confidence interval
of a test coefficient, this reflects uncertainty about the MAGNITUDE

of the target vs. competitor difference, rather than the temporal
location of the divergence point. In order to statistically compare
the onset of predictions between groups, a measure of temporal
variability is necessary. With this goal, we turn to non-parametric
resampling approaches.
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4. Non-parametric approaches

The corrected comparisons above allow us to estimate a divergence
point indexing the onset of predictive looks. But how certain are we
about this estimate? Because we only conducted our procedure
once, we cannot be sure that a similar divergence point would be
found in a different sample. Non-parametric approaches such as
bootstrapping and cluster permutation can answer this question by
resampling or permuting existing data to generate “new” datasets
and sampling the distributions of their test statistics. Conveniently,
they also control for FWER and autocorrelation (Groppe, Urbach &
Kutas, 2011; Maris & Oostenveld, 2007; Reingold & Sheridan, 2014).

4.1 Cluster permutation tests

Cluster permutation identifies temporal “clusters” in which two
experimental conditions differ (Barr, Jackson & Phillips, 2014).
In our dataset, these clusters would represent time windows in

which looks to the target and competitor differed significantly.
In a permutation test, condition labels (e.g., target/competitor)
are randomly reassigned multiple times in order to destructure
the experimental manipulation and generate a distribution of
test results consistent with the null hypothesis. The significance
of the test statistic from the original dataset is then based on its
relative position in the permutation-derived null distribution.
FWER is controlled by reducing the number of statistical compar-
isons to one. Autocorrelation is also controlled, because the tem-
poral structure of the data is preserved during permutation. Thus,
the effect of autocorrelation is constant across permutations and
the only factor affecting the variance of the permutation distribu-
tion is the reassignment of condition labels.

However, one disadvantage of cluster-based permutation is
that significant clusters do not indicate when an effect arose or
its temporal variability, but rather only that there was a window
in which an effect was significant (Maris & Oostenveld, 2007;
Sassenhagen & Draschkow, 2019). Since our research question

Fig. 1. (A) Sample visual display and auditory instruction (translation: ‘Click on the.MASC blue.MASC button.MASC’). Only the target object matched the gender and color
cues of the determiner and adjective. The other three objects matched the target only in color (bottle.FEM: color competitor), only in gender (balloon.MASC: gender
competitor), or neither (flower.FEM: distractor). (B) Percentage of fixations to the four objects in each speaker group. Lines show mean fixation percentages and
shading shows 95% bootstrapped confidence intervals. The onset of the target noun is displayed 200 ms shifted to the right.
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concerns the onset of predictive looks, below we demonstrate an
approach that can address this question while preserving the
advantages of non-parametric approaches.

4.2 Bootstrapping

The goal of bootstrapping is to estimate what the distribution of
statistical test results would be if we repeated our experiment

many times. For this, an existing dataset is resampled multiple
times to generate “new” datasets and a statistical test is applied
after each resample. Below we use a NON-PARAMETRIC bootstrap,
which does not make assumptions about the population distribu-
tion underlying the data, meaning that it can be used for non-
normally distributed data (Maris & Oostenveld, 2007;
Hesterberg, 2002). The bootstrapping technique has previously
been applied to reading eye-tracking and event-related potentials

Fig. 2. Estimated onset of predictive looks to the target vs. competitor using GLMM tests at each timepoint with either no correction for multiple comparisons, a
Bonferroni correction, or false discovery rate (FDR) control. Both corrections result in later, more conservative divergence point estimates relative to uncorrected
estimates.

Fig. 3. Tetrachoric correlations of target fixation prob-
abilities between each timebin and the first bin of the
series, plotted as a function of bin size. The “unbinned”
black line reflects the correlation between fixations
sampled every 20 ms. Error bars indicate standard
errors. A correlation of 1 at a 0-lag indicates the correl-
ation of a bin with itself. As the lag increases, autocor-
relation decreases. The plot demonstrates that most
correlations are not consistent with zero. Even large
bins do not completely eliminate autocorrelation
between bins and come at the expense of temporal
precision.
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(Schad, Risse, Slattery & Rayner, 2014; Wasserman & Bockenholt,
1989; Sheridan & Reingold, 2012; Reingold & Sheridan, 2014),
and its results have been shown to be comparable to those of per-
mutation tests (Rosenfeld & Donchin, 2015). A bootstrapping
approach for visual world data is presented in Seedorff, Oleson
and McMurray (2018), although it answers a different research
question from the one of interest here.

The steps in our approach are as follows. First, for each speaker
group, we extract data where either the target or competitor was
fixated. To identify a divergence point between fixations, we
apply an uncorrected statistical test at each timepoint aggregating

over items (code §4). Here we use a one-sample t-test on fixation
proportions because it is conceptually straightforward and con-
venient in terms of convergence and computational time.
T-tests are often used in non-parametric methods (e.g., Groppe
et al., 2011; Maris & Oostenveld, 2007; Efron & Tibshirani,
1986; Hesterberg, 2015; Reingold & Sheridan, 2014). For data
that do not include a large number of extreme values (e.g., clus-
tered close to 0% or 100%), a t-test reasonably approximates the
results of a logistic model, which would be a more appropriate
choice given the binary nature of our data. However, fitting mul-
tiple logistic models with the appropriate random effects structure

Fig. 4. (A) Bootstrap distributions of divergence points for each language group. The x-axis shows the distribution of divergence points based on 2000 bootstraps.
The y-axis shows the number of resamples where a given divergence point was observed. Points with error bars indicate the bootstrap mean and its 95% percentile
confidence interval, which reflect divergence points and their temporal uncertainty. Dotted vertical lines represent the divergence points in the original data. The
difference between the empirical and bootstrap means, or bias, is used as a diagnostic of the bootstrap’s ability to recover the mean of the population—which is
assumed to be represented by the mean of the original sample. (B) Divergence points and 95% confidence intervals superimposed on the fixation curves. German
L1 speakers show the earliest predictive onsets at 689 [620, 760] ms post-adjective. The L2 groups do not appear to predict the target object, as their mean diver-
gence point estimates are after the noun: L1 Spanish speakers 1010 [940, 1040] ms and L1 English speakers 970 [920, 1000] ms.
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comes at the expense of increased complexity and computation
time. For a comparison between different tests see Appendix S2
(Supplementary Materials).

To establish a divergence point, we take the first timepoint in a
run of at least 10 consecutive timepoints with significant t-values.
A run of 10 is used because we are interested in the beginning of
SUSTAINED looks to the target (in our case, at least 200 ms given the
50 Hz sampling rate). Researchers should choose their own
threshold depending on their research question and experimental
design.

Next, we use a non-parametric bootstrap to generate “new”
datasets by resampling the original dataset with replacement.
The resampling is stratified by participant, timepoint, and object
type (target/competitor), meaning that data are resampled within
these categories. A new divergence point is estimated after each
resample. With sufficient resampling (1000–2000 times; Efron
& Tibshirani, 1993) a distribution of divergence points is gener-
ated whose mean is taken as the overall divergence point
(Figure 4A). Variability around the mean of the bootstrap distri-
bution can be quantified with a confidence interval (CI), calcu-
lated via a method suited to the properties of the bootstrap
distribution and computation time (Carpenter & Bithell, 2000;
DiCiccio & Efron, 1996).

Bootstrapped means and CIs for each group are plotted in
Figure 4. To compare between groups, we can bootstrap the dif-
ference between their divergence points. The result is a distribu-
tion of differences (Figure 5; code §4.4). The mean difference
in divergence points between the L1 and L2 groups is 244 ms,
95% CI = [160, 340] ms. The CI does not contain zero and thus
supports a reliable difference. Between the Spanish and English
groups, the mean difference is 40 ms, 95% CI = [−40, 100] ms,
consistent with a slightly earlier divergence point in the English
group. However, the CI of the between-group difference contains
zero and thus fails to support a difference. If desired, p-values can
also be computed (see Appendix S4, Supplementary Materials).

The results show that L2 speakers are slower than native speak-
ers to start looking preferentially at the target, consistent with a pre-
dictive advantage in the native speaker group. Further, both L2
groups show mean divergence points after the appearance of the
noun, which is not consistent with a predictive use of gender.
The lack of evidence for an earlier onset in Spanish vs. English
speakers does not support the claim that having a gendered native
language enhances its predictive use in a foreign language. Instead,
it is consistent with a general delay due to L2 status. Note that

studies relying on time-window analyses would have reached a
similar conclusion by showing significant effects in earlier time
windows for L1 than L2 speakers (e.g., by stating that an effect is
significant in one group but absent in another). The critical
contribution of the bootstrapping method is that it precisely
quantifies the delay in the L2 speakers, while allowing a direct
between-group comparison of divergence points and estimating
their uncertainty.

4.3 Advantages and disadvantages of the bootstrapping
approach

Above we demonstrate that resampling approaches can control
FWER and autocorrelation in time series analyses. The main
advantage of our bootstrapping approach is that it quantifies
divergence points and their temporal uncertainty, enabling
statistical comparisons between participant groups and/or
experimental conditions. However, one disadvantage of the
approach is that it does not estimate the duration of an effect
or the presence of multiple divergences, although it could be
extended to do so. Second, our approach – and onset detection
approaches in general – may not be appropriate for analyses
where the research question concerns WHETHER an effect is present
(Seedorff et al., 2018). Our approach assumes that an effect is
present and that the task is simply to detect its onset.

Furthermore, resampling approaches like bootstrapping can
describe a dataset but are not generative models. Generative
models provide explicit assumptions to connect data with
cognitive processes of interest, allowing researchers to examine
the parameters that best explain the data and to compare the good-
ness of fit of different models (Vandekerckhove, Matzke &
Wagenmakers, 2015). Two generative approaches that allow diver-
gence point estimation include generalized additive mixed-effects
models (GAMMs; van Rij, 2015; van Rij, Vaci, Wurm & Feldman,
2020; Miwa & Baayen, 2020) and Bootstrapped Differences of
Timeseries (BDOTS; Seedorff et al., 2018). GAMMs are regression
models that estimate non-linear patterns from timecourse data
(Appendix S3, Supplementary Materials). BDOTS fits 4-parameter
logistic and double Gaussian functions to individual fixation
curves, which are then bootstrapped to estimate the standard
error of mean fixations at each time point in the series. The onset
of a divergence in fixations between conditions is then established
via t-tests and a Bonferroni correction modified to account for
autocorrelation.

Fig. 5. Bootstrap distributions of the difference in divergence points between L1-L2 speakers (left) and L1 Spanish-English speakers (right). Points and error bars
indicate bootstrap means and 95% percentile confidence intervals. Dotted vertical lines indicate mean divergence point differences in the original data. L1-L2 com-
parison: divergence point difference = 244 ms, 95% CI = [160, 340] ms. L1 Spanish-English comparison: divergence point difference = 40 ms, 95% CI = [−40, 100] ms.
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The downside of models such as GAMMs and BDOTS is that
they do not provide a measure of variability around their
divergence point estimates, which is needed for statistical com-
parison (Table 1). Furthermore, while GAMMs can estimate a
within-condition divergence point, BDOTS can only estimate a
divergence point between conditions.

5. Further applications to bilingualism

Onset estimates can enrich L2 processing theories in several ways.
Consider, for example, the claim made by capacity-based
accounts that processing is slower in L2 than L1 due to limits
on lexical access speed and working-memory capacity
(Dekydtspotter & Renaud, 2014; Hopp, 2013; McDonald, 2006).
These two constructs can already be measured quantitatively
using word recognition and working-memory span tasks, but it
is unclear how well they predict processing speed during sentence
comprehension. Having precise estimates of prediction speed
would allow us to answer this question and provide a more precise
evaluation of capacity-based accounts.

Another useful application concerns L2 accounts that posit
that non-native and native speakers weigh different kinds of infor-
mation differently in processing (Clahsen & Felser, 2018;
Cunnings, 2017). Some of this research has found that L2 speak-
ers are often slower (or less sensitive) than native speakers to syn-
tactic information, but more sensitive to discourse-level
information like extra-sentential context and semantic plausibility
(Felser & Cunnings, 2012; Pan, Schimke & Felser, 2015; Roberts &
Felser, 2011). Having a method to formally establish when differ-
ent information sources affect L2 processing would provide key
data to test these claims.

Finally, our bootstrapping method can be adapted to quantify
variability between speakers. For example, our failure to find
Spanish vs. English group differences may have resulted from
our sample demographic properties (e.g., potential differences
in L2 age of acquisition or proficiency). While data from individ-
ual participants is noisier than averaged data, the analysis pre-
sented here could be performed on a by-participant basis given
a sufficient number of trials (Reingold & Sheridan, 2014), allow-
ing us to examine correlation between individual divergence
points and factors like proficiency and L2 exposure. Together
with the estimation of by-group timing effects, we believe that
quantifying individual variability will prove crucial to improve
models of bilingual processing.

Supplementary Material. For supplementary material accompanying this
paper, visit https://doi.org/10.1017/S1366728920000607
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S4. Null hypothesis tests of the bootstrapped estimates
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