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Abstract. Thispaper is concernedwith the arithmetic ofcurves ofthe form v p � us�1ÿ u�, where
p is a prime with pX 5 and s is an integer such that 1W sW pÿ 2.The Jacobians of these curves
admit complex multiplicationbyaprimitive p-th rootofunity z. We¢nd explicit rational functions
on these curves whose divisors are p-multiples of divisors representing �1ÿ z�2- and
�1ÿ z�3-division points on the corresponding Jacobians. This also gives an effective version
of a theorem of Greenberg.

Mathematics Subject Classi¢cations (2000): 11G30, 14G05.

Key words: Fermat curves, rational functions, Greenberg's theorem.

1 Introduction

LetQ be the ¢eld of rational numbers and letQ be a ¢xed algebraic closure ofQ. Let
p be a ¢xed prime, such that pX 5, and let E be a ¢xed primitive 2pth root of unity in
Q. Also de¢ne z by z � E2. LetK be the ¢eldQ�z�. For s � 1, 2; . . . ; pÿ 2, let Fp;s be a
smooth projective model of the af¢ne curve (de¢ned over Q)

v p � us�1ÿ u�:
Each Fp;s is a curve of genus � pÿ 1�=2 and its Jacobian Jp;s admits complex multi-
plication induced by the automorphism z of Fp;s de¢ned by �u; v� 7! �u; zv�. We de¢ne
the endomorphism p of Jp;s by p � 1ÿ z. It is a well-known theorem of Greenberg [6]
that the kernel of the endomorphism p3 of Jp;s is K-rational. In fact, combining
Greenberg's result with the work of Coleman [1], Gross and Rohrlich [7] and
Kurihara [8], one has the following theorem:

THEOREM 1. Let p be a prime such that pX 5. For s � 1, 2; . . . ; pÿ 2, we
have Jp;s�p1��K� � Jp;s�p3�. Moreover, if l is a prime such that l 6� p, then
Jp;s�l1��K� � f0g, unless l � 2 and �p; s� 2 f�7; 2�; �7; 4�g.

It should be noted that Theorem 1 is not effective, i.e. there is no systematic way
known to produce explicit generators for the groups Jp;s�p2� or Jp;s�K�tors in general.
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Such generators are only known for the `isomorphic' cases �p; s� � �7; 2� and
�p; s� � �7; 4� (see [10]) and for the case p � 5 (see [2], [4] and [12]). Finding a
non-trivial K-rational point on the curve which induces a torsion point on the
Jacobian was crucial for settling the speci¢c cases mentioned above. On the other
hand, in view of the results of [3], such a point cannot exist for pX 11. It would
be useful to have explicit information on the generators of Jp;s�p2� or Jp;s�K�tors
in the general case. For example, in a recent paper [5], Grant used the 5-torsion
on J5;1 to construct a set of Abelian units which can be used to verify Rubin's
conjecture in a case when the L-series has a second order zero at s � 0. Also, in
[9], McCallum gave a general formula for the Cassels^Tate pairing on the p-torsion
part of the Shafarevich^Tate group of Jp;s over K . He noted that, for the formula
to be applied directly, one needs to ¢nd an explicit rational function on Fp;s whose
divisor equals p times a divisor representing a p2-torsion point on Jp;s. In the absence
of such a function, McCallum used a p-adic approximation technique instead.

In this Letter, we construct such an explicit rational function on Fp;s. We also
obtain a similar result for the case of p3-torsion points on Jp;s. It should be noted
that McCallum has a method (unpublished) that, given p and s, will construct such
rational functions. Our approach is different and produces an explicit formula
for all p and s. This also gives an effective version of Theorem 1, i.e. we get an
algorithm that, given p and s, will, in principle, explicitly compute the associated
divisors. We have used MAPLE to run this algorithm for the case of p2-torsion
points; this is discussed in more detail in the last section.

Our method is based on the fact that Fp;s admits the Fermat curve Fp given by
Xp � Yp � Zp � 0 as an unrami¢ed cover, whose Galois group is generated by
the automorphism s of Fp, where s�X ;Y ;Z� � �zX ; zÿsY ;Z�. We will use the
Jacobian Jp of Fp to perform our calculations, by means of results of [11] and [13].
Denote by fp;s : Fp! Fp;s the associated covering map. Depending on the context,
we will use the same symbol fp;s to denote the induced maps Div�Fp� ! Div�Fp;s�
and Jp! Jp;s. Also, f �p;s will be used to denote the dual maps
Div�Fp;s� ! Div�Fp� or Jp;s! Jp or the induced embedding of the function ¢eld
of Fp;s in the function ¢eld of Fp.

Consider the rational functions x � X=Z and y � Y=Z on Fp. De¢ne

c � �ÿ1�pÿ12 pÿ
p�1
2

Ypÿ1
j�1
�zj ÿ 1�j; f �x; y� � c xpÿ1 �

Xpÿ2
k�0

xpÿ2ÿk
Yk�1
l�1
�Eÿ zly�

 ! !
:

Now consider the following functions on Fp:

h1�x; y� � Eÿ x
y

; h2�x; y� � �xy�
s�1ÿp�

2
Ysÿ1
j�0

f �x; zjy�;
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gm�x; y� � 1�
Xpÿ2
k�0

Yk
l�0

hm�zÿlx; zlsy�;

for m � 1, 2. The rational functions gm�x; y� are not identically 0 on Fp (it can be
shown that g2�ÿz; 0� � g1�Ez; 0� � 1). Let Norm denote the norm map from the
function ¢eld of Fp to that of Fp;s. Our main result is the following:

THEOREM 2. Let p and s be as in Theorem 1. For m � 1, 2, there exists a divisor Em

on Fp;s such that pEm � div�Norm�gm�x; y��� and the divisor class of Em generates
the Z�p�-module Jp;s�pm�1�.

Remark. Making use of the universal covering space of Cÿ f0; 1g, Rohrlich
showed in [11] that the function

Qpÿ1
j�1 ��Ezj ÿ x��Ezj ÿ y��j has a pth root in the func-

tion ¢eld of Fp. The next proposition shows that f �x; y� is such a pth root.

2. Auxiliary Results

PROPOSITION 1.

f �x; y�p �
Ypÿ1
j�1
��Ezj ÿ x��Ezj ÿ y�� j:

Proof. First we show that the polynomial f �x; y� is symmetric in x, y. Since

f �0; y� � c
Ypÿ1
i�1
�Eÿ ziy� � c

Xpÿ1
i�0

Ei y pÿ1ÿi � f �y; 0�;

the monomials yr and xr appear with the same coef¢cient in f �x; y�, for each
r 2 f1; � � � ; pÿ 1g. Also, for 1W sW rW pÿ 2, the coef¢cient of xpÿ1ÿr ys in
f �x; y� equals

�ÿ1�s c Erÿs
X

1W i1<...<is W r

zi1 . . . zis :

We claim that we have the following identities:X
1W i1<...<is W r

zi1 . . . zis � z
s�s�1�

2
Yr

j�r�1ÿs
�zj ÿ 1�

Ys
j�1
�zj ÿ 1�ÿ1;

for 1W sW rW pÿ 2. The claim is clearly true when s � 1 or r � s. Suppose it is true
for sW l or s � l � 1 and r � m. Using the recursive formulaX

1W i1<...<il�1 Wm�1
zi1 . . . zil�1 � zm�1

X
1W i1<...<il Wm

zi1 . . . zil �
X

1W i1<...<il�1 Wm

zi1 . . . zil�1
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and induction one sees that the claim is true for s � l � 1 and r � m� 1. The
symmetry of f �x; y� in x, y now follows from the equality

z
s�s�1�

2
Yr

j�r�1ÿs
�zj ÿ 1� � �ÿ1�s zs�r�1�

Ypÿr�sÿ1

j�pÿr
�zj ÿ 1�:

Now we can prove the equality in Proposition 1. First note that the two sides agree
on �0; E�. This follows from the de¢nition of the constant c and the relations

c � �ÿ1�pÿ12 c; cc � pÿ1; �D�
where c is the complex conjugate of c.

Now consider the points at in¢nity on Fp:

aj � �0; Ezj; 1�; bj � �Ezj; 0; 1�; cj � �Ezj; 1; 0�;
for 0W jW pÿ 1. By Rohrlich's results in [11], it remains to show that

div� f �x; y�� �
Xpÿ1
j�0

j �aj � bj� ÿ �pÿ 1�
Xpÿ1
j�0

cj:

Looking at each summand in the de¢nition of f �x; y� and using [11], it follows that
the order of f �x; y� at aj equals j, for all j. By the symmetry of f �x; y� in x, y,
we get that the order of f �x; y� at bj also equals j, for all j. Also by [11], the only
possible poles of f �x; y� are the points cj, each of order at most pÿ 1. So the polar
part of div�f �x; y�� has degree at most p�pÿ 1�. On the other hand, by what has
been said above, the degree of the zero part of div�f �x; y�� is at least p�pÿ 1�. This
completes the proof of Proposition 1.

LEMMA 1.

Ypÿ1
l�0

h1�zlx; zÿlsy� � 1 �
Ypÿ1
l�0

h2�zlx; zÿlsy�:

Proof. The ¢rst assertion is trivial. For the second assertion, note that, by
Proposition 1,

Ypÿ1
l�0

f �zlx; zÿlsy�p �
Ypÿ1
j�1

Ypÿ1
l�0
��Ezj ÿ zlx��Ezj ÿ zÿlsy��j �

Ypÿ1
j�1
�xy�pj � �xy�p

2�pÿ1�
2 :

Therefore, there exists an integer l such that

Ypÿ1
l�0

f �zlx; zÿlsy�
�xy�pÿ12

� zl:
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Now let f�x; y� � �xy��1ÿp�=2f �x; y�. Writing f�x; y� in terms of the rational functions
X=Y and Z=Y , it is easy to show that, for 0W lW pÿ 1,

f�cl�2 � zÿl�l�1� c2
Xpÿ1
j�0

zj
2

 !2

� zÿl�l�1�;

where the last equality follows from the classical theory of Gauss sums together with
the relations �D� displayed in the proof of Proposition 1. Therefore,

z2l �
Ypÿ1
l�0

f�cl�2 � 1;

so l is divisible by p, and this implies the second assertion of Lemma 1.

3. Proof of Theorem 2

Consider the following divisors of degree 0 on Fp:

C1 �
Xpÿ1
j�0

jbj ÿ pÿ 1
2

Xpÿ1
j�0

bj;

C2 �
Xpÿ1
j�0

j�j � 1�
2

aj ÿ s
Xpÿ1
j�0

j�j � 1�
2

bj � s�pÿ 1�
2

Xpÿ1
j�0

jbj ÿ p� 1
2

Xpÿ1
j�0

jaj �

� p2 ÿ 1
12

Xpÿ1
j�0

aj ÿ s�pÿ 1��pÿ 5�
12

Xpÿ1
j�0

bj:

Observe that fp;s�Ci� � 0, for i � 1, 2. By parts (ii) and (iv) of Theorem 2 in [13], we
get that

f �p;s�Jp;s�p3�� � hC1;C2i; f �p;s�Jp;s�p2�� � hC1i: �E�

Note that, although the latter theorem was stated only for pX 11 in [13], its proof
shows that it is still valid for p � 5; moreover, by substituting Jp;s�K�tors by
Jp;s�p3� in the same proof, one sees that the equalities �E� also hold for p � 7.

LEMMA 2. For m � 1, 2, the divisors Dm � Cm � div�gm�x; y�� satisfy the relation
s�Dm� � Dm.
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Proof. Note that s�aj� � ajÿs and s�bj� � bj�1. A tedious calculation (using results
of [11]) shows that

s�C1� ÿ C1 � div�h1�x; y��; s�C2� ÿ C2 � div�h2�x; y��:
Now, as in the proof of Hilbert's Theorem 90, Lemma 1 gives

hm�x; y� � gm�x; y�
gm�zÿ1x; zsy�

;

for m � 1, 2. Since div�gm�zÿ1x; zsy�� � s�div�gm�x; y���, Lemma 2 follows.

Therefore, D1 and D2 are invariant under the group of automorphisms of Fp

generated by s. Since Fp;s is the quotient of Fp by the latter group, there exist divisors
Em of degree 0 on Fp;s such that Dm � f �p;s�Em�, for m � 1, 2. Therefore,
f �p;s��Em�� � �Dm� � �Cm�. By the proof of Theorem 2 in [13], we have that
Ker�f �p;s� � Jp;s�p�. Therefore, by the displayed equalities �E�, we see that �Em�
generates theZ�p�-module Jp;s�pm�1�, form � 1, 2. Moreover, by standard properties
of coverings,

pEm � fp;s�f �p;s�Em�� � fp;s�Dm� � fp;s�Cm� � fp;s�div�gm�x; y���

� fp;s�div�gm�x; y��� � div�Norm�gm�x; y���;
where the last equality follows from the fact that for a rational function g on Fp, the
relation fp;s�div�s�g��� � fp;s�div�g�� implies that fp;s�div�g�� � div�Norm�g��. This
completes the proof of Theorem 2.

4. The Divisor E1

In this Section, we discuss the problem of explicitly writing down the divisor E1 of
Theorem 2. By the previous Section, we only need to compute div�g1�x; y��. This
will explicitly determine D1 and hence also E1 by the formula D1 � f �p;s�E1�, where
fp;s��x; y�� � �u; v� � �ÿxp; �ÿ1�sÿ1xsy�.

Clearly, any pole of g1�x; y� has to be a pole of h1�zÿlx; zlsy�, for some l such that
0W lW pÿ 2. Therefore, by [11], the only possible poles of g1�x; y� are the points
bj, for 0W jW pÿ 1 and

div
Yk
l�0

h1�zÿlx; zlsy�
 !

� �pÿ kÿ 1�
Xk
j�0

bj ÿ �k� 1�
Xpÿ1
j�k�1

bj;

for 0W kW pÿ 2. Hence, the polar part of div�g1�x; y�� equals
Ppÿ1

j�1 j bj: Therefore,
we only need to compute the zeros of g1�x; y�. Using the change of variables
a � E=y and b � ÿx=y, we need to solve the following system of two polynomial
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equations in two unknowns a and b:

ap � bp � 1; 1�
Xpÿ2
k�0

Yk
l�0
�zÿls a� zÿl�s�1� b� � 0:

We have used the Gro« bner basis package in MAPLE to solve the above system for
speci¢c values of p and s. We list the output of the calculations in terms of the
coordinates �u; v� of points in the support of E1. The formulas u � ÿbp=ap,
v � ÿEs�1bs=as�1 send �a; b� to �u; v�.

p � 5; s � 1

�v� z��v� z2� � 0; u � �z2 ÿ 1� vÿ �z2 � z�;

E1 �
X
�u; v� ÿ 2 �1; 0�:

Since the hyperelliptic involution �u; v� 7! �1ÿ u; v� of F5;1 acts as multiplication by
ÿ1 on J5;1 , we get that the divisor class ��ÿz2 ÿ z3;ÿz� ÿ �1; 0�� generates
J5;1�p3� as a Z�p�-module. This is the same divisor as in [2], [4] and [12].

p � 7; s � 1

v3 � �ÿz5 � z2 � z� v2 � �z5 � z4 � z3 � z2 � z� vÿ z � 0;

u � �z4 � 2z3 � 2z2 � 2z� v2 � �z4 � z3 ÿ zÿ 1� vÿ �z3 � z2 � z�;

E1 �
X
�u; v� ÿ 3 �1; 0�:

p � 7; s � 2

v3 � �1ÿ z5 ÿ 2z4 ÿ z3 � z2� v2 � �1ÿ z4 ÿ z3� v� 1 � 0;

u � �z5 ÿ z� v2 � �z5 ÿ z� v� �z5 � z3 � 1�;

E1 �
X
�u; v� ÿ 3 �1; 0�:

Prapavessi [10] showed that every point in J7;2�K� can be represented by a divisor of
degree 0 supported on the Weierstrass points on F7;2 (see also [1] where the
Weierstrass points on F7;2 are computed). The points �u; v� that we found above
are not Weierstrass points.
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p � 11; s � 1

v5 ÿ �z9 � z8 � 2z7 � z6 � z5 ÿ z2 ÿ z� v4 � �z6 � 2z5 � 2z4 � 3z3 � 2z2 � 2z� 1� v3

��z9 � z8 � 2z7 � 2z6 � 2z5 � 2z4 � 2z3 � 2z2 � z� 1� v2 ÿ �z� 1� vÿ z2 � 0;

u � ÿ�z9 � 2z8 � z7 � z6 ÿ z5 ÿ 3z4 ÿ 3z3 ÿ 4z2 ÿ 3zÿ 2� v4 �

��z8 � 3z7 � 5z6 � 7z5 � 8z4 � 8z3 � 6z2 � 4z� 2� v3 �

��z9 � 2z8 � 3z7 � 4z6 � 5z5 � 4z4 � 3z3 � z2 ÿ 1� v2 �

��z8 � z7 � z6 � z5 ÿ z3 ÿ z2 ÿ zÿ 1� vÿ �z5 � z4 � z3 � z2 � z�;

E1 �
X
�u; v� ÿ 5 �1; 0�:

It would be interesting to recognize a precise pattern in the output of our calcu-
lations for the above cases; we have not been able to do so.
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