Explicit Rational Functions on Fermat Curves and a Theorem of Greenberg

PAVLOS TZERMIAS

Department of Mathematics, P.O. Box 210089, 617 N. Santa Rita, The University of Arizona, Tucson, AZ 85721-0089, U.S.A. e-mail: tzermias@math.arizona.edu
(Received: 1 March 1999; accepted in final form: 25 August 1999)

Abstract

This paper is concerned with the arithmetic of curves of the form $v^{p}=u^{s}(1-u)$, where p is a prime with $p \geqslant 5$ and s is an integer such that $1 \leqslant s \leqslant p-2$. The Jacobians of these curves admit complex multiplication by a primitive p-th root of unity ζ. We find explicit rational functions on these curves whose divisors are p-multiples of divisors representing $(1-\zeta)^{2}$ - and $(1-\zeta)^{3}$-division points on the corresponding Jacobians. This also gives an effective version of a theorem of Greenberg.

Mathematics Subject Classifications (2000): 11G30, 14G05.
Key words: Fermat curves, rational functions, Greenberg's theorem.

1 Introduction

Let \mathbb{Q} be the field of rational numbers and let $\overline{\mathbb{Q}}$ be a fixed algebraic closure of \mathbb{Q}. Let p be a fixed prime, such that $p \geqslant 5$, and let ϵ be a fixed primitive $2 p$ th root of unity in $\overline{\mathbb{Q}}$. Also define ζ by $\zeta=\epsilon^{2}$. Let K be the field $\mathbb{Q}(\zeta)$. For $s=1,2, \ldots, p-2$, let $F_{p, s}$ be a smooth projective model of the affine curve (defined over \mathbb{Q})

$$
v^{p}=u^{s}(1-u) .
$$

Each $F_{p, s}$ is a curve of genus $(p-1) / 2$ and its Jacobian $J_{p, s}$ admits complex multiplication induced by the automorphism ζ of $F_{p, s}$ defined by $(u, v) \mapsto(u, \zeta v)$. We define the endomorphism π of $J_{p, s}$ by $\pi=1-\zeta$. It is a well-known theorem of Greenberg [6] that the kernel of the endomorphism π^{3} of $J_{p, s}$ is K-rational. In fact, combining Greenberg's result with the work of Coleman [1], Gross and Rohrlich [7] and Kurihara [8], one has the following theorem:

THEOREM 1. Let p be a prime such that $p \geqslant 5$. For $s=1,2, \ldots, p-2$, we have $J_{p, s}\left[p^{\infty}\right](K)=J_{p, s}\left[\pi^{3}\right]$. Moreover, if l is a prime such that $l \neq p$, then $J_{p, s}\left[l^{\infty}\right](K)=\{0\}$, unless $l=2$ and $(p, s) \in\{(7,2),(7,4)\}$.

It should be noted that Theorem 1 is not effective, i.e. there is no systematic way known to produce explicit generators for the groups $J_{p, s}\left[\pi^{2}\right]$ or $J_{p, s}(K)_{\text {tors }}$ in general.

Such generators are only known for the 'isomorphic' cases $(p, s)=(7,2)$ and $(p, s)=(7,4)$ (see [10]) and for the case $p=5$ (see [2], [4] and [12]). Finding a non-trivial K-rational point on the curve which induces a torsion point on the Jacobian was crucial for settling the specific cases mentioned above. On the other hand, in view of the results of [3], such a point cannot exist for $p \geqslant 11$. It would be useful to have explicit information on the generators of $J_{p, s}\left[\pi^{2}\right]$ or $J_{p, s}(K)_{t o r s}$ in the general case. For example, in a recent paper [5], Grant used the 5-torsion on $J_{5,1}$ to construct a set of Abelian units which can be used to verify Rubin's conjecture in a case when the L-series has a second order zero at $s=0$. Also, in [9], McCallum gave a general formula for the Cassels-Tate pairing on the π-torsion part of the Shafarevich-Tate group of $J_{p, s}$ over K. He noted that, for the formula to be applied directly, one needs to find an explicit rational function on $F_{p, s}$ whose divisor equals p times a divisor representing a π^{2}-torsion point on $J_{p, s}$. In the absence of such a function, McCallum used a p-adic approximation technique instead.

In this Letter, we construct such an explicit rational function on $F_{p, s}$. We also obtain a similar result for the case of π^{3}-torsion points on $J_{p, s}$. It should be noted that McCallum has a method (unpublished) that, given p and s, will construct such rational functions. Our approach is different and produces an explicit formula for all p and s. This also gives an effective version of Theorem 1, i.e. we get an algorithm that, given p and s, will, in principle, explicitly compute the associated divisors. We have used MAPLE to run this algorithm for the case of π^{2}-torsion points; this is discussed in more detail in the last section.
Our method is based on the fact that $F_{p, s}$ admits the Fermat curve F_{p} given by $X^{p}+Y^{p}+Z^{p}=0$ as an unramified cover, whose Galois group is generated by the automorphism σ of F_{p}, where $\sigma(X, Y, Z)=\left(\zeta X, \zeta^{-s} Y, Z\right)$. We will use the Jacobian J_{p} of F_{p} to perform our calculations, by means of results of [11] and [13]. Denote by $f_{p, s}: F_{p} \rightarrow F_{p, s}$ the associated covering map. Depending on the context, we will use the same symbol $f_{p, s}$ to denote the induced maps $\operatorname{Div}\left(F_{p}\right) \rightarrow \operatorname{Div}\left(F_{p, s}\right)$ and $J_{p} \rightarrow J_{p, s}$. Also, $f_{p, s}^{*}$ will be used to denote the dual maps $\operatorname{Div}\left(F_{p, s}\right) \rightarrow \operatorname{Div}\left(F_{p}\right)$ or $J_{p, s} \rightarrow J_{p}$ or the induced embedding of the function field of $F_{p, s}$ in the function field of F_{p}.

Consider the rational functions $x=X / Z$ and $y=Y / Z$ on F_{p}. Define

$$
c=(-1)^{\frac{p-1}{2}} p^{-\frac{p+1}{2}} \prod_{j=1}^{p-1}\left(\zeta^{j}-1\right)^{j}, \quad f(x, y)=c\left(x^{p-1}+\sum_{k=0}^{p-2}\left(x^{p-2-k} \prod_{l=1}^{k+1}\left(\epsilon-\zeta^{l} y\right)\right)\right) .
$$

Now consider the following functions on F_{p} :

$$
h_{1}(x, y)=\frac{\epsilon-x}{y}, \quad h_{2}(x, y)=(x y)^{\frac{s(1-p)}{2}} \prod_{j=0}^{s-1} f\left(x, \zeta^{y} y\right),
$$

$$
g_{m}(x, y)=1+\sum_{k=0}^{p-2} \prod_{l=0}^{k} h_{m}\left(\zeta^{-l} x, \zeta^{l s} y\right)
$$

for $m=1,2$. The rational functions $g_{m}(x, y)$ are not identically 0 on F_{p} (it can be shown that $g_{2}(-\zeta, 0)=g_{1}(\epsilon \zeta, 0)=1$). Let Norm denote the norm map from the function field of F_{p} to that of $F_{p, s}$. Our main result is the following:

THEOREM 2. Let p and s be as in Theorem 1. For $m=1,2$, there exists a divisor E_{m} on $F_{p, s}$ such that $p E_{m}=\operatorname{div}\left(\operatorname{Norm}\left(g_{m}(x, y)\right)\right)$ and the divisor class of E_{m} generates the $\mathbb{Z}[\pi]$-module $J_{p, s}\left[\pi^{m+1}\right]$.

Remark. Making use of the universal covering space of $\mathbb{C}-\{0,1\}$, Rohrlich showed in [11] that the function $\prod_{j=1}^{p-1}\left(\left(\epsilon_{\zeta^{j}}-x\right)\left(\epsilon_{\zeta^{j}}-y\right)\right)^{j}$ has a p th root in the function field of F_{p}. The next proposition shows that $f(x, y)$ is such a p th root.

2. Auxiliary Results

PROPOSITION 1.

$$
f(x, y)^{p}=\prod_{j=1}^{p-1}\left(\left(\epsilon \epsilon^{\varphi^{j}}-x\right)\left(\epsilon \zeta^{j}-y\right)\right)^{j} .
$$

Proof. First we show that the polynomial $f(x, y)$ is symmetric in x, y. Since

$$
f(0, y)=c \prod_{i=1}^{p-1}\left(\epsilon-\zeta^{i} y\right)=c \sum_{i=0}^{p-1} \epsilon^{i} y^{p-1-i}=f(y, 0)
$$

the monomials y^{r} and x^{r} appear with the same coefficient in $f(x, y)$, for each $r \in\{1, \cdots, p-1\}$. Also, for $1 \leqslant s \leqslant r \leqslant p-2$, the coefficient of $x^{p-1-r} y^{s}$ in $f(x, y)$ equals

$$
(-1)^{s} c \epsilon^{r-s} \sum_{1 \leqslant i_{1}<\ldots<i_{s} \leqslant r} \zeta^{i_{1}} \ldots \zeta^{i_{s}} .
$$

We claim that we have the following identities:

$$
\sum_{1 \leqslant i_{1}<\ldots<i_{s} \leqslant r} \zeta^{i_{1}} \ldots \zeta^{i_{s}}=\zeta^{\frac{s(s+1)}{2}} \prod_{j=r+1-s}^{r}\left(\zeta^{j}-1\right) \prod_{j=1}^{s}\left(\zeta^{j}-1\right)^{-1},
$$

for $1 \leqslant s \leqslant r \leqslant p-2$. The claim is clearly true when $s=1$ or $r=s$. Suppose it is true for $s \leqslant l$ or $s=l+1$ and $r=m$. Using the recursive formula

$$
\sum_{1 \leqslant i_{1}<\ldots<i_{l+1} \leqslant m+1} \zeta^{i_{1}} \ldots \zeta^{i_{l+1}}=\zeta^{m+1} \sum_{1 \leqslant i_{1}<\ldots<i_{l} \leqslant m} \zeta^{i_{1}} \ldots \zeta^{i_{l}}+\sum_{1 \leqslant i_{1}<\ldots<i_{l+1} \leqslant m} \zeta^{i_{1}} \ldots \zeta^{i_{l+1}}
$$

and induction one sees that the claim is true for $s=l+1$ and $r=m+1$. The symmetry of $f(x, y)$ in x, y now follows from the equality

$$
\zeta^{\frac{s(s+1)}{2}} \prod_{j=r+1-s}^{r}\left(\zeta^{j}-1\right)=(-1)^{s} \zeta^{s(r+1)} \prod_{j=p-r}^{p-r+s-1}\left(\zeta^{j}-1\right) .
$$

Now we can prove the equality in Proposition 1. First note that the two sides agree on $(0, \epsilon)$. This follows from the definition of the constant c and the relations

$$
\bar{c}=(-1)^{\frac{p-1}{2}} c, \quad c \bar{c}=p^{-1},
$$

where \bar{c} is the complex conjugate of c.
Now consider the points at infinity on F_{p} :

$$
a_{j}=\left(0, \epsilon^{\zeta^{j}}, 1\right), \quad b_{j}=\left(\epsilon^{\varsigma^{j}}, 0,1\right), \quad c_{j}=\left(\epsilon \zeta^{j}, 1,0\right),
$$

for $0 \leqslant j \leqslant p-1$. By Rohrlich's results in [11], it remains to show that

$$
\operatorname{div}(f(x, y))=\sum_{j=0}^{p-1} j\left(a_{j}+b_{j}\right)-(p-1) \sum_{j=0}^{p-1} c_{j} .
$$

Looking at each summand in the definition of $f(x, y)$ and using [11], it follows that the order of $f(x, y)$ at a_{j} equals j, for all j. By the symmetry of $f(x, y)$ in x, y, we get that the order of $f(x, y)$ at b_{j} also equals j, for all j. Also by [11], the only possible poles of $f(x, y)$ are the points c_{j}, each of order at most $p-1$. So the polar part of $\operatorname{div}(f(x, y))$ has degree at most $p(p-1)$. On the other hand, by what has been said above, the degree of the zero part of $\operatorname{div}(f(x, y))$ is at least $p(p-1)$. This completes the proof of Proposition 1.

LEMMA 1.

$$
\prod_{l=0}^{p-1} h_{1}\left(\zeta^{l} x, \zeta^{-l s} y\right)=1=\prod_{l=0}^{p-1} h_{2}\left(\zeta^{l} x, \zeta^{-l s} y\right)
$$

Proof. The first assertion is trivial. For the second assertion, note that, by Proposition 1,

$$
\prod_{l=0}^{p-1} f\left(\zeta^{l} x, \zeta^{-l s} y\right)^{p}=\prod_{j=1}^{p-1} \prod_{l=0}^{p-1}\left(\left(\epsilon^{\zeta j}-\zeta^{l} x\right)\left(\epsilon \zeta^{j}-\zeta^{-l s} y\right)\right)^{j}=\prod_{j=1}^{p-1}(x y)^{p j}=(x y)^{\frac{p^{2}(p-1)}{2}}
$$

Therefore, there exists an integer λ such that

$$
\prod_{l=0}^{p-1} \frac{f\left(\zeta^{l} x, \zeta^{-l s} y\right)}{(x y)^{\frac{p-1}{2}}}=\zeta^{\lambda}
$$

Now let $\phi(x, y)=(x y)^{(1-p) / 2} f(x, y)$. Writing $\phi(x, y)$ in terms of the rational functions X / Y and Z / Y, it is easy to show that, for $0 \leqslant l \leqslant p-1$,

$$
\phi\left(c_{l}\right)^{2}=\zeta^{-l(l+1)} c^{2}\left(\sum_{j=0}^{p-1} \zeta^{j^{2}}\right)^{2}=\zeta^{-l(l+1)},
$$

where the last equality follows from the classical theory of Gauss sums together with the relations (D) displayed in the proof of Proposition 1. Therefore,

$$
\zeta^{2 \lambda}=\prod_{l=0}^{p-1} \phi\left(c_{l}\right)^{2}=1
$$

so λ is divisible by p, and this implies the second assertion of Lemma 1.

3. Proof of Theorem 2

Consider the following divisors of degree 0 on F_{p} :

$$
\begin{aligned}
C_{1}= & \sum_{j=0}^{p-1} j b_{j}-\frac{p-1}{2} \sum_{j=0}^{p-1} b_{j}, \\
C_{2}= & \sum_{j=0}^{p-1} \frac{j(j+1)}{2} a_{j}-s \sum_{j=0}^{p-1} \frac{j(j+1)}{2} b_{j}+\frac{s(p-1)}{2} \sum_{j=0}^{p-1} j b_{j}-\frac{p+1}{2} \sum_{j=0}^{p-1} j a_{j}+ \\
& +\frac{p^{2}-1}{12} \sum_{j=0}^{p-1} a_{j}-\frac{s(p-1)(p-5)}{12} \sum_{j=0}^{p-1} b_{j} .
\end{aligned}
$$

Observe that $f_{p, s}\left(C_{i}\right)=0$, for $i=1,2$. By parts (ii) and (iv) of Theorem 2 in [13], we get that

$$
\begin{equation*}
f_{p, s}^{*}\left(J_{p, s}\left[\pi^{3}\right]\right)=\left\langle C_{1}, C_{2}\right\rangle, \quad f_{p, s}^{*}\left(J_{p, s}\left[\pi^{2}\right]\right)=\left\langle C_{1}\right\rangle \tag{E}
\end{equation*}
$$

Note that, although the latter theorem was stated only for $p \geqslant 11$ in [13], its proof shows that it is still valid for $p=5$; moreover, by substituting $J_{p, s}(K)_{\text {tors }}$ by $J_{p, s}\left[\pi^{3}\right]$ in the same proof, one sees that the equalities (E) also hold for $p=7$.

LEMMA 2. For $m=1,2$, the divisors $D_{m}=C_{m}+\operatorname{div}\left(g_{m}(x, y)\right)$ satisfy the relation $\sigma\left(D_{m}\right)=D_{m}$.

Proof. Note that $\sigma\left(a_{j}\right)=a_{j-s}$ and $\sigma\left(b_{j}\right)=b_{j+1}$. A tedious calculation (using results of [11]) shows that

$$
\sigma\left(C_{1}\right)-C_{1}=\operatorname{div}\left(h_{1}(x, y)\right), \quad \sigma\left(C_{2}\right)-C_{2}=\operatorname{div}\left(h_{2}(x, y)\right)
$$

Now, as in the proof of Hilbert's Theorem 90, Lemma 1 gives

$$
h_{m}(x, y)=\frac{g_{m}(x, y)}{g_{m}\left(\zeta^{-1} x, \zeta^{s} y\right)}
$$

for $m=1$, 2. Since $\operatorname{div}\left(g_{m}\left(\zeta^{-1} x, \zeta^{s} y\right)\right)=\sigma\left(\operatorname{div}\left(g_{m}(x, y)\right)\right)$, Lemma 2 follows.
Therefore, D_{1} and D_{2} are invariant under the group of automorphisms of F_{p} generated by σ. Since $F_{p, s}$ is the quotient of F_{p} by the latter group, there exist divisors E_{m} of degree 0 on $F_{p, s}$ such that $D_{m}=f_{p, s}^{*}\left(E_{m}\right)$, for $m=1$, 2. Therefore, $f_{p, s}^{*}\left(\left[E_{m}\right]\right)=\left[D_{m}\right]=\left[C_{m}\right]$. By the proof of Theorem 2 in [13], we have that $\operatorname{Ker}\left(f_{p, s}^{*}\right)=J_{p, s}[\pi]$. Therefore, by the displayed equalities (E), we see that $\left[E_{m}\right]$ generates the $\mathbb{Z}[\pi]$-module $J_{p, s}\left[\pi^{m+1}\right]$, for $m=1,2$. Moreover, by standard properties of coverings,

$$
\begin{aligned}
p E_{m} & =f_{p, s}\left(f_{p, s}^{*}\left(E_{m}\right)\right)=f_{p, s}\left(D_{m}\right)=f_{p, s}\left(C_{m}\right)+f_{p, s}\left(\operatorname{div}\left(g_{m}(x, y)\right)\right) \\
& =f_{p, s}\left(\operatorname{div}\left(g_{m}(x, y)\right)\right)=\operatorname{div}\left(\operatorname{Norm}\left(g_{m}(x, y)\right)\right)
\end{aligned}
$$

where the last equality follows from the fact that for a rational function g on F_{p}, the relation $f_{p, s}(\operatorname{div}(\sigma(g)))=f_{p, s}(\operatorname{div}(g))$ implies that $f_{p, s}(\operatorname{div}(g))=\operatorname{div}(\operatorname{Norm}(g))$. This completes the proof of Theorem 2.

4. The Divisor E_{1}

In this Section, we discuss the problem of explicitly writing down the divisor E_{1} of Theorem 2. By the previous Section, we only need to compute $\operatorname{div}\left(g_{1}(x, y)\right)$. This will explicitly determine D_{1} and hence also E_{1} by the formula $D_{1}=f_{p, s}^{*}\left(E_{1}\right)$, where $f_{p, s}((x, y))=(u, v)=\left(-x^{p},(-1)^{s-1} x^{s} y\right)$.

Clearly, any pole of $g_{1}(x, y)$ has to be a pole of $h_{1}\left(\zeta^{-l} x, \zeta^{l s} y\right)$, for some l such that $0 \leqslant l \leqslant p-2$. Therefore, by [11], the only possible poles of $g_{1}(x, y)$ are the points b_{j}, for $0 \leqslant j \leqslant p-1$ and

$$
\operatorname{div}\left(\prod_{l=0}^{k} h_{1}\left(\zeta^{-l} x, \zeta^{l s} y\right)\right)=(p-k-1) \sum_{j=0}^{k} b_{j}-(k+1) \sum_{j=k+1}^{p-1} b_{j}
$$

for $0 \leqslant k \leqslant p-2$. Hence, the polar part of $\operatorname{div}\left(g_{1}(x, y)\right)$ equals $\sum_{j=1}^{p-1} j b_{j}$. Therefore, we only need to compute the zeros of $g_{1}(x, y)$. Using the change of variables $a=\epsilon / y$ and $b=-x / y$, we need to solve the following system of two polynomial
equations in two unknowns a and b :

$$
a^{p}+b^{p}=1, \quad 1+\sum_{k=0}^{p-2} \prod_{l=0}^{k}\left(\zeta^{-l s} a+\zeta^{-l(s+1)} b\right)=0 .
$$

We have used the Gröbner basis package in MAPLE to solve the above system for specific values of p and s. We list the output of the calculations in terms of the coordinates (u, v) of points in the support of E_{1}. The formulas $u=-b^{p} / a^{p}$, $v=-\epsilon^{s+1} b^{s} / a^{s+1}$ send (a, b) to (u, v).
$p=5, s=1$

$$
\begin{aligned}
& (v+\zeta)\left(v+\zeta^{2}\right)=0, \quad u=\left(\zeta^{2}-1\right) v-\left(\zeta^{2}+\zeta\right) \\
& E_{1}=\sum(u, v)-2(1,0)
\end{aligned}
$$

Since the hyperelliptic involution $(u, v) \mapsto(1-u, v)$ of $F_{5,1}$ acts as multiplication by -1 on $J_{5,1}$, we get that the divisor class $\left[\left(-\zeta^{2}-\zeta^{3},-\zeta\right)-(1,0)\right]$ generates $J_{5,1}\left[\pi^{3}\right]$ as a $\mathbb{Z}[\pi]$-module. This is the same divisor as in [2], [4] and [12].
$p=7, s=1$

$$
\begin{aligned}
& v^{3}+\left(-\zeta^{5}+\zeta^{2}+\zeta\right) v^{2}+\left(\zeta^{5}+\zeta^{4}+\zeta^{3}+\zeta^{2}+\zeta\right) v-\zeta=0 \\
& u=\left(\zeta^{4}+2 \zeta^{3}+2 \zeta^{2}+2 \zeta\right) v^{2}+\left(\zeta^{4}+\zeta^{3}-\zeta-1\right) v-\left(\zeta^{3}+\zeta^{2}+\zeta\right) \\
& E_{1}=\sum(u, v)-3(1,0)
\end{aligned}
$$

$p=7, s=2$
$v^{3}+\left(1-\zeta^{5}-2 \zeta^{4}-\zeta^{3}+\zeta^{2}\right) v^{2}+\left(1-\zeta^{4}-\zeta^{3}\right) v+1=0$,
$u=\left(\zeta^{5}-\zeta\right) v^{2}+\left(\zeta^{5}-\zeta\right) v+\left(\zeta^{5}+\zeta^{3}+1\right)$,
$E_{1}=\sum(u, v)-3(1,0)$.
Prapavessi [10] showed that every point in $J_{7,2}(K)$ can be represented by a divisor of degree 0 supported on the Weierstrass points on $F_{7,2}$ (see also [1] where the Weierstrass points on $F_{7,2}$ are computed). The points (u, v) that we found above are not Weierstrass points.

$$
\begin{aligned}
\underline{p=} & 11, s=1 \\
v^{5}- & \left(\zeta^{9}+\zeta^{8}+2 \zeta^{7}+\zeta^{6}+\zeta^{5}-\zeta^{2}-\zeta\right) v^{4}+\left(\zeta^{6}+2 \zeta^{5}+2 \zeta^{4}+3 \zeta^{3}+2 \zeta^{2}+2 \zeta+1\right) v^{3} \\
& +\left(\zeta^{9}+\zeta^{8}+2 \zeta^{7}+2 \zeta^{6}+2 \zeta^{5}+2 \zeta^{4}+2 \zeta^{3}+2 \zeta^{2}+\zeta+1\right) v^{2}-(\zeta+1) v-\zeta^{2}=0, \\
u= & -\left(\zeta^{9}+2 \zeta^{8}+\zeta^{7}+\zeta^{6}-\zeta^{5}-3 \zeta^{4}-3 \zeta^{3}-4 \zeta^{2}-3 \zeta-2\right) v^{4}+ \\
& +\left(\zeta^{8}+3 \zeta^{7}+5 \zeta^{6}+7 \zeta^{5}+8 \zeta^{4}+8 \zeta^{3}+6 \zeta^{2}+4 \zeta+2\right) v^{3}+ \\
& +\left(\zeta^{9}+2 \zeta^{8}+3 \zeta^{7}+4 \zeta^{6}+5 \zeta^{5}+4 \zeta^{4}+3 \zeta^{3}+\zeta^{2}-1\right) v^{2}+ \\
& +\left(\zeta^{8}+\zeta^{7}+\zeta^{6}+\zeta^{5}-\zeta^{3}-\zeta^{2}-\zeta-1\right) v-\left(\zeta^{5}+\zeta^{4}+\zeta^{3}+\zeta^{2}+\zeta\right), \\
E_{1}= & \sum(u, v)-5(1,0) .
\end{aligned}
$$

It would be interesting to recognize a precise pattern in the output of our calculations for the above cases; we have not been able to do so.

Acknowledgements

I thank Bill McCallum for his encouragement, Robert Coleman and David Grant for their interest in the problem and an anonymous referee for suggesting a number of improvements on the exposition. Part of this work was done during my stay at the Max Planck Institute in Bonn. I am indebted to Herbert Gangl and Ulf Kühn for introducing me to MAPLE.

References

1. Coleman, R.: Torsion points on abelian étale coverings of $\mathbb{P}^{1}-\{0,1, \infty\}$, Trans. Amer. Math. Soc. 311(1) (1989), 185-208.
2. Coleman, R.: Torsion points on Fermat curves, Compositio Math. 58 (1986), 191-208.
3. Coleman, R., Tamagawa, A. and Tzermias, P.: The cuspidal torsion packet on the Fermat curve, J. Reine Angew. Math. 496 (1998), 73-81 .
4. Grant, D.: A proof of quintic reciprocity using the arithmetic of $y^{2}=x^{5}+1 / 4$, Acta Arith. 75 (1996), 321-337.
5. Grant, D.: Units from 5-torsion on the Jacobian of $y^{2}=x^{5}+1 / 4$ and the conjectures of Stark and Rubin, J. Number Theory (to appear).
6. Greenberg, R.: On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1981), 345-359.
7. Gross, B. and Rohrlich, D.: Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201-224.
8. Kurihara, M.: Some remarks on conjectures about cyclotomic fields and K-groups of \mathbb{Z}, Compositio Math. 81 (1992), 223-236.
9. McCallum, W.: On the Shafarevich-Tate group of the jacobian of a quotient of the Fermat curve, Invent. Math. 93 (1988), 637-666.
10. Prapavessi, D.: On the Jacobian of the Klein curve, Proc. Amer. Math. Soc. 122(4) (1994), 971-978.
11. Rohrlich, D.: Points at infinity on the Fermat curves, Invent. Math. 39 (1977), 95-207.
12. Tzermias, P.: Arithmetic of cyclic quotients of the Fermat quintic, Acta Arith. 84(4) (1998), 375-384.
13. Tzermias, P.: Torsion parts of Mordell-Weil groups of Fermat Jacobians, Internat. Math. Res. Notices (1998), No. 7, 359-369.
