https://doi.org/10.1017/S0008439500031106 Published online by Cambridge University Press

BULLETIN 13 (3), 1970

PROBLEMS FOR SOLUTION

P. 175. Prove or disprove: Every *totally disconnected* (no connected subset contains more than one point) topological space is Hausdorff.

D. G. PAULOWICH,

DALHOUSIE UNIVERSITY, HALIFAX, N.S.

SOLUTIONS

P. 163. (BULLETIN (6) 12 (1969), p. 873). Show that for any real f on the unit interval, the graphs of all its Bernstein polynomials $B_n f$ lie in the convex hull of the graph of f.

M. PRICE,

WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN

Solution by O. P. Lossers, Technological University, Eindhoven, Netherlands. *First solution*: We observe the following facts:

- (i) If f is linear, i.e., if there exist constants a, b such that f(x)=ax+b for all x ∈ [0, 1], then B_nf=f;
- (ii) if $f_1(x) \le f_2(x)$ for all $x \in [0, 1]$, then $(B_n f_1)(x) \le (B_n f_2)(x)$ for all $x \in [0, 1]$.

The assertion follows immediately from these observations and from the fact that the convex hull of the graph of f is the intersection of all supporting closed half-spaces.

Second solution: For each $x \in [0, 1]$ we have:

$$x = \sum_{k=0}^{n} {\binom{n}{k}} x^{k} (1-x)^{n-k} \left\{ \frac{k}{n} \right\}, \qquad (B_{n}f)(x) = \sum_{k=0}^{n} {\binom{n}{k}} x^{k} (1-x)^{n-k} \left\{ f\left(\frac{k}{n} \right) \right\},$$

so the point $(x, (B_n f)(x))$ is a convex combination of the points

$$\left(\frac{k}{n},f\left(\frac{k}{n}\right)\right), \quad k=0,\,1,\,\ldots,\,n.$$

The assertion follows immediately from this observation.

Also solved by C. Davis, S. Spital and R. Roodrick, K. Salkauskas, and the proposer.

395