SEMI-NORMAL LOG CENTRES AND DEFORMATIONS OF PAIRS

JÁNOS KOLLÁR

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA (kollar@math.princeton.edu)

Abstract We show that some of the properties of log canonical centres of a log canonical pair also hold for certain subvarieties that are close to being a log canonical centre. As a consequence, we obtain that, in working with deformations of pairs where all the coefficients of the boundary divisor are bigger than $\frac{1}{2}$, embedded points never appear on the boundary divisor.

Keywords: log canonical centre; semi-normality; deformation of pairs

2010 Mathematics subject classification: Primary 14J15; 14J17; 14E30; 14C20

The philosophy of Shokurov [20] stresses the importance of understanding the log canonical (lc) centres of an lc pair (X, Δ) (see Definition 1). After the initial work of [9], a systematic study was started in [2]. For extensions, surveys and comprehensive treatments see [3,6]. The following are two of the principal results of [2,3,6].

- Any union of log canonical centres is semi-normal (see Definition 10).
- Any intersection of log canonical centres is also a union of log canonical centres.

The aim of this note is to extend these results to certain subvarieties of an lc pair (X, Δ) that are close to being a log canonical centre. To state our results, we need a definition. (See [5,17] for basic concepts and results relating to the minimal model program (MMP). As in the above papers, we also work over a field of characteristic 0.)

Definition 1. Let (X, Δ) be lc and let $Z \subset X$ be an irreducible subvariety. Following Shokurov and Ambro, the *minimal log discrepancy* of Z is the infimum of the numbers $1 + a(E, X, \Delta)$ as E runs through all divisors over X whose centre is Z [1]. (Here, $a(E, X, \Delta)$ denotes the discrepancy of E with respect to (X, Δ) (see [17, 2.25]).) The minimal log discrepancy is denoted by $mld(Z, X, \Delta)$.

An irreducible subvariety $Z \subset X$ is called a *log centre* of (X, Δ) if $\mathrm{mld}(Z, X, \Delta) < 1$. If $Z \subset X$ is a divisor, then Z is a log centre if and only if it is an irreducible component of Δ , and then its coefficient is $1 - \mathrm{mld}(Z, X, \Delta)$.

A log canonical centre is a log centre whose minimal log discrepancy equals 0.

Our first aim is to prove the following. (See Definition 10 for semi-normality.)

© 2013 The Edinburgh Mathematical Society

Theorem 2. Let (X, Δ) be an lc pair and let $Z_i \subset X$ be log centres for $i = 1, \ldots, m$.

- (1) If $\operatorname{mld}(Z_i, X, \Delta) < \frac{1}{6}$ for every i, then $Z_1 \cup \cdots \cup Z_m$ is semi-normal.
- (2) If $\sum_{i=1}^{m} \operatorname{mld}(Z_i, X, \Delta) < 1$, then every irreducible component of $Z_1 \cap \cdots \cap Z_m$ is a log centre with minimal log discrepancy less than or equal to $\sum_{i=1}^{m} \operatorname{mld}(Z_i, X, \Delta)$.

A result of this type is not entirely surprising. By Shokurov's conjecture on the boundedness of complements (see [20, § 5] or [19, Chapter 4]), if $(X, \sum a_i D_i)$ is lc and the a_i are close enough to 1, then there exists another lc pair $(X, \Delta' + \sum D_i)$ where the D_i all appear with coefficient 1. Thus, the D_i are log canonical centres of $(X, \Delta' + \sum D_i)$; hence, their union is semi-normal and Du Bois [16]. In particular, there should exist a function $\epsilon(n) > 0$ such that the union of the D_i with $a_i > 1 - \epsilon(\dim X)$ is semi-normal and Du Bois. The function $\epsilon(n)$ is not known, but it must converge to 0 at least doubly exponentially. (See [12, § 8] for the conjectured optimal value of $\epsilon(n)$ and for examples.)

Thus, it is somewhat unexpected that, at least for semi-normality, the bound in Theorem 2(1) is independent of the dimension.

Note that we do not assert that these Z_i are log canonical centres of some other lc pair (X, Δ') ; this is actually not true. In particular, unlike log canonical centres, the Z_i are not in general Du Bois (see Example 5 (5)).

As Example 5 (1)–(3) show, the value $\frac{1}{6}$ is optimal. There is, however, one important special case when it can be improved to $\frac{1}{2}$. The precise statement is given in Theorem 11; here, we mention a consequence that was the main reason of this project. The result implies that if we consider the moduli of lc pairs (X, Δ) , where all the coefficients in Δ are greater than $\frac{1}{2}$, then we do not have to worry about embedded points on Δ . (Examples of Hassett show that embedded points do appear when the coefficients in Δ are less than or equal to $\frac{1}{2}$. See [14, §6] for an overview and the forthcoming [15] for details.)

Corollary 3. Let $(X, \Delta = \sum_{i \in I} b_i B_i)$ be lc. Let $f: X \to C$ be a morphism to a smooth curve such that $(X, X_c + \Delta)$ is lc for every fibre $X_c := f^{-1}(c)$. Let $J \subset I$ be any subset such that $b_j > \frac{1}{2}$ for every $j \in J$, and set $B_J := \bigcup_{j \in J} B_j$.

Then, $B_J \to C$ is flat with reduced fibres.

The extension of these results to the semi-log-canonical case requires additional considerations; these are treated in [15, Chapter 7].

The proof of Theorem 2 uses the following recently established result of Birkar [4] and Hacon and Xu [8]. For dim $X \leq 4$, it also follows from earlier results of Shokurov [21].

Theorem 4. Let $g: X \to S$ be a projective, birational morphism and let Δ' , Δ'' be effective \mathbb{Q} -divisors on X such that $(X, \Delta' + \Delta'')$ is divisorially log terminal (dlt), \mathbb{Q} -factorial and $K_X + \Delta' + \Delta'' \sim_{\mathbb{Q},g} 0$. The (X, Δ'') -MMP with scaling over S then terminates with a \mathbb{Q} -factorial minimal model.

One of the difficulties in [2,6] comes from making the proof independent of MMP assumptions. The proof in [8] uses several delicate properties of log canonical centres, including some of the theorems of [2,6]. Thus, although the statement of Theorem 2 sharpens several of the theorems of [2,6] on lc centres, it does not give a new proof.

Example 5. The following examples show that the numerical conditions of Theorem 2 are sharp.

- (1) $(\mathbb{A}^2, \frac{5}{6}(x^2 = y^3))$ is lc, the curve $(x^2 = y^3)$ is a log centre with mld $= \frac{1}{6}$, but it is not semi-normal.
- (2) Consider $(\mathbb{A}^3, \frac{11}{12}(z-x^2-y^3)+\frac{11}{12}(z+x^2+y^3))$. One can check that this is lc. The irreducible components of the boundary are smooth, but their intersection is a cuspidal curve, hence not semi-normal. It is, again, a log centre with $\mathrm{mld}=\frac{1}{6}$.
- (3) The image of \mathbb{C}^2_{uv} by the map $x=u,\ y=v^3,\ z=v^2,\ t=uv$ is a divisor $D_1\subset X:=(xy-zt)\subset\mathbb{C}^4$, and $\mathbb{C}^2\to D_1$ is an isomorphism outside the origin. Note that the zero set of (y^2-z^3) is $D_1+2(y=z=0)$. Let $D_2,\ D_3$ be two general members of the family of planes in the linear system |(y=z=0)|. We claim that $(X,\frac{5}{6}D_1+\frac{5}{6}D_2+\frac{5}{6}D_3)$ is lc. Here, D_1 is a log centre with mld $=\frac{1}{6}$, but semi-normality fails in codimension 3 on X. In order to check the claim, blow up the ideal (x,z). On \mathbb{C}^2_{uv} this corresponds to blowing up the ideal (u,v^2) .

On one of the charts we have the coordinates $x_1 := x/z$, y, z, and the birational transform D_1' of D_1 is given by $(y^2 = z^3)$. On the other chart we have the coordinates x, $z_1 := z/x$, t, and D_1' is given by $(z_1x^3 = t^2)$. Thus, we see that $(B_{(x,z)}X, \frac{5}{6}D_1')$ is lc. The linear system |(y = z = 0)| becomes base-point free on the blow-up; hence, $(B_{(x,z)}X, \frac{5}{6}D_1' + \frac{5}{6}D_2' + \frac{5}{6}D_3')$ is lc and so is $(X, \frac{5}{6}D_1 + \frac{5}{6}D_2 + \frac{5}{6}D_3)$.

- (4) Assume that $(X, \sum_{i \in I} a_i D_i)$ has a simple normal crossing and that $a_i \leq 1$ for every i. Let $J \subset I$ be a subset such that $a_j > 0$, for every $j \in J$, and $\sum_{j \in J} a_j > |J| 1$. Every irreducible component of $\bigcap_{j \in J} D_j$ is then a log centre of $(X, \sum_{i \in I} a_i D_i)$ with $\text{mld} = \sum_{j \in J} (1 a_j) = |J| \sum_{j \in J} a_j$. In particular, D_i is a log centre of $(X, \sum_{i \in I} a_i D_i)$ with $\text{mld} = 1 a_i$. Thus, Theorem 2 (2) is sharp. By [17, §2.3], every log centre of $(X, \sum_{i \in I} a_i D_i)$ arises in this way.
- (5) Let X be a smooth variety and let $D \subset X$ be a reduced divisor. Then, D is Du Bois if and only if (X, D) is lc. (See [16, 18] for much stronger results.) In particular, $D := (x^2 + y^3 + z^7 = 0) \subset \mathbb{A}^3$ is a log centre of the lc pair $(\mathbb{A}^3, \frac{41}{42}D)$ with mld $= \frac{1}{42}$, but D is not Du Bois and it cannot be an lc centre of any lc pair (X, Δ) . On the other hand, D is normal, hence semi-normal.

Log centres and birational maps

Let $g: (Y, \Delta_Y) \to (X, \Delta_X)$ be a proper birational morphism between lc pairs (with Δ_X, Δ_Y not necessarily effective) such that $K_Y + \Delta_Y \sim_{\mathbb{Q}} g^*(K_X + \Delta_X)$ and $g_*\Delta_Y = \Delta_X$. If $Z \subset Y$ is a log centre of (Y, Δ_Y) , then g(Z) is also a log centre of (X, Δ_X) with the same mld. Moreover, every log centre of (X, Δ_X) is the image of a log centre of (Y, Δ_Y) .

Thus, for any (X, Δ_X) , we can use a log resolution $g: (Y, \Delta_Y) \to (X, \Delta_X)$ to reduce the computation of log centres to the simple normal crossing case considered in Example 5 (4).

This implies that an lc pair (X, Δ) has only finitely many log centres, and the union of all log centres of codimension greater than or equal to 2 is the smallest closed subscheme $W \subset X$ such that $(X \setminus W, \Delta|_{X \setminus W})$ is canonical.

Proof of the divisorial case of Theorem 2. We prove Theorem 2 in the special case when (X, Δ') is dlt for some Δ' and the $Z_i =: D_i$ are \mathbb{Q} -Cartier divisors.

Since (X, Δ') is dlt, X is Cohen-Macaulay and so is $\sum D_i$ [17, 5.25]. In particular, $\sum D_i$ satisfies Serre's condition S_2 . An S_2 -scheme is semi-normal if and only if it is semi-normal at its codimension 1 points. By localization at codimension 1 points, we are reduced to the case when dim X = 2.

Then, X has a quotient singularity at every point of $\sum D_i$, and Reid's covering method [10, 20.3] reduces the claim to the smooth case. It is now an elementary exercise to see that if $(\mathbb{A}^2, \sum a_i D_i)$ is lc and $a_i > \frac{5}{6}$, then $\sum D_i$ has only ordinary nodes, hence is semi-normal.

We next prove Theorem 2(2), assuming that m=2 and $Z_i=:D_i$ are \mathbb{Q} -Cartier divisors. Every irreducible component of $D_1 \cap D_2$ then has codimension 2; thus, it is again enough to check the smooth surface case. The exceptional divisor of the blow-up of $x \in D_1 \cap D_2$ shows that x is a log centre with $\text{mld} \leq (1-a_1) + (1-a_2)$.

Any argument along these lines breaks down completely if we only assume that $(X, \sum a_i D_i)$ is lc. In general, the D_i are not S_2 , not even if $a_i = 1$. Thus, semi-normality at codimension 1 points does not imply semi-normality.

Instead, we choose a suitable dlt model (Y, Δ_Y) of (X, Δ) , use the proof of the divisorial case of Theorem 2 on it, and then descend semi-normally from Y to X. The next two lemmas construct (Y, Δ_Y) .

Lemma 6. Let (X, Δ) be lc. There then exists a projective, birational morphism $g: (Y, \Delta_Y) \to (X, \Delta)$ such that

- (1) (Y, Δ_Y) is dlt, \mathbb{Q} -factorial (and Δ_Y is effective);
- (2) $K_Y + \Delta_Y \sim_{\mathbb{O}} g^*(K_X + \Delta)$; and
- (3) for every log centre $Z \subset X$ of (X, Δ) there exists a divisor $D_Z \subset Y$ such that $g(D_Z) = Z$ and D_Z appears in Δ_Y with coefficient $1 \text{mld}(Z, X, \Delta)$.

Proof. This is well known. Under suitable MMP assumptions, a proof is given in [10, 17.10]. One can remove the MMP assumptions as follows.

A method of Hacon (see [16, 3.1]) constructs a model satisfying (1) and (2). Since there are only finitely many log centres, it is enough to add the divisors D_Z one at a time. This is explained in [13, 37]. A simplified proof can be found in [7, § 4].

Lemma 7. Let $g: Y \to X$ be a projective, birational morphism and let Δ_1 , Δ_2 be effective \mathbb{Q} -divisors on Y. Assume that $(Y, \Delta_1 + \Delta_2)$ is dlt, \mathbb{Q} -factorial and that $K_Y + \Delta_1 + \Delta_2 \sim_{\mathbb{Q},g} 0$. By Theorem 4, a suitable (Y, Δ_2) -MMP over X terminates with a \mathbb{Q} -factorial minimal model $g^m: (Y^m, \Delta_2^m) \to X$. Then,

- (1) $-\Delta_1^m$ is g^m -nef,
- (2) $q(\Delta_1) = q^m(\Delta_1^m)$ and
- (3) Supp $(g^m)^{-1}(g^m(\Delta_1^m)) = \text{Supp } \Delta_1^m$.

Proof. Since $K_Y + \Delta_1 + \Delta_2 \sim_{\mathbb{Q},g} 0$, we see that $K_{Y^m} + \Delta_1^m + \Delta_2^m \sim_{\mathbb{Q},g^m} 0$. Thus, $-\Delta_1^m \sim_{\mathbb{Q},g^m} K_{Y^m} + \Delta_2^m$ is g^m -nef. Since g^m has connected fibres and Δ_1^m is effective, every fibre of g^m is either contained in Supp Δ_1^m or is disjoint from it. This proves (3).

In order to establish (2), we prove by induction that, at every intermediate step $g^i : (Y^i, \Delta_2^i) \to X$ of the MMP, we have that $g(\Delta_1) = g^i(\Delta_1^i)$. This is clear for $Y^0 := Y$. As we go from i to i+1, the image $g^i(\Delta_1^i)$ is unchanged if $Y^i \dashrightarrow Y^{i+1}$ is a flip. Thus, we need to show that $g^{i+1}(\Delta_1^{i+1}) = g^i(\Delta_1^i)$ if $\pi_i : Y^i \to Y^{i+1}$ is a divisorial contraction with exceptional divisor E^i . Let $F^i \subset E^i$ be a general fibre of $E^i \to X$. It is clear that

$$g^{i+1}(\Delta_1^{i+1}) \subset g^i(\Delta_1^i),$$

and equality fails only if E^i is a component of Δ_1^i but no other component of Δ_1^i intersects F^i . Since π_i contracts a $(K_{Y^i} + \Delta_2^i)$ -negative extremal ray, $-\Delta_1^i \sim_{\mathbb{Q}, g^i} K_{Y^i} + \Delta_2^i$ shows that Δ_1^i is π_i -nef. However, an exceptional divisor has negative intersection with some contracted curve, which is a contradiction.

Proof of Theorem 2 (1). Set $\epsilon_i := \text{mld}(Z_i, X, \Delta)$. As in Lemma 6, let $g: (Y, \Delta_Y) \to (X, \Delta)$ be a \mathbb{Q} -factorial dlt model and let $D_i \subset Y$ be divisors such that $a(D_i, X, \Delta) = -1 + \epsilon_i$ and $g(D_i) = Z_i$. Set $D := \sum_{i=1}^m D_i$; then g(D) = Z.

Pick $1 > c \ge 0$ such that $1 - \epsilon_i \ge c$ for every i and write $\Delta_Y = cD + \Delta_2$, where Δ_2 is effective. (It may have common components with D.) Apply Lemma 7 to get a \mathbb{Q} -factorial model $g^m : Y^m \to X$ such that

- (1) $(Y^m, cD^m + \Delta_2^m)$ is lc,
- (2) (Y^m, Δ_2^m) is dlt.
- (3) $K_{Y^m} + cD^m + \Delta_2^m \sim_{\mathbb{Q}, q^m} 0$,
- (4) $-D^m$ is g^m -nef and
- (5) Supp $D^m = \text{Supp}(g^m)^{-1}(Z)$, and hence $g^m(D^m) = Z$.

If $\epsilon_i < \frac{1}{6}$ for every i, then we can assume that $c > \frac{5}{6}$. As we noted in the proof of the divisorial case of Theorem 2, in this case D^m is semi-normal and Lemma 8 shows that $g_*^m \mathcal{O}_{D^m} = \mathcal{O}_Z$. Thus, Z is semi-normal by Lemma 13.

Lemma 8. Let Y, X be normal varieties and let $g: Y \to X$ be a proper morphism such that $g_*\mathcal{O}_Y = \mathcal{O}_X$. Let D be a reduced divisor on Y and let Δ'' be an effective \mathbb{Q} -divisor on Y. Fix some $0 < c \le 1$. Assume that

- (1) $(Y, cD + \Delta'')$ is lc,
- (2) (Y, Δ'') is dlt,
- (3) $K_Y + cD + \Delta'' \sim_{\mathbb{Q},q} 0$ and
- (4) -D is g-nef (and hence $D = g^{-1}(g(D))$).

Then $g_*\mathcal{O}_D = \mathcal{O}_{q(D)}$.

Proof. By pushing forward the exact sequence

$$0 \to \mathcal{O}_Y(-D) \to \mathcal{O}_Y \to \mathcal{O}_D \to 0$$

we obtain that

$$\mathcal{O}_X = g_* \mathcal{O}_Y \to g_* \mathcal{O}_D \to R^1 g_* \mathcal{O}_X (-D).$$

Note that

$$-D \sim_{\mathbb{Q}, q} K_Y + \Delta'' + (1 - c)(-D),$$

and the right-hand side is of the form $K + \Delta + (g - \text{nef})$. Let $W \subset Y$ be an lc centre of (Y, Δ'') . Then W is not contained in D, since then $(Y, cD + \Delta'')$ would not be lc along W. In particular, D is disjoint from the general fibre of $W \to X$ by (4). Thus, from Theorem 9 we conclude that none of the associated primes of $R^1g_*\mathcal{O}_Y(-D)$ is contained in g(D). On the other hand, $g_*\mathcal{O}_D$ is supported on g(D); hence, $g_*\mathcal{O}_D \to R^1g_*\mathcal{O}_Y(-D)$ is the zero map.

This implies that $\mathcal{O}_X \to g_* \mathcal{O}_D$ is surjective. This map factors through $\mathcal{O}_{g(D)}$; hence, $g_* \mathcal{O}_D = \mathcal{O}_{g(D)}$.

A curious property of log centres

Assume that (X, Δ) is klt and let $Z \subset X$ be a union of arbitrary log centres. As in the proof of Theorem 2 (1) we construct $(Y, cD + \Delta'')$, which is klt. Thus, as we apply Lemma 8, the higher direct images $R^i g_* \mathcal{O}_Y$ and $R^i g_* \mathcal{O}_Y (-D)$ are 0 for i > 0. Thus, D is a reduced Cohen–Macaulay scheme D such that

$$q_*\mathcal{O}_D = \mathcal{O}_Z$$
 and $R^i q_*\mathcal{O}_D = 0$ for $i > 0$.

Moreover, D is a divisor on a \mathbb{Q} -factorial klt pair.

This looks like a very strong property for a reduced scheme Z, but so far I have been unable to derive any useful consequences from it. In fact, I do not know how to prove that not every reduced scheme Z admits such a morphism $g: D \to Z$.

We have used the following form of [2, 3.2, 7.4] and [6, 2.52].

Theorem 9. Let $g: Y \to X$ be a projective morphism and let M be a line bundle on Y. Assume that $M \sim_{\mathbb{Q},g} K_Y + L + \Delta$, where (Y,Δ) is all and, for every log canonical centre $Z \subset Y$, the restriction of L to the general fibre of $Z \to X$ is semi-ample.

Every associated prime of $R^i q_* M$ is then the image of a log canonical centre of (Y, Δ) .

Proof of Theorem 2 (2). By induction on m, it is enough to prove Theorem 2 (2) for the intersection of two log centres.

Let $g: (Y, \Delta_Y) \to (X, \Delta)$ be a \mathbb{Q} -factorial dlt model and let $D_1, D_2 \subset Y$ be divisors such that $a(D_i, X, \Delta) = -1 + \text{mld}(Z_i, X, \Delta)$ and $g(D_i) = Z_i$. Set $D := D_1 + D_2$. Pick any c > 0 such that $\Delta_Y = cD + \Delta_2$, where Δ_2 is effective, and apply Lemma 7. Thus, we get a \mathbb{Q} -factorial model $g^m: Y^m \to X$ such that

- (1) $K_{Y^m} + cD^m + \Delta_2^m \sim_{\mathbb{Q},q^m} 0$ and
- (2) Supp $D^m = \text{Supp}(g^m)^{-1}(Z_1 \cup Z_2)$.

By (2), every irreducible component $V_j \subset Z_1 \cap Z_2$ is dominated by an irreducible component of $W_j \subset D_1^m \cap D_2^m$. By the proof of the divisorial case of Theorem 2, each W_j is a log centre of $(Y^m, cD^m + \Delta_2^m)$ with mld $\leq \text{mld}(Z_1, X, \Delta) + \text{mld}(Z_2, X, \Delta)$. Thus, V_j is a log centre of (X, Δ) with the same minimal log discrepancy.

Definition 10. Let X be a reduced scheme and let $U \subset X$ be an open subscheme. We say that X is *semi-normal relative to* U if every finite, universal homeomorphism $\pi \colon X' \to X$ that is an isomorphism over U is an isomorphism.

If this holds with $U = \emptyset$, then X is called *semi-normal*. For more details, see [11, § I.7.2]. If X satisfies Serre's condition S_2 , then semi-normality depends only on the codimension 1 points of X. That is, X is semi-normal relative to U if and only if there exists a closed subset $Z \subset X$ of codimension greater than or equal to 2 such that $X \setminus Z$ is semi-normal relative to U.

With this definition, we can state the theorem behind Corollary 3 as follows.

Theorem 11. Let $(X, S + \Delta)$ be an lc pair, where S is a reduced \mathbb{Q} -Cartier divisor. Let $Z_i \subset X$ be log centres of (X, Δ) for $i = 1, \ldots, m$.

If $mld(Z_i, X, \Delta) < \frac{1}{2}$ for every i, then $S \cup Z_1 \cup \cdots \cup Z_m$ is semi-normal relative to $X \setminus S$.

Proof. By passing to a cyclic cover and using Lemma 12, we may assume that S is Cartier. Note that none of the Z_i is contained in S.

We next closely follow the proof of Theorem 2 (1). Let $g: (Y, S_Y + \Delta_Y) \to (X, S + \Delta)$ be a \mathbb{Q} -factorial dlt model and let $D_i \subset Y$ be divisors such that $a(D_i, X, \Delta) = -1 + \text{mld}(Z_i, X, \Delta)$ and $g(D_i) = Z_i$. Pick $c > \frac{1}{2}$ such that $1 - \text{mld}(Z_i, X, \Delta) \geqslant c$ for every i. Set $D := S_Y + \sum_i D_i$ and write $\Delta_Y = cD + \Delta_2$, where Δ_2 is effective.

Apply Lemma 7 to get a Q-factorial model $g^m \colon Y^m \to X$ such that

- (1) $(Y^m, cD^m + \Delta_2^m)$ is lc,
- (2) (Y^m, Δ_2^m) is dlt,
- (3) $K_{Y^m} + cD^m + \Delta_2^m \sim_{\mathbb{Q}, q^m} 0$,
- (4) $-D^m$ is g^m -nef and
- $(5) g^m(D^m) = S \cup Z_1 \cup \dots \cup Z_m.$

Using Lemmas 8 and 13 we see that it is enough to prove that D^m is semi-normal relative to $Y^m \setminus S_V^m$.

Since Y^m is dlt, it is Cohen–Macaulay; hence, D^m is S_2 . As we noted in Definition 10, it is sufficient to check semi-normality at the codimension 2 points of Y^m . As in the proof of the divisorial case of Theorem 2, this reduces to the smooth surface case. We see that if F is a smooth surface, (F, S + cD) is lc and $c > \frac{1}{2}$, then, at every point of $S \cap D$, D is smooth and intersects S transversally. Thus, S + D is semi-normal at all points of $S \cap D$.

Again, note that the bound $\frac{1}{2}$ is sharp; $(\mathbb{A}^2, (x=0) + \frac{1}{2}(x+y=0) + \frac{1}{2}(x-y=0))$ is lc, but its boundary is not semi-normal at the origin.

Proof of Corollary 3. None of the irreducible components of Δ is contained in a fibre of f; hence, $f: B_J \to C$ is flat. The main point is to show that its fibres are reduced. If $b_j > \frac{1}{2}$, then the corresponding divisor B_j is a log centre and $\text{mld}(B_j, X, \Delta) = 1 - b_j < \frac{1}{2}$. Thus, by Theorem 11, $X_c + B_J$ is semi-normal relative to $X \setminus X_c$ for every $c \in C$. By Lemma 14, this implies that $X_c \cap B_J$ is reduced.

We have used three easy properties of semi-normal schemes.

Lemma 12. Let $g: Y \to X$ be a finite morphism of normal schemes. Let $Z \subset X$ be a closed, reduced subscheme and let $U \subset X$ be an open subscheme. If red $g^{-1}(Z)$ is semi-normal relative to $g^{-1}U$, then Z is semi-normal relative to U.

Proof. We may assume that X, Y are irreducible and affine. Let $\pi\colon Z'\to Z$ be a finite, universal homeomorphism that is an isomorphism over $Z\cap U$. Pick $\phi\in\mathcal{O}_{Z'}$. Since $\operatorname{red} g^{-1}(Z)$ is semi-normal relative to $g^{-1}U$, the pullback $\phi\circ g$ is a regular function on $\operatorname{red} g^{-1}(Z)$. We can lift it to a regular function Φ_X on X. Since Y is normal,

$$\Phi_Y := \frac{1}{\deg X/Y} \operatorname{tr}_{X/Y} \Phi_X$$

is regular on Y and $\Phi_Y|_Z = \phi$. Thus, Z is semi-normal relative to U.

Lemma 13. Let $g: Y \to X$ be a proper morphism of reduced schemes such that $g_*\mathcal{O}_Y = \mathcal{O}_X$. Let $U \subset X$ be an open subscheme. If Y is semi-normal relative to $g^{-1}U$, then X is semi-normal relative to U.

Proof. Let $\pi\colon X'\to X$ be a finite, universal homeomorphism that is an isomorphism over U. Set $Y':=\operatorname{red}(Y\times_X X')$ with projection $\pi_Y\colon Y'\to Y$. Then, π_Y is a finite, universal homeomorphism that is an isomorphism over $g^{-1}U$. Thus, π_Y is an isomorphism, so we can factor g as $Y\to X'\to X$. This implies that $\pi_*\mathcal{O}_{X'}\subset g_*\mathcal{O}_Y=\mathcal{O}_X$; hence, π is an isomorphism. \square

Lemma 14. Let X be semi-normal relative to U. Let $X_1, X_2 \subset X$ be closed, reduced subschemes such that $X = X_1 \cup X_2$. Then, $\mathcal{O}_{X_1 \cap X_2}$ has no nilpotent elements whose support is in $X \setminus U$.

Proof. Let $I \subset \mathcal{O}_{X_1 \cap X_2}$ be the ideal sheaf of nilpotent elements whose support is in $X \setminus U$, and let $r(X_1 \cap X_2) \subset X_1 \cap X_2$ be the corresponding subscheme.

Let $r_i \colon \mathcal{O}_{X_i} \to \mathcal{O}_{X_1 \cap X_2}$ and $\bar{r}_i \colon \mathcal{O}_{X_i} \to \mathcal{O}_{r(X_1 \cap X_2)}$ denote the restriction maps. Then, \mathcal{O}_X sits in an exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{O}_{X_1} + \mathcal{O}_{X_2} \xrightarrow{(r_1, -r_2)} \mathcal{O}_{X_1 \cap X_2} \to 0.$$

The similar sequence

$$0 \to A \to \mathcal{O}_{X_1} + \mathcal{O}_{X_2} \xrightarrow{(\bar{r}_1, -\bar{r}_2)} \mathcal{O}_{r(X_1 \cap X_2)} \to 0$$

defines a coherent sheaf of \mathcal{O}_X -algebras A, and $\operatorname{Spec}_X A \to X$ is a finite, universal homeomorphism $\pi\colon X'\to X$ that is an isomorphism over U. Since X is semi-normal relative to U, $A=\mathcal{O}_X$; hence, $X_1\cap X_2=r(X_1\cap X_2)$.

Acknowledgements. The author thanks V. Alexeev and O. Fujino for useful comments and F. Ambro for many corrections and remarks. Financial support was provided in part by the NSF (Grant DMS-0758275).

References

- 1. F. Ambro, On minimal log discrepancies, Math. Res. Lett. 6(5) (1999), 573–580.
- F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220–239.
- 3. F. Ambro, Basic properties of log canonical centers, in *Classification of algebraic varieties*, European Mathematical Society Series of Congress Reports, pp. 39–48 (European Mathematical Society, Zürich, 2011).
- 4. C. BIRKAR, Existence of log canonical flips and a special LMMP, *Publ. Math. IHES* 115(1) (2012), 325–368.
- C. BIRKAR, P. CASCINI, C. D. HACON AND J. MCKERNAN, Existence of minimal models for varieties of log general type, J. Am. Math. Soc. 23(2) (2010), 405–468.
- O. Fujino, Introduction to the log minimal model program for log canonical pairs, eprint (arXiv:0907.1506, 2009).
- 7. O. Fujino, Semi-stable minimal model program for varieties with trivial canonical divisor, *Proc. Jpn Acad.* A 87(3) (2011), 25–30.
- 8. C. D. HACON AND C. Xu, Existence of log canonical closures, *Invent. Math.* 192(1) (2013), 161–195.
- Y. KAWAMATA, Subadjunction of log canonical divisors, II, Am. J. Math. 120(5) (1998), 893–899.
- J. Kollár, Flips and abundance for algebraic threefolds, Astérisque, Volume 211 (Société Mathématique de France, Paris, 1992).
- J. Kollár, Rational curves on algebraic varieties, A Series of Modern Surveys in Mathematics, Volume 32 (Springer, 1996).
- J. Kollár, Singularities of pairs, in Algebraic geometry: Santa Cruz 1995, American Mathematical Society Translations, Volume 62, pp. 221–287 (American Mathematical Society, Providence, RI, 1997).
- J. Kollár, Which powers of holomorphic functions are integrable?, eprint (arXiv: 0805.0756, 2008).
- J. Kollár, Moduli of varieties of general type, in Handbook of moduli: parameter spaces of curves (ed. G. Farkas and I. Morrison) (International Press, Somerville, MA, 2013).
- J. Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, Volume 200 (Cambridge University Press, 2013).
- J. KOLLÁR AND S. J. KOVÁCS, Log canonical singularities are Du Bois, J. Am. Math. Soc. 23(3) (2010), 791–813.
- 17. J. Kollár and S. Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, Volume 134 (Cambridge University Press, 1998).
- S. J. KOVÁCS, K. SCHWEDE AND K. E. SMITH, The canonical sheaf of Du Bois singularities, Adv. Math. 224(4) (2010), 1618–1640.
- 19. Y. G. Prokhorov, Lectures on complements on log surfaces, Mathematical Society of Japan Memoirs, Volume 10 (Mathematical Society of Japan, Tokyo, 2001).
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56(1) (1992), 105–203.
- V. V. Shokurov, Letters of a bi-rationalist, VII, Ordered termination, Tr. Mat. Inst. Steklova 264 (2009), 184–208.