SEMI-NORMAL LOG CENTRES AND DEFORMATIONS OF PAIRS

JÁNOS KOLLÁR
Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA (kollar@math.princeton.edu)

Abstract

We show that some of the properties of log canonical centres of a log canonical pair also hold for certain subvarieties that are close to being a log canonical centre. As a consequence, we obtain that, in working with deformations of pairs where all the coefficients of the boundary divisor are bigger than $\frac{1}{2}$, embedded points never appear on the boundary divisor.

Keywords: log canonical centre; semi-normality; deformation of pairs
2010 Mathematics subject classification: Primary 14J15; 14J17; 14E30; 14C20

The philosophy of Shokurov [20] stresses the importance of understanding the log canonical (lc) centres of an lc pair (X, Δ) (see Definition 1). After the initial work of [9], a systematic study was started in [2]. For extensions, surveys and comprehensive treatments see $[\mathbf{3}, \mathbf{6}]$. The following are two of the principal results of $[\mathbf{2}, \mathbf{3}, \mathbf{6}]$.

- Any union of log canonical centres is semi-normal (see Definition 10).
- Any intersection of \log canonical centres is also a union of \log canonical centres.

The aim of this note is to extend these results to certain subvarieties of an lc pair (X, Δ) that are close to being a log canonical centre. To state our results, we need a definition. (See $[\mathbf{5}, \mathbf{1 7}]$ for basic concepts and results relating to the minimal model program (MMP). As in the above papers, we also work over a field of characteristic 0 .)

Definition 1. Let (X, Δ) be lc and let $Z \subset X$ be an irreducible subvariety. Following Shokurov and Ambro, the minimal log discrepancy of Z is the infimum of the numbers $1+a(E, X, \Delta)$ as E runs through all divisors over X whose centre is $Z[\mathbf{1}]$. (Here, $a(E, X, \Delta)$ denotes the discrepancy of E with respect to (X, Δ) (see $[\mathbf{1 7}, 2.25])$.) The minimal \log discrepancy is denoted by $\operatorname{mld}(Z, X, \Delta)$.

An irreducible subvariety $Z \subset X$ is called a \log centre of (X, Δ) if $\operatorname{mld}(Z, X, \Delta)<1$. If $Z \subset X$ is a divisor, then Z is a \log centre if and only if it is an irreducible component of Δ, and then its coefficient is $1-\operatorname{mld}(Z, X, \Delta)$.

A \log canonical centre is a \log centre whose minimal \log discrepancy equals 0 .
Our first aim is to prove the following. (See Definition 10 for semi-normality.)

Theorem 2. Let (X, Δ) be an lc pair and let $Z_{i} \subset X$ be \log centres for $i=1, \ldots, m$.
(1) If $\operatorname{mld}\left(Z_{i}, X, \Delta\right)<\frac{1}{6}$ for every i, then $Z_{1} \cup \cdots \cup Z_{m}$ is semi-normal.
(2) If $\sum_{i=1}^{m} \operatorname{mld}\left(Z_{i}, X, \Delta\right)<1$, then every irreducible component of $Z_{1} \cap \cdots \cap Z_{m}$ is a \log centre with minimal log discrepancy less than or equal to $\sum_{i=1}^{m} \operatorname{mld}\left(Z_{i}, X, \Delta\right)$.
A result of this type is not entirely surprising. By Shokurov's conjecture on the boundedness of complements (see $[\mathbf{2 0}, \S 5]$ or $\left[\mathbf{1 9}\right.$, Chapter 4]), if $\left(X, \sum a_{i} D_{i}\right)$ is lc and the a_{i} are close enough to 1 , then there exists another lc pair $\left(X, \Delta^{\prime}+\sum D_{i}\right)$ where the D_{i} all appear with coefficient 1 . Thus, the D_{i} are \log canonical centres of $\left(X, \Delta^{\prime}+\sum D_{i}\right)$; hence, their union is semi-normal and Du Bois [16]. In particular, there should exist a function $\epsilon(n)>0$ such that the union of the D_{i} with $a_{i}>1-\epsilon(\operatorname{dim} X)$ is semi-normal and Du Bois. The function $\epsilon(n)$ is not known, but it must converge to 0 at least doubly exponentially. (See $[\mathbf{1 2}, \S 8]$ for the conjectured optimal value of $\epsilon(n)$ and for examples.)

Thus, it is somewhat unexpected that, at least for semi-normality, the bound in Theorem $2(1)$ is independent of the dimension.

Note that we do not assert that these Z_{i} are \log canonical centres of some other lc pair $\left(X, \Delta^{\prime}\right)$; this is actually not true. In particular, unlike \log canonical centres, the Z_{i} are not in general Du Bois (see Example 5 (5)).

As Example $5(1)-(3)$ show, the value $\frac{1}{6}$ is optimal. There is, however, one important special case when it can be improved to $\frac{1}{2}$. The precise statement is given in Theorem 11; here, we mention a consequence that was the main reason of this project. The result implies that if we consider the moduli of lc pairs (X, Δ), where all the coefficients in Δ are greater than $\frac{1}{2}$, then we do not have to worry about embedded points on Δ. (Examples of Hassett show that embedded points do appear when the coefficients in Δ are less than or equal to $\frac{1}{2}$. See $[\mathbf{1 4}, \S 6]$ for an overview and the forthcoming [15] for details.)

Corollary 3. Let $\left(X, \Delta=\sum_{i \in I} b_{i} B_{i}\right)$ be lc. Let $f: X \rightarrow C$ be a morphism to a smooth curve such that $\left(X, X_{c}+\Delta\right)$ is lc for every fibre $X_{c}:=f^{-1}(c)$. Let $J \subset I$ be any subset such that $b_{j}>\frac{1}{2}$ for every $j \in J$, and set $B_{J}:=\bigcup_{j \in J} B_{j}$.

Then, $B_{J} \rightarrow C$ is flat with reduced fibres.
The extension of these results to the semi-log-canonical case requires additional considerations; these are treated in [15, Chapter 7].

The proof of Theorem 2 uses the following recently established result of Birkar [4] and Hacon and $\mathrm{Xu}[\mathbf{8}]$. For $\operatorname{dim} X \leqslant 4$, it also follows from earlier results of Shokurov [21].

Theorem 4. Let $g: X \rightarrow S$ be a projective, birational morphism and let $\Delta^{\prime}, \Delta^{\prime \prime}$ be effective \mathbb{Q}-divisors on X such that $\left(X, \Delta^{\prime}+\Delta^{\prime \prime}\right)$ is divisorially log terminal (dlt), \mathbb{Q}-factorial and $K_{X}+\Delta^{\prime}+\Delta^{\prime \prime} \sim_{\mathbb{Q}, g} 0$. The $\left(X, \Delta^{\prime \prime}\right)$-MMP with scaling over S then terminates with a \mathbb{Q}-factorial minimal model.

One of the difficulties in $[\mathbf{2}, \mathbf{6}]$ comes from making the proof independent of MMP assumptions. The proof in $[\mathbf{8}]$ uses several delicate properties of \log canonical centres, including some of the theorems of $[\mathbf{2}, \mathbf{6}]$. Thus, although the statement of Theorem 2 sharpens several of the theorems of $[\mathbf{2}, \mathbf{6}]$ on lc centres, it does not give a new proof.

Example 5. The following examples show that the numerical conditions of Theorem 2 are sharp.
(1) $\left(\mathbb{A}^{2}, \frac{5}{6}\left(x^{2}=y^{3}\right)\right)$ is lc, the curve $\left(x^{2}=y^{3}\right)$ is a log centre with mld $=\frac{1}{6}$, but it is not semi-normal.
(2) Consider $\left(\mathbb{A}^{3}, \frac{11}{12}\left(z-x^{2}-y^{3}\right)+\frac{11}{12}\left(z+x^{2}+y^{3}\right)\right)$. One can check that this is lc. The irreducible components of the boundary are smooth, but their intersection is a cuspidal curve, hence not semi-normal. It is, again, a \log centre with $\mathrm{mld}=\frac{1}{6}$.
(3) The image of $\mathbb{C}_{u v}^{2}$ by the map $x=u, y=v^{3}, z=v^{2}, t=u v$ is a divisor $D_{1} \subset X:=$ $(x y-z t) \subset \mathbb{C}^{4}$, and $\mathbb{C}^{2} \rightarrow D_{1}$ is an isomorphism outside the origin. Note that the zero set of $\left(y^{2}-z^{3}\right)$ is $D_{1}+2(y=z=0)$. Let D_{2}, D_{3} be two general members of the family of planes in the linear system $|(y=z=0)|$. We claim that $\left(X, \frac{5}{6} D_{1}+\frac{5}{6} D_{2}+\frac{5}{6} D_{3}\right)$ is lc. Here, D_{1} is a \log centre with mld $=\frac{1}{6}$, but semi-normality fails in codimension 3 on X.

In order to check the claim, blow up the ideal (x, z). On $\mathbb{C}_{u v}^{2}$ this corresponds to blowing up the ideal $\left(u, v^{2}\right)$.

On one of the charts we have the coordinates $x_{1}:=x / z, y, z$, and the birational transform D_{1}^{\prime} of D_{1} is given by $\left(y^{2}=z^{3}\right)$. On the other chart we have the coordinates $x, z_{1}:=z / x, t$, and D_{1}^{\prime} is given by $\left(z_{1} x^{3}=t^{2}\right)$. Thus, we see that $\left(B_{(x, z)} X, \frac{5}{6} D_{1}^{\prime}\right)$ is lc. The linear system $|(y=z=0)|$ becomes base-point free on the blow-up; hence, $\left(B_{(x, z)} X, \frac{5}{6} D_{1}^{\prime}+\frac{5}{6} D_{2}^{\prime}+\frac{5}{6} D_{3}^{\prime}\right)$ is lc and so is $\left(X, \frac{5}{6} D_{1}+\frac{5}{6} D_{2}+\frac{5}{6} D_{3}\right)$.
(4) Assume that $\left(X, \sum_{i \in I} a_{i} D_{i}\right)$ has a simple normal crossing and that $a_{i} \leqslant 1$ for every i. Let $J \subset I$ be a subset such that $a_{j}>0$, for every $j \in J$, and $\sum_{j \in J} a_{j}>|J|-1$. Every irreducible component of $\bigcap_{j \in J} D_{j}$ is then a \log centre of $\left(X, \sum_{i \in I} a_{i} D_{i}\right)$ with mld $=\sum_{j \in J}\left(1-a_{j}\right)=|J|-\sum_{j \in J} a_{j}$. In particular, D_{i} is a log centre of $\left(X, \sum_{i \in I} a_{i} D_{i}\right)$ with mld $=1-a_{i}$. Thus, Theorem $2(2)$ is sharp. By [17, §2.3], every log centre of $\left(X, \sum_{i \in I} a_{i} D_{i}\right)$ arises in this way.
(5) Let X be a smooth variety and let $D \subset X$ be a reduced divisor. Then, D is Du Bois if and only if (X, D) is lc. (See $[\mathbf{1 6}, \mathbf{1 8}]$ for much stronger results.) In particular, $D:=$ $\left(x^{2}+y^{3}+z^{7}=0\right) \subset \mathbb{A}^{3}$ is a \log centre of the lc pair $\left(\mathbb{A}^{3}, \frac{41}{42} D\right)$ with mld $=\frac{1}{42}$, but D is not Du Bois and it cannot be an lc centre of any lc pair (X, Δ). On the other hand, D is normal, hence semi-normal.

Log centres and birational maps

Let $g:\left(Y, \Delta_{Y}\right) \rightarrow\left(X, \Delta_{X}\right)$ be a proper birational morphism between lc pairs (with Δ_{X}, Δ_{Y} not necessarily effective) such that $K_{Y}+\Delta_{Y} \sim_{\mathbb{Q}} g^{*}\left(K_{X}+\Delta_{X}\right)$ and $g_{*} \Delta_{Y}=\Delta_{X}$.
If $Z \subset Y$ is a \log centre of $\left(Y, \Delta_{Y}\right)$, then $g(Z)$ is also a log centre of $\left(X, \Delta_{X}\right)$ with the same mld. Moreover, every \log centre of $\left(X, \Delta_{X}\right)$ is the image of a log centre of $\left(Y, \Delta_{Y}\right)$.

Thus, for any $\left(X, \Delta_{X}\right)$, we can use a log resolution $g:\left(Y, \Delta_{Y}\right) \rightarrow\left(X, \Delta_{X}\right)$ to reduce the computation of log centres to the simple normal crossing case considered in Example 5 (4).

This implies that an lc pair (X, Δ) has only finitely many log centres, and the union of all \log centres of codimension greater than or equal to 2 is the smallest closed subscheme $W \subset X$ such that $\left(X \backslash W,\left.\Delta\right|_{X \backslash W}\right)$ is canonical.

Proof of the divisorial case of Theorem 2. We prove Theorem 2 in the special case when $\left(X, \Delta^{\prime}\right)$ is dlt for some Δ^{\prime} and the $Z_{i}=: D_{i}$ are \mathbb{Q}-Cartier divisors.

Since $\left(X, \Delta^{\prime}\right)$ is dlt, X is Cohen-Macaulay and so is $\sum D_{i}[\mathbf{1 7}, 5.25]$. In particular, $\sum D_{i}$ satisfies Serre's condition S_{2}. An S_{2}-scheme is semi-normal if and only if it is semi-normal at its codimension 1 points. By localization at codimension 1 points, we are reduced to the case when $\operatorname{dim} X=2$.

Then, X has a quotient singularity at every point of $\sum D_{i}$, and Reid's covering method [10, 20.3] reduces the claim to the smooth case. It is now an elementary exercise to see that if $\left(\mathbb{A}^{2}, \sum a_{i} D_{i}\right)$ is lc and $a_{i}>\frac{5}{6}$, then $\sum D_{i}$ has only ordinary nodes, hence is semi-normal.

We next prove Theorem $2(2)$, assuming that $m=2$ and $Z_{i}=: D_{i}$ are \mathbb{Q}-Cartier divisors. Every irreducible component of $D_{1} \cap D_{2}$ then has codimension 2; thus, it is again enough to check the smooth surface case. The exceptional divisor of the blow-up of $x \in D_{1} \cap D_{2}$ shows that x is a log centre with mld $\leqslant\left(1-a_{1}\right)+\left(1-a_{2}\right)$.

Any argument along these lines breaks down completely if we only assume that $\left(X, \sum a_{i} D_{i}\right)$ is lc. In general, the D_{i} are not S_{2}, not even if $a_{i}=1$. Thus, semi-normality at codimension 1 points does not imply semi-normality.

Instead, we choose a suitable dlt model $\left(Y, \Delta_{Y}\right)$ of (X, Δ), use the proof of the divisorial case of Theorem 2 on it, and then descend semi-normally from Y to X. The next two lemmas construct $\left(Y, \Delta_{Y}\right)$.

Lemma 6. Let (X, Δ) be lc. There then exists a projective, birational morphism $g:\left(Y, \Delta_{Y}\right) \rightarrow(X, \Delta)$ such that
(1) $\left(Y, \Delta_{Y}\right)$ is dlt, \mathbb{Q}-factorial (and Δ_{Y} is effective);
(2) $K_{Y}+\Delta_{Y} \sim_{\mathbb{Q}} g^{*}\left(K_{X}+\Delta\right)$; and
(3) for every \log centre $Z \subset X$ of (X, Δ) there exists a divisor $D_{Z} \subset Y$ such that $g\left(D_{Z}\right)=Z$ and D_{Z} appears in Δ_{Y} with coefficient $1-\operatorname{mld}(Z, X, \Delta)$.

Proof. This is well known. Under suitable MMP assumptions, a proof is given in $[\mathbf{1 0}$, 17.10]. One can remove the MMP assumptions as follows.

A method of Hacon (see [16, 3.1]) constructs a model satisfying (1) and (2). Since there are only finitely many \log centres, it is enough to add the divisors D_{Z} one at a time. This is explained in $[\mathbf{1 3}, 37]$. A simplified proof can be found in $[\mathbf{7}, \S 4]$.

Lemma 7. Let $g: Y \rightarrow X$ be a projective, birational morphism and let Δ_{1}, Δ_{2} be effective \mathbb{Q}-divisors on Y. Assume that $\left(Y, \Delta_{1}+\Delta_{2}\right)$ is dlt, \mathbb{Q}-factorial and that $K_{Y}+\Delta_{1}+\Delta_{2} \sim_{\mathbb{Q}, g} 0$. By Theorem 4, a suitable $\left(Y, \Delta_{2}\right)$-MMP over X terminates with a \mathbb{Q}-factorial minimal model $g^{m}:\left(Y^{m}, \Delta_{2}^{m}\right) \rightarrow X$. Then,
(1) $-\Delta_{1}^{m}$ is g^{m}-nef,
(2) $g\left(\Delta_{1}\right)=g^{m}\left(\Delta_{1}^{m}\right)$ and
(3) $\operatorname{Supp}\left(g^{m}\right)^{-1}\left(g^{m}\left(\Delta_{1}^{m}\right)\right)=\operatorname{Supp} \Delta_{1}^{m}$.

Proof. Since $K_{Y}+\Delta_{1}+\Delta_{2} \sim_{\mathbb{Q}, g} 0$, we see that $K_{Y^{m}}+\Delta_{1}^{m}+\Delta_{2}^{m} \sim_{\mathbb{Q}, g^{m}} 0$. Thus, $-\Delta_{1}^{m} \sim_{\mathbb{Q}, g^{m}} K_{Y^{m}}+\Delta_{2}^{m}$ is g^{m}-nef. Since g^{m} has connected fibres and Δ_{1}^{m} is effective, every fibre of g^{m} is either contained in $\operatorname{Supp} \Delta_{1}^{m}$ or is disjoint from it. This proves (3).

In order to establish (2), we prove by induction that, at every intermediate step $g^{i}:\left(Y^{i}, \Delta_{2}^{i}\right) \rightarrow X$ of the MMP, we have that $g\left(\Delta_{1}\right)=g^{i}\left(\Delta_{1}^{i}\right)$. This is clear for $Y^{0}:=Y$. As we go from i to $i+1$, the image $g^{i}\left(\Delta_{1}^{i}\right)$ is unchanged if $Y^{i} \rightarrow Y^{i+1}$ is a flip. Thus, we need to show that $g^{i+1}\left(\Delta_{1}^{i+1}\right)=g^{i}\left(\Delta_{1}^{i}\right)$ if $\pi_{i}: Y^{i} \rightarrow Y^{i+1}$ is a divisorial contraction with exceptional divisor E^{i}. Let $F^{i} \subset E^{i}$ be a general fibre of $E^{i} \rightarrow X$. It is clear that

$$
g^{i+1}\left(\Delta_{1}^{i+1}\right) \subset g^{i}\left(\Delta_{1}^{i}\right)
$$

and equality fails only if E^{i} is a component of Δ_{1}^{i} but no other component of Δ_{1}^{i} intersects F^{i}. Since π_{i} contracts a $\left(K_{Y^{i}}+\Delta_{2}^{i}\right)$-negative extremal ray, $-\Delta_{1}^{i} \sim_{\mathbb{Q}, g^{i}} K_{Y^{i}}+\Delta_{2}^{i}$ shows that Δ_{1}^{i} is π_{i}-nef. However, an exceptional divisor has negative intersection with some contracted curve, which is a contradiction.

Proof of Theorem 2 (1). Set $\epsilon_{i}:=\operatorname{mld}\left(Z_{i}, X, \Delta\right)$. As in Lemma 6, let $g:\left(Y, \Delta_{Y}\right) \rightarrow$ (X, Δ) be a \mathbb{Q}-factorial dlt model and let $D_{i} \subset Y$ be divisors such that $a\left(D_{i}, X, \Delta\right)=$ $-1+\epsilon_{i}$ and $g\left(D_{i}\right)=Z_{i}$. Set $D:=\sum_{i=1}^{m} D_{i}$; then $g(D)=Z$.

Pick $1>c \geqslant 0$ such that $1-\epsilon_{i} \geqslant c$ for every i and write $\Delta_{Y}=c D+\Delta_{2}$, where Δ_{2} is effective. (It may have common components with D.) Apply Lemma 7 to get a \mathbb{Q}-factorial model $g^{m}: Y^{m} \rightarrow X$ such that
(1) $\left(Y^{m}, c D^{m}+\Delta_{2}^{m}\right)$ is lc,
(2) $\left(Y^{m}, \Delta_{2}^{m}\right)$ is dlt,
(3) $K_{Y^{m}}+c D^{m}+\Delta_{2}^{m} \sim_{\mathbb{Q}, g^{m}} 0$,
(4) $-D^{m}$ is g^{m}-nef and
(5) $\operatorname{Supp} D^{m}=\operatorname{Supp}\left(g^{m}\right)^{-1}(Z)$, and hence $g^{m}\left(D^{m}\right)=Z$.

If $\epsilon_{i}<\frac{1}{6}$ for every i, then we can assume that $c>\frac{5}{6}$. As we noted in the proof of the divisorial case of Theorem 2, in this case D^{m} is semi-normal and Lemma 8 shows that $g_{*}^{m} \mathcal{O}_{D^{m}}=\mathcal{O}_{Z}$. Thus, Z is semi-normal by Lemma 13 .

Lemma 8. Let Y, X be normal varieties and let $g: Y \rightarrow X$ be a proper morphism such that $g_{*} \mathcal{O}_{Y}=\mathcal{O}_{X}$. Let D be a reduced divisor on Y and let $\Delta^{\prime \prime}$ be an effective \mathbb{Q}-divisor on Y. Fix some $0<c \leqslant 1$. Assume that
(1) $\left(Y, c D+\Delta^{\prime \prime}\right)$ is $l c$,
(2) $\left(Y, \Delta^{\prime \prime}\right)$ is dlt,
(3) $K_{Y}+c D+\Delta^{\prime \prime} \sim_{\mathbb{Q}, g} 0$ and
(4) $-D$ is g-nef (and hence $D=g^{-1}(g(D))$).

Then $g_{*} \mathcal{O}_{D}=\mathcal{O}_{g(D)}$.

Proof. By pushing forward the exact sequence

$$
0 \rightarrow \mathcal{O}_{Y}(-D) \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

we obtain that

$$
\mathcal{O}_{X}=g_{*} \mathcal{O}_{Y} \rightarrow g_{*} \mathcal{O}_{D} \rightarrow R^{1} g_{*} \mathcal{O}_{X}(-D)
$$

Note that

$$
-D \sim_{\mathbb{Q}, g} K_{Y}+\Delta^{\prime \prime}+(1-c)(-D)
$$

and the right-hand side is of the form $K+\Delta+(g-$ nef $)$. Let $W \subset Y$ be an lc centre of $\left(Y, \Delta^{\prime \prime}\right)$. Then W is not contained in D, since then $\left(Y, c D+\Delta^{\prime \prime}\right)$ would not be lc along W. In particular, D is disjoint from the general fibre of $W \rightarrow X$ by (4). Thus, from Theorem 9 we conclude that none of the associated primes of $R^{1} g_{*} \mathcal{O}_{Y}(-D)$ is contained in $g(D)$. On the other hand, $g_{*} \mathcal{O}_{D}$ is supported on $g(D)$; hence, $g_{*} \mathcal{O}_{D} \rightarrow R^{1} g_{*} \mathcal{O}_{Y}(-D)$ is the zero map.

This implies that $\mathcal{O}_{X} \rightarrow g_{*} \mathcal{O}_{D}$ is surjective. This map factors through $\mathcal{O}_{g(D)}$; hence, $g_{*} \mathcal{O}_{D}=\mathcal{O}_{g(D)}$.

A curious property of \log centres

Assume that (X, Δ) is klt and let $Z \subset X$ be a union of arbitrary log centres. As in the proof of Theorem $2(1)$ we construct $\left(Y, c D+\Delta^{\prime \prime}\right)$, which is klt. Thus, as we apply Lemma 8, the higher direct images $R^{i} g_{*} \mathcal{O}_{Y}$ and $R^{i} g_{*} \mathcal{O}_{Y}(-D)$ are 0 for $i>0$. Thus, D is a reduced Cohen-Macaulay scheme D such that

$$
g_{*} \mathcal{O}_{D}=\mathcal{O}_{Z} \quad \text { and } \quad R^{i} g_{*} \mathcal{O}_{D}=0 \quad \text { for } i>0
$$

Moreover, D is a divisor on a \mathbb{Q}-factorial klt pair.
This looks like a very strong property for a reduced scheme Z, but so far I have been unable to derive any useful consequences from it. In fact, I do not know how to prove that not every reduced scheme Z admits such a morphism $g: D \rightarrow Z$.

We have used the following form of $[\mathbf{2}, 3.2,7.4]$ and $[\mathbf{6}, 2.52]$.
Theorem 9. Let $g: Y \rightarrow X$ be a projective morphism and let M be a line bundle on Y. Assume that $M \sim_{\mathbb{Q}, g} K_{Y}+L+\Delta$, where (Y, Δ) is dlt and, for every log canonical centre $Z \subset Y$, the restriction of L to the general fibre of $Z \rightarrow X$ is semi-ample.

Every associated prime of $R^{i} g_{*} M$ is then the image of a log canonical centre of (Y, Δ).
Proof of Theorem 2 (2). By induction on m, it is enough to prove Theorem 2 (2) for the intersection of two log centres.

Let $g:\left(Y, \Delta_{Y}\right) \rightarrow(X, \Delta)$ be a \mathbb{Q}-factorial dlt model and let $D_{1}, D_{2} \subset Y$ be divisors such that $a\left(D_{i}, X, \Delta\right)=-1+\operatorname{mld}\left(Z_{i}, X, \Delta\right)$ and $g\left(D_{i}\right)=Z_{i}$. Set $D:=D_{1}+D_{2}$. Pick any $c>0$ such that $\Delta_{Y}=c D+\Delta_{2}$, where Δ_{2} is effective, and apply Lemma 7. Thus, we get a \mathbb{Q}-factorial model $g^{m}: Y^{m} \rightarrow X$ such that
(1) $K_{Y^{m}}+c D^{m}+\Delta_{2}^{m} \sim_{\mathbb{Q}, g^{m}} 0$ and
(2) $\operatorname{Supp} D^{m}=\operatorname{Supp}\left(g^{m}\right)^{-1}\left(Z_{1} \cup Z_{2}\right)$.

By (2), every irreducible component $V_{j} \subset Z_{1} \cap Z_{2}$ is dominated by an irreducible component of $W_{j} \subset D_{1}^{m} \cap D_{2}^{m}$. By the proof of the divisorial case of Theorem 2, each W_{j} is a log centre of $\left(Y^{m}, c D^{m}+\Delta_{2}^{m}\right)$ with $\operatorname{mld} \leqslant \operatorname{mld}\left(Z_{1}, X, \Delta\right)+\operatorname{mld}\left(Z_{2}, X, \Delta\right)$. Thus, V_{j} is a log centre of (X, Δ) with the same minimal \log discrepancy.

Definition 10. Let X be a reduced scheme and let $U \subset X$ be an open subscheme. We say that X is semi-normal relative to U if every finite, universal homeomorphism $\pi: X^{\prime} \rightarrow X$ that is an isomorphism over U is an isomorphism.

If this holds with $U=\emptyset$, then X is called semi-normal. For more details, see [11, § I.7.2].
If X satisfies Serre's condition S_{2}, then semi-normality depends only on the codimension 1 points of X. That is, X is semi-normal relative to U if and only if there exists a closed subset $Z \subset X$ of codimension greater than or equal to 2 such that $X \backslash Z$ is semi-normal relative to U.

With this definition, we can state the theorem behind Corollary 3 as follows.
Theorem 11. Let $(X, S+\Delta)$ be an lc pair, where S is a reduced \mathbb{Q}-Cartier divisor. Let $Z_{i} \subset X$ be \log centres of (X, Δ) for $i=1, \ldots, m$.

If $\operatorname{mld}\left(Z_{i}, X, \Delta\right)<\frac{1}{2}$ for every i, then $S \cup Z_{1} \cup \cdots \cup Z_{m}$ is semi-normal relative to $X \backslash S$.
Proof. By passing to a cyclic cover and using Lemma 12, we may assume that S is Cartier. Note that none of the Z_{i} is contained in S.

We next closely follow the proof of Theorem 2 (1). Let $g:\left(Y, S_{Y}+\Delta_{Y}\right) \rightarrow(X, S+\Delta)$ be a \mathbb{Q}-factorial dlt model and let $D_{i} \subset Y$ be divisors such that $a\left(D_{i}, X, \Delta\right)=-1+$ $\operatorname{mld}\left(Z_{i}, X, \Delta\right)$ and $g\left(D_{i}\right)=Z_{i}$. Pick $c>\frac{1}{2}$ such that $1-\operatorname{mld}\left(Z_{i}, X, \Delta\right) \geqslant c$ for every i. Set $D:=S_{Y}+\sum_{i} D_{i}$ and write $\Delta_{Y}=c D+\Delta_{2}$, where Δ_{2} is effective.

Apply Lemma 7 to get a \mathbb{Q}-factorial model $g^{m}: Y^{m} \rightarrow X$ such that
(1) $\left(Y^{m}, c D^{m}+\Delta_{2}^{m}\right)$ is lc,
(2) $\left(Y^{m}, \Delta_{2}^{m}\right)$ is dlt,
(3) $K_{Y^{m}}+c D^{m}+\Delta_{2}^{m} \sim_{\mathbb{Q}, g^{m}} 0$,
(4) $-D^{m}$ is g^{m}-nef and
(5) $g^{m}\left(D^{m}\right)=S \cup Z_{1} \cup \cdots \cup Z_{m}$.

Using Lemmas 8 and 13 we see that it is enough to prove that D^{m} is semi-normal relative to $Y^{m} \backslash S_{Y}^{m}$.

Since Y^{m} is dlt, it is Cohen-Macaulay; hence, D^{m} is S_{2}. As we noted in Definition 10, it is sufficient to check semi-normality at the codimension 2 points of Y^{m}. As in the proof of the divisorial case of Theorem 2, this reduces to the smooth surface case. We see that if F is a smooth surface, $(F, S+c D)$ is lc and $c>\frac{1}{2}$, then, at every point of $S \cap D, D$ is smooth and intersects S transversally. Thus, $S+D$ is semi-normal at all points of $S \cap D$.

Again, note that the bound $\frac{1}{2}$ is sharp; $\left(\mathbb{A}^{2},(x=0)+\frac{1}{2}(x+y=0)+\frac{1}{2}(x-y=0)\right)$ is lc, but its boundary is not semi-normal at the origin.

Proof of Corollary 3. None of the irreducible components of Δ is contained in a fibre of f; hence, $f: B_{J} \rightarrow C$ is flat. The main point is to show that its fibres are reduced.

If $b_{j}>\frac{1}{2}$, then the corresponding divisor B_{j} is a \log centre and $\operatorname{mld}\left(B_{j}, X, \Delta\right)=$ $1-b_{j}<\frac{1}{2}$. Thus, by Theorem 11, $X_{c}+B_{J}$ is semi-normal relative to $X \backslash X_{c}$ for every $c \in C$. By Lemma 14, this implies that $X_{c} \cap B_{J}$ is reduced.

We have used three easy properties of semi-normal schemes.
Lemma 12. Let $g: Y \rightarrow X$ be a finite morphism of normal schemes. Let $Z \subset X$ be a closed, reduced subscheme and let $U \subset X$ be an open subscheme. If $\operatorname{red} g^{-1}(Z)$ is semi-normal relative to $g^{-1} U$, then Z is semi-normal relative to U.

Proof. We may assume that X, Y are irreducible and affine. Let $\pi: Z^{\prime} \rightarrow Z$ be a finite, universal homeomorphism that is an isomorphism over $Z \cap U$. Pick $\phi \in \mathcal{O}_{Z^{\prime}}$. Since red $g^{-1}(Z)$ is semi-normal relative to $g^{-1} U$, the pullback $\phi \circ g$ is a regular function on red $g^{-1}(Z)$. We can lift it to a regular function Φ_{X} on X. Since Y is normal,

$$
\Phi_{Y}:=\frac{1}{\operatorname{deg} X / Y} \operatorname{tr}_{X / Y} \Phi_{X}
$$

is regular on Y and $\left.\Phi_{Y}\right|_{Z}=\phi$. Thus, Z is semi-normal relative to U.
Lemma 13. Let $g: Y \rightarrow X$ be a proper morphism of reduced schemes such that $g_{*} \mathcal{O}_{Y}=\mathcal{O}_{X}$. Let $U \subset X$ be an open subscheme. If Y is semi-normal relative to $g^{-1} U$, then X is semi-normal relative to U.

Proof. Let $\pi: X^{\prime} \rightarrow X$ be a finite, universal homeomorphism that is an isomorphism over U. Set $Y^{\prime}:=\operatorname{red}\left(Y \times_{X} X^{\prime}\right)$ with projection $\pi_{Y}: Y^{\prime} \rightarrow Y$. Then, π_{Y} is a finite, universal homeomorphism that is an isomorphism over $g^{-1} U$. Thus, π_{Y} is an isomorphism, so we can factor g as $Y \rightarrow X^{\prime} \rightarrow X$. This implies that $\pi_{*} \mathcal{O}_{X^{\prime}} \subset g_{*} \mathcal{O}_{Y}=\mathcal{O}_{X}$; hence, π is an isomorphism.

Lemma 14. Let X be semi-normal relative to U. Let $X_{1}, X_{2} \subset X$ be closed, reduced subschemes such that $X=X_{1} \cup X_{2}$. Then, $\mathcal{O}_{X_{1} \cap X_{2}}$ has no nilpotent elements whose support is in $X \backslash U$.

Proof. Let $I \subset \mathcal{O}_{X_{1} \cap X_{2}}$ be the ideal sheaf of nilpotent elements whose support is in $X \backslash U$, and let $r\left(X_{1} \cap X_{2}\right) \subset X_{1} \cap X_{2}$ be the corresponding subscheme.

Let $r_{i}: \mathcal{O}_{X_{i}} \rightarrow \mathcal{O}_{X_{1} \cap X_{2}}$ and $\bar{r}_{i}: \mathcal{O}_{X_{i}} \rightarrow \mathcal{O}_{r\left(X_{1} \cap X_{2}\right)}$ denote the restriction maps. Then, \mathcal{O}_{X} sits in an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X_{1}}+\mathcal{O}_{X_{2}} \xrightarrow{\left(r_{1},-r_{2}\right)} \mathcal{O}_{X_{1} \cap X_{2}} \rightarrow 0
$$

The similar sequence

$$
0 \rightarrow A \rightarrow \mathcal{O}_{X_{1}}+\mathcal{O}_{X_{2}} \xrightarrow{\left(\bar{r}_{1},-\bar{r}_{2}\right)} \mathcal{O}_{r\left(X_{1} \cap X_{2}\right)} \rightarrow 0
$$

defines a coherent sheaf of \mathcal{O}_{X}-algebras A, and $\operatorname{Spec}_{X} A \rightarrow X$ is a finite, universal homeomorphism $\pi: X^{\prime} \rightarrow X$ that is an isomorphism over U. Since X is semi-normal relative to $U, A=\mathcal{O}_{X}$; hence, $X_{1} \cap X_{2}=r\left(X_{1} \cap X_{2}\right)$.

Acknowledgements. The author thanks V. Alexeev and O. Fujino for useful comments and F. Ambro for many corrections and remarks. Financial support was provided in part by the NSF (Grant DMS-0758275).

References

1. F. Ambro, On minimal log discrepancies, Math. Res. Lett. 6(5) (1999), 573-580.
2. F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220-239.
3. F. Ambro, Basic properties of log canonical centers, in Classification of algebraic varieties, European Mathematical Society Series of Congress Reports, pp. 39-48 (European Mathematical Society, Zürich, 2011).
4. C. Birkar, Existence of log canonical flips and a special LMMP, Publ. Math. IHES 115(1) (2012), 325-368.
5. C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Am. Math. Soc. 23(2) (2010), 405-468.
6. O. Fujino, Introduction to the log minimal model program for log canonical pairs, eprint (arXiv:0907.1506, 2009).
7. O. Fujino, Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Jpn Acad. A 87(3) (2011), 25-30.
8. C. D. Hacon and C. Xu, Existence of log canonical closures, Invent. Math. 192(1) (2013), 161-195.
9. Y. Kawamata, Subadjunction of log canonical divisors, II, Am. J. Math. 120(5) (1998), 893-899.
10. J. Kollár, Flips and abundance for algebraic threefolds, Astérisque, Volume 211 (Société Mathématique de France, Paris, 1992).
11. J. Kollár, Rational curves on algebraic varieties, A Series of Modern Surveys in Mathematics, Volume 32 (Springer, 1996).
12. J. Kollár, Singularities of pairs, in Algebraic geometry: Santa Cruz 1995, American Mathematical Society Translations, Volume 62, pp. 221-287 (American Mathematical Society, Providence, RI, 1997).
13. J. KOLLÁR, Which powers of holomorphic functions are integrable?, eprint (arXiv: 0805.0756, 2008).
14. J. Kollár, Moduli of varieties of general type, in Handbook of moduli: parameter spaces of curves (ed. G. Farkas and I. Morrison) (International Press, Somerville, MA, 2013).
15. J. Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, Volume 200 (Cambridge University Press, 2013).
16. J. Kollár and S. J. Kovács, Log canonical singularities are Du Bois, J. Am. Math. Soc. 23(3) (2010), 791-813.
17. J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, Volume 134 (Cambridge University Press, 1998).
18. S. J. Kovács, K. Schwede and K. E. Smith, The canonical sheaf of Du Bois singularities, Adv. Math. 224(4) (2010), 1618-1640.
19. Y. G. Prokhorov, Lectures on complements on log surfaces, Mathematical Society of Japan Memoirs, Volume 10 (Mathematical Society of Japan, Tokyo, 2001).
20. V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56(1) (1992), 105-203.
21. V. V. Shokurov, Letters of a bi-rationalist, VII, Ordered termination, Tr. Mat. Inst. Steklova 264 (2009), 184-208.
