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Abstract

Let C be a finitely accessible additive category with products, and let (Ui )i∈I be a family of representative
classes of finitely presented objects in C such that each object Ui is pure-injective. We show that C is a
Krull–Schmidt category if and only if every pure epimorphic image of the objects Ui is pure-injective.
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1. Introduction

Accessible categories in the sense of [1] and, in particular, finitely accessible
categories, have been reconsidered in the 1990s due to their important applications in
different areas of mathematics, and especially in model theory and homotopy theory.
Any finitely accessible additive category C may be embedded as a full subcategory of
the category Mod(A) of unitary right modules over the functor ring A of C such that the
pure exact sequences in C are those which become exact sequences in Mod(A) through
the embedding (for example, see [1, 6, 17]). Then C may be seen as being equivalent to
the full subcategory of the category Mod(A) consisting of flat right A-modules. This
equivalence offers the main technique for translating properties of modules over the
functor ring of C to properties of the finitely accessible category C. Such a method has
been used for studying various properties of finitely accessible categories, especially
related to purity, but not restricted to it: pure-semisimplicity [18], locally finite
representation type [9], Krull–Schmidt property [4] or existence of flat covers [8],
to mention just few of them.

A fundamental result in module theory is the classical Osofsky theorem, which
characterises semisimple rings as those rings for which every cyclic module is
injective, or equivalently, every finitely generated module is injective [15]. Since its
appearance in the 1960s, several generalisations have been considered in the literature.
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Some of the most important ones have been its module counterpart called the Osofsky–
Smith theorem [16], a ring version by Gómez Pardo and Guil Asensio [12] where
injectivity is replaced by pure-injectivity, and some categorical version for locally
finitely generated Grothendieck categories given by Gómez Pardo et al. [11]. Also,
in a recent paper, Crivei et al. [7] discussed the Osofsky–Smith theorem in locally
finitely generated Grothendieck categories.

The present paper has the following generalisation of the Osofsky theorem as
starting point: if R is a right pure-injective ring, then R is semiperfect if and only
if every pure epimorphic image of R is right pure-injective [12, Corollary 2.3]. As
noted in [12], a ring whose cyclic right modules are injective is von Neumann regular,
and the Osofsky theorem follows immediately from the previous result. We shall be
interested in establishing a similar theorem in finitely accessible additive categories
with products. We shall first generalise the above characterisation to the case of a
ring with enough idempotents, and then we shall use functor ring techniques to pass
to finitely accessible additive categories. Recall that a category is called semiperfect
if every finitely generated object has a projective cover. Let us note that in finitely
accessible additive categories there are enough pure-injective objects (see [13]), while
nontrivial projective objects (and so projective covers) might be missing completely,
even in the case of a Grothendieck category. For instance, if Q is the infinite quiver
•→ •→ · · · , K is a field, and RepK (Q) denotes the Grothendieck K -category of all
K -linear representations of Q, then the full K -subcategory of RepK (Q) consisting
of all locally finite-dimensional representations (that is, directed unions of finite-
dimensional representations) has no nonzero projective object (see [14]). On the other
hand, it is well known that every Krull–Schmidt ring is semiperfect. We shall see
that Krull–Schmidt categories are suitable for replacing semiperfectness in order to
generalise results to finitely accessible additive categories with products. Our main
theorem will be the following one: if C is a finitely accessible additive category with
products, and (Ui )i∈I is a family of representative classes of finitely presented objects
in C such that each object Ui is pure-injective, then C is a Krull–Schmidt category if
and only if every pure epimorphic image of the objects Ui is pure-injective.

2. Finitely accessible categories

Throughout all categories and functors will be additive. We recall, mainly
from [1, 17], some terminology on finitely accessible categories. An additive category
C is called finitely accessible if it has direct limits, the class of finitely presented objects
is skeletally small, and every object is a direct limit of finitely presented objects. Also,
C is called locally finitely presented if it is finitely accessible and cocomplete (that is,
it has all colimits), or equivalently, it is finitely accessible and complete (that is, it has
all limits). For instance, the category Mod(A) of unitary right modules over a ring A
with enough idempotents is a locally finitely presented Grothendieck category.

Let C be a finitely accessible additive category. By a sequence

0→ X
f
−→ Y

g
−→ Z→ 0
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in C we mean a pair of composable morphisms f : X→ Y and g : Y → Z such that
g f = 0. The framework of a finitely accessible additive category is a natural one in
which to consider and study purity-related notions. The above sequence in C is called
pure exact if it induces an exact sequence of abelian groups 0→ HomC(P, X)→
HomC(P, Y )→ HomC(P, Z)→ 0 for every finitely presented object P of C. This
implies that f and g form a kernel–cokernel pair, that f is a monomorphism and g an
epimorphism. In such a pure exact sequence f is said to be a pure monomorphism and
g a pure epimorphism. Pure-injectivity in C is defined in the usual way.

As already mentioned above, any finitely accessible additive category C may
be embedded as a full subcategory of Mod(A), where A is a ring with enough
idempotents, called the functor ring of C, such that the pure exact sequences in C
are those which become exact sequences in Mod(A) through the embedding. Then C
may be seen as being equivalent to the full subcategory Fl(Mod(A)) of the category
Mod(A) consisting of flat right A-modules. The functor ring A of C is constructed as
follows. If (Ui )i∈I is a representative set of finitely presented objects of C, then

A =
⊕
i∈I

⊕
j∈J

HomC(Ui ,U j )

as abelian group, with multiplication given by the rule: if f ∈ HomC(Ui ,U j ) and
g ∈ HomC(Uk,Ul), then f g = f ◦ g if i = l and zero otherwise. Then A is a ring with
enough idempotents, say A =

⊕
i∈I ei A =

⊕
i∈I Aei , where the idempotents ei are

the elements of A which are the identity on Ui and zero elsewhere, and they form a
complete family of pairwise orthogonal idempotents. The equivalence between C and
Fl(Mod(A)) is induced by the (Yoneda) functor H : C →Mod(A), given on objects by

H(X)=
⊕
i∈I

HomC(Ui , X).

Note that H(Ui )∼= ei A for each i ∈ I , and (ei A)i∈I is a family of finitely generated
projective generators of the category Mod(A). By a module we shall always under-
stand a unitary module.

We begin with two categorical preliminary results.

LEMMA 2.1. Let F :A→ B be a functor between locally finitely presented additive
categories such that F is left or right exact and preserves direct limits. Then F
preserves pure exact sequences.

PROOF. Let 0→ X→ Y → Z→ 0 be a pure exact sequence in A. Then it is a direct
limit of split exact sequences

0→ X i
αi
−−→ Yi

βi
−−→ Zi → 0

in A for i ∈ I [17, Theorem 5.2]. Assume that F is right exact, the case when F is left
exact being analogous. Then we have the induced exact sequence

F(X i )
F(αi )
−−−−→ F(Yi )

F(βi )
−−−−→ F(Zi )→ 0
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in B. Since αi is a section (split monomorphism) in A, F(αi ) is a section in B.
Moreover, since each (finitely) accessible category has split idempotents [1, 2.4],
B must be weakly idempotent complete, in the sense that every section is a kernel
(for example see [3]). Hence F(αi ) is a kernel in B. Now using [19, Ch. IV,
Proposition 2.4], which holds in additive categories, we must have split exact
sequences

0→ F(X i )
F(αi )
−−−−→ F(Yi )

F(βi )
−−−−→ F(Zi )→ 0

in B for each i ∈ I . Now take the direct limit of these split exact sequences. Note that
the direct limit functor is exact by [17, Corollaries 3.7 and 3.13] and F preserves direct
limits. Hence we have the exact sequence

0→ F(X)
F(α)
−−−→ F(Y )

F(β)
−−−→ F(Z)→ 0.

Again by [17, Theorem 5.2], the direct limit of split exact sequences is a pure exact
sequence in B, which finishes the proof. 2

LEMMA 2.2. Let F :A→ B be a functor between locally finitely presented additive
categories having a right adjoint R : B→A. Then R preserves pure-injective objects.

PROOF. Let B be a pure-injective object in B and let 0→ X→ Y → Z→ 0 be a
pure exact sequence in A. The adjoint pair (F, R) ensures that F is right exact and
preserves direct limits, hence Lemma 2.1 yields the pure exact sequence 0→ F(X)→
F(Y )→ F(Z)→ 0 in B. This induces the exact sequence

0→ HomB(F(Z), B)→ HomB(F(Y ), B)→ HomB(F(X), B)→ 0.

Using the adjointness we have the exact sequence

0→ HomA(Z , R(B))→ HomA(Y, R(B))→ HomA(X, R(B))→ 0

which shows that R(B) is pure-injective in A. 2

3. Complete pure-injectivity

Let C be a finitely accessible additive category. In the same manner as in [12], let
us call an object C of C completely pure-injective if every pure epimorphic image of
C is pure-injective. We shall need the following lemma.

LEMMA 3.1. Let B MA be a bimodule which is completely pure-injective as a right
A-module. Consider the adjoint functors T =−

⊗
B M :Mod(B)→Mod(A) and

H = HomA(M,−) :Mod(A)→Mod(B). If the restriction of H T to the full
subcategory of Mod(B) consisting of flat objects yields the identity, then B is a
completely pure-injective right B-module.

PROOF. Let B→ Z be a pure epimorphism in Mod(B). Since T is right exact and
preserves direct limits, Lemma 2.1 yields a pure epimorphism M ∼= T (B)→ T (Z)
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in Mod(A). Then T (Z) is pure-injective in Mod(A) by hypothesis. Since B is a flat
right B-module, so is Z . Then by Lemma 2.2, Z ∼= H T (Z) is a pure-injective right
B-module. Hence B is completely pure-injective in Mod(B). 2

Now we are in a position to show a generalisation of [12, Corollary 2.3] from rings
with identity to rings with enough idempotents. Note that the original proof uses the
fact that the ring has identity, so that we need a different approach.

THEOREM 3.2. Let A =
⊕

i∈I ei A =
⊕

i∈I Aei be a ring with enough idempotents
such that each ei A is right pure-injective. Then the following are equivalent.

(i) Each ei A is right completely pure-injective.
(ii) A is semiperfect.

PROOF. (i)⇒ (ii). Assume that each ei A is right completely pure-injective. For each
i ∈ I , denote Si = End(ei A) and consider the adjoint functors

Ti =−
⊗

Si

ei A :Mod(Si )→Mod(A),

Hi = HomA(ei A,−) :Mod(A)→Mod(Si ).

Since ei A is finitely presented, the restriction of Hi Ti to the full subcategory of
Mod(Si ) consisting of flat objects yields the identity [12, Lemma 2.4]. Then by
Lemma 3.1, each Si = End(ei A) is completely pure-injective, and consequently,
semiperfect by [12, Corollary 2.3]. Now by [5, Theorem 4.4], A is semiperfect.

(ii) ⇒ (i). Assume that A is semiperfect. Each ei A is finitely generated, and so
semiperfect by [20, 49.10]. Now let ei A→ N be a pure epimorphism in Mod(A).
Then N has a projective cover, say P→ N . However, since N is flat and is generated
by a finitely presented module, it follows that P ∼= N by [20, 36.4]. Hence N is a
direct summand of ei A, and so N is pure-injective. Thus each ei A is completely pure-
injective in Mod(A). 2

COROLLARY 3.3. Let A be a right pure-injective ring with enough idempotents. Then
the following are equivalent.

(i) A is right completely pure-injective.
(ii) A is semiperfect.

PROOF. (i)⇒ (ii). If A =
⊕

i∈I ei A =
⊕

i∈I Aei is right (completely) pure-injective,
then clearly so is each ei A. Now use Theorem 3.2.

(ii)⇒ (i). If A is semiperfect, then by an argument similar to that in the implication
(ii)⇒ (i) from Theorem 3.2, it follows that A is right completely pure-injective. 2

REMARK 3.4. As already observed in [12], the classical Osofsky theorem is a
consequence of a result of type Corollary 3.3. Indeed, if every cyclic right R-module
is injective, then the ring R is von Neumann regular [15, Lemma 1], and so every
submodule of a module is pure, and R is completely injective. Then R is semiperfect

https://doi.org/10.1017/S0004972711002085 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002085


[6] On Krull–Schmidt categories 95

by Corollary 3.3, and so every (pure) right ideal of R is a direct summand, which
shows that R is semisimple.

In what follows we shall prove a corresponding result for finitely accessible additive
categories with products. But first let us see how (completely) pure-injective objects
in such a category relate to (completely) pure-injective right modules over its functor
ring.

THEOREM 3.5. Let C be a finitely accessible additive category with products, and
let A be its functor ring. The equivalence between C and Fl(Mod(A)) restricts to an
equivalence between the full subcategories of:

(i) pure-injective objects of C and pure-injective flat objects of Mod(A);
(ii) completely pure-injective objects of C and completely pure-injective flat objects

of Mod(A).

PROOF. (i) By [13, Lemma 3], there is an equivalence between the pure-injective
objects of C and the cotorsion flat objects of Mod(A), induced by the usual functor
H : C →Mod(A). Recall that a module C is called cotorsion if Ext1A(F, C)= 0 for
every flat module F [21]. Since C has products, the category Mod(Aop) of unitary
left modules over the functor ring A of C is locally coherent (for example, see [17,
Theorem 6.1]), and one shows in the usual way that any cotorsion flat right A-module
is pure-injective (for example, see [21, Lemma 3.2.3]).

(ii) First let Y be a completely pure-injective object in C. Let H(Y )→ N be a pure
epimorphism in Mod(A). Then N is flat in Mod(A), and so N ∼= H(Z) for some object
Z of C. Moreover, we have an induced pure exact sequence 0→ X→ Y → Z→ 0
in C. Since Z is pure-injective in C, N ∼= H(Z) is pure-injective in Mod(A) by (i).
This shows that H(Y ) is completely pure-injective in Mod(A).

Now let N ∼= H(Y ) be a completely pure-injective flat object in Mod(A) for some
object Y of C. Let 0→ X→ Y → Z→ 0 be a pure exact sequence in C. Then the
sequence 0→ H(X)→ H(Y )→ H(Z)→ 0 is pure exact in Mod(A), hence H(Z)
is pure-injective in Mod(A) by hypothesis. Thus Z is pure-injective in C by (i), and so
Y is completely pure-injective in C. 2

Recall that a finitely accessible additive category with products is called Krull–
Schmidt if every finitely presented object is a finite direct sum of indecomposable
objects with local endomorphism ring [4].

THEOREM 3.6. Let C be a finitely accessible additive category with products, and let
(Ui )i∈I be a representative set of finitely presented objects of C. Assume that each
object Ui is pure-injective. Then the following are equivalent.

(i) Each Ui is completely pure-injective.
(ii) C is Krull–Schmidt.

PROOF. Let A =
⊕

i∈I ei A =
⊕

i∈I Aei be the functor ring of C. Consider the usual
functor H : C →Mod(A). Then each ei A ∼= H(Ui ) is pure-injective in Mod(A) by
Theorem 3.5.
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(i)⇒ (ii). Assume that each Ui is completely pure-injective. By Theorem 3.5, each
ei A ∼= H(Ui ) is now completely pure-injective in Mod(A). Then A is semiperfect by
Theorem 3.2, and so C is Krull–Schmidt (for example [4, Theorem 4.1.15]).

(ii) ⇒ (i). Assume that C is Krull–Schmidt. By [4, Theorem 4.1.15], A is semi-
perfect. Then each ei A is right completely pure-injective in Mod(A) by Theorem 3.2.
Finally, each Ui is completely pure-injective in C by Theorem 3.5. 2

As a consequence, we may extend [12, Corollary 2.6].

COROLLARY 3.7. Let A be a ring with enough idempotents such that each finitely
presented right A-module is pure-injective. Then the following are equivalent.

(i) Each finitely presented right A-module is completely pure-injective.
(ii) A is Krull–Schmidt.
(iii) A is semiperfect.

PROOF. (i)⇒ (ii). This implication follows from Theorem 3.6.
(ii)⇒ (iii). This is well known for rings with identity (for example see [10, p. 97]),

without any further assumption on A. We recall a short proof for completeness. Let P
be a finitely generated projective right A-module. Since A is Krull–Schmidt, we may
write P =

⊕n
i=1 Pi for some modules Pi with local endomorphism ring. However,

since each Pi is projective, each Pi is local (for example [2, Proposition 3.7]). Hence
A is semiperfect by [20, 49.10].

(iii)⇒ (i). The proof of this implication is similar to that for the implication (ii)⇒
(i) from Theorem 3.2. 2

We end the paper with the following related application (see also [11, Theorem 1]).

THEOREM 3.8. Let C be a finitely accessible Grothendieck category, and let (Ui )i∈I
be a representative set of finitely presented objects of C. Assume that each object Ui is
completely pure-injective and the functor ring A of C is von Neumann regular. Then A
is semisimple.

PROOF. Let A =
⊕

i∈I ei A =
⊕

i∈I Aei and consider the usual functor H : C →
Mod(A). By Theorem 3.5, each ei A ∼= H(Ui ) is completely pure-injective, and
consequently completely injective, because A is von Neumann regular. Hence
(ei A)i∈I is a family of completely injective finitely generated generators of Mod(A),
and so A is semisimple by [7, Theorem 2.10]. 2
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