# ON GROUPS WITH FINITE CONJUGACY CLASSES IN A VERBAL SUBGROUP 

COSTANTINO DELIZIA, PAVEL SHUMYATSKY and ANTONIO TORTORA ${ }^{\boxtimes}$

(Received 14 March 2017; accepted 29 March 2017; first published online 8 June 2017)


#### Abstract

Let $w$ be a group-word. For a group $G$, let $G_{w}$ denote the set of all $w$-values in $G$ and let $w(G)$ denote the verbal subgroup of $G$ corresponding to $w$. The group $G$ is an $F C(w)$-group if the set of conjugates $x^{G_{w}}$ is finite for all $x \in G$. It is known that if $w$ is a concise word, then $G$ is an $F C(w)$-group if and only if $w(G)$ is $F C$-embedded in $G$, that is, the conjugacy class $x^{w(G)}$ is finite for all $x \in G$. There are examples showing that this is no longer true if $w$ is not concise. In the present paper, for an arbitrary word $w$, we show that if $G$ is an $F C(w)$-group, then the commutator subgroup $w(G)^{\prime}$ is $F C$-embedded in $G$. We also establish the analogous result for $B F C(w)$-groups, that is, groups in which the sets $x^{G_{w}}$ are boundedly finite.


2010 Mathematics subject classification: primary 20E45; secondary 20F24.
Keywords and phrases: conjugacy class, FC-group, verbal subgroup.

## 1. Introduction

Let $G$ be a group. For subsets $X, Y$ of $G$, we denote by $X^{Y}$ the set $\left\{x^{y} \mid x \in X, y \in Y\right\}$. The group $G$ is called an $F C$-group if $x^{G}$ is finite for all $x \in G$. The group $G$ is said to be a $B F C$-group if $x^{G}$ is finite for all $x \in G$ and the number of elements in $x^{G}$ is bounded by a constant that does not depend on the choice of $x$. It was shown by Neumann that $G$ is a $B F C$-group if and only if the commutator subgroup $G^{\prime}$ is finite [6]. The first explicit bound for the order of $G^{\prime}$ was found by Wiegold [10] and the best known bound was obtained in [5] (see also [7, 9]).

A subgroup $H$ of $G$ is said to be $F C$-embedded in $G$ if $x^{H}$ is finite for all $x \in G$. The subgroup $H$ is $B F C$-embedded in $G$ if $x^{H}$ is finite for all $x \in G$ and the number of elements in $x^{H}$ is bounded by a constant that does not depend on the choice of $x$.

Let $w=w\left(x_{1}, \ldots, x_{n}\right)$ be a group-word, that is, a nontrivial element of the free group freely generated by $x_{1}, x_{2}, \ldots$. We denote by $G_{w}$ the (normal) set $\left\{w\left(g_{1}, \ldots, g_{n}\right) \mid g_{i} \in G\right\}$ of all $w$-values in $G$ and by $w(G)$ the verbal subgroup of $G$ corresponding to $w$, that is, the subgroup generated by $G_{w}$. The group $G$ is an $F C(w)$-group if $x^{G_{w}}$ is finite for

[^0]all $x \in G$. The group $G$ is a $B F C(w)$-group if $x^{G_{w}}$ is finite for all $x \in G$ and the number of elements in $x^{G_{w}}$ is bounded by a constant that does not depend on the choice of $x$.

Obvious examples of $F C(w)$-groups (respectively, $B F C(w)$-groups) are provided by groups $G$ in which the verbal subgroup $w(G)$ is $F C$-embedded (respectively, $B F C$ embedded) in $G$. For certain group-words $w$, there are examples of $F C(w)$-groups which are not of that type (see the example in [1, Section 4]). However, it is the main result of the paper [4] that, for many group-words $w$, the groups $G$ with $F C$ embedded verbal subgroups $w(G)$ are the only examples of $F C(w)$-groups. If the word $w$ is concise, then $G$ is an $F C(w)$-group if and only if the verbal subgroup $w(G)$ is $F C$-embedded in $G$. We recall that a group-word $w$ is called concise if the finiteness of the set $G_{w}$ always implies the finiteness of the verbal subgroup $w(G)$ (see [8, pages 119-121] for relevant results on concise words). It was shown in [2] that the order of $w(G)$ is bounded in terms of $\left|G_{w}\right|$ for each concise word $w$. Together with results from [1], this implies that, whenever $w$ is a concise word, the group $G$ is a $B F C(w)$-group if and only if $w(G)$ is $B F C$-embedded in $G$.

As the example in [1] shows, in the case where $w$ is not concise, the verbal subgroup $w(G)$ of an $F C(w)$-group $G$ need not be $F C$-embedded in $G$. The main goal of the present paper is to prove the following theorems. In the subsequent work, we write $w(G)^{\prime}$ to denote the commutator subgroup of the verbal subgroup $w(G)$.

Theorem 1.1. Let w be a group-word and let $G$ be an $F C(w)$-group. Then $w(G)^{\prime}$ is FC-embedded in $G$.

Theorem 1.2. Let w be a group-word and let Ge a BFC(w)-group. Then $w(G)^{\prime}$ is BFC-embedded in $G$.

In the course of proving the above theorems we establish the following facts that seem to be of independent interest (see Proposition 2.9 in the next section). The group $G$ is an $F C(w)$-group (respectively, BFC(w)-group) if and only if it is an $F C\left(w^{-1}\right)$ group (respectively, $B F C\left(w^{-1}\right)$-group).

Throughout the paper, we use the term ' $\{a, b, c, \ldots\}$-bounded' to mean 'bounded from above by some function depending only on the parameters $a, b, c, \ldots$. Moreover, if $X$ is a finite set, the 'order of $X$ ' means 'the number of elements in $X$ '.

## 2. Preliminary results

We start with some lemmas concerning arbitrary groups. The first one is well known (see, for instance, [3, Proposition 1]).

Lemma 2.1. Let w be a group-word and let $G$ be a group such that $\left|G_{w}\right|=m$. Then $w(G)^{\prime}$ has finite $m$-bounded order.

Lemma 2.2. Let w be a group-word, let $x$ be an element of a group $G$ and let $A$ be a subset of $G_{w}$ with $x^{G_{w}}=\left\{x^{a} \mid a \in A\right\}$. Then, for any $j \geq 1$ and $y_{1}, \ldots, y_{j} \in G_{w}$, there exist $a_{1}, \ldots, a_{j} \in A$ such that $x^{y_{1} \ldots y_{j}}=x^{a_{1} \ldots a_{j}}$.

Proof. We argue by induction on $j$. The case $j=1$ is clear. Let $j>1$ and assume that $x^{y_{1} \ldots y_{j-1}}=x^{a_{1} \ldots a_{j-1}}$ with $a_{1}, \ldots, a_{j-1} \in A$. Then

$$
x^{y_{1} \ldots y_{j}}=x^{a_{1} \ldots a_{j-1} y_{j}}=x^{y_{j} a_{1} \ldots a_{j-1}},
$$

where $b=\left(a_{1} \ldots a_{j-1}\right)^{-1}$. Since $y_{j}{ }^{b} \in G_{w}, x^{y_{j}}=x^{a_{j}}$ for some $a_{j} \in A$, and so $x^{y_{1} \ldots y_{j}}=$ $x^{a_{j} a_{1} \ldots a_{j-1}}$. After renumbering the $w$-values $a_{i}$, we obtain the required result.

Recall that a simple commutator of weight $k \geq 1$ in elements of a subset $A$ of a group is a left-normed commutator

$$
\left[b_{1}, b_{2}, b_{3}, \ldots, b_{k}\right]=\left[\ldots\left[\left[b_{1}, b_{2}\right], b_{3}\right], \ldots, b_{k}\right],
$$

where each $b_{i} \in A$.
Lemma 2.3. Let $x, b_{1}, \ldots, b_{j}$ be elements of a group $G$. Then the simple commutator $\left[x, b_{1}, \ldots, b_{j}\right]$ can be written as a product of $2^{j}$ conjugates $x^{ \pm d_{i}}$, where each $d_{i}$ is a product of at most $j$ factors from the set $\left\{b_{1}, \ldots, b_{j}\right\}$. Here the product of zero factors is understood as the trivial element.

Proof. This is an easy induction on $j$, using the fact that $[x, b]=x^{-1} x^{b}$.
As usual, the centre of a group $G$ is denoted by $Z(G)$.
Lemma 2.4. Let $G$ be a group such that the commutator subgroup of $G / Z(G)$ has finite order $m$, and let $A$ be a finite subset of $G$ with $|A|=n$. Then the set of simple commutators in elements of $A$ has finite $\{m, n\}$-bounded order. Moreover, any simple commutator in elements of A has weight at most $m+1$.

Proof. Let $X$ be the set of all simple commutators in elements of $A$. By hypothesis, $X$ is finite modulo $Z(G)$. Let $\left\{x_{1}, \ldots, x_{l}\right\}$ be a maximal subset of $X$ consisting of commutators which are pairwise distinct modulo $Z(G)$. Clearly, $l \leq m+n$. Put

$$
Y=A \cup\left\{\left[x_{k}, a\right] \mid a \in A, 1 \leq k \leq l\right\} .
$$

Thus $|Y| \leq n(l+1)$. We will show that $X \subseteq Y$. Let $x=\left[a_{1}, \ldots, a_{j}\right] \in X$, with $a_{i} \in A$. If $j=1$, then $x \in A \subseteq Y$. Assume that $j>1$. Since $\left[a_{1}, \ldots, a_{j-1}\right]=x_{k} z$ for some $k$ with $1 \leq k \leq l$ and $z \in Z(G)$,

$$
x=\left[\left[a_{1}, \ldots, a_{j-1}\right], a_{j}\right]=\left[x_{k} z, a_{j}\right]=\left[x_{k}, a_{j}\right] \in Y .
$$

Thus, indeed, $X \subseteq Y$. Obviously, $Y \subseteq X$ and so $X=Y$. It follows that $X$ has at most $n(m+n+1)$ elements.

We will now show that every element of $X$ has weight at most $m+1$. Since the commutator subgroup of $G / Z(G)$ has order $m$, the commutators $x_{1}, \ldots, x_{l}$ can be chosen of weight at most $m$. On the other hand, by the above, any $x \in X \backslash A$ can be written as $\left[x_{k}, a\right]$ for some $k \in\{1, \ldots, l\}$ and $a \in A$. Therefore $x$ has weight at most $m+1$.

Given an infinite subgroup $H$ of a group $G$ and an element $a \in G$, it may happen that $H^{a}<H$ and $H^{a} \neq H$. Indeed, let $n \geq 2$ be an integer and let $\alpha$ be the automorphism of the additive group of rational numbers $\mathbb{Q}$ sending every $x \in \mathbb{Q}$ to $n x$. Obviously, $\mathbb{Z}^{\alpha}=n \mathbb{Z}$ and so $\mathbb{Z}^{\alpha}<\mathbb{Z}$. Our next lemma gives a sufficient condition under which the containment $H^{a} \leq H$ implies the equality $H^{a}=H$.

Lemma 2.5. Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$ such that the commutator subgroup of $N / Z(N)$ is finite. Suppose that $H^{a} \leq H$ for some $a \in N$. Then $H^{a}=H$.

Proof. It is enough to prove that $H^{a^{-1}} \leq H$. Suppose, on the contrary, that there exists $h \in H$ such that $h^{a^{-1}} \notin H$. Since $[h, a] \in H$ and $\left[h, a^{-1}\right] \notin H$,

$$
[a,[a, h]]=[h, a]^{a}[h, a]^{-1} \in H \cap N^{\prime}
$$

and

$$
[a,[a, h]]^{a^{-1}}=\left[a, h, a^{-1}\right]=[h, a][a, h]^{a^{-1}}=[h, a]\left[h, a^{-1}\right] \notin H \cap N^{\prime}
$$

Note that $\left(H \cap N^{\prime}\right)^{a} \leq H \cap N^{\prime}$ and $N^{\prime}$ is finite modulo $Z(N)$, so $\left(H \cap N^{\prime}\right)^{a}=H \cap N^{\prime}$ modulo $Z(N)$. It follows that $[a,[a, h]]^{a^{-1}}=h_{1} z$ for some $h_{1} \in H \cap N^{\prime}$ and $z \in Z(N)$. Hence $[a,[a, h]]={h_{1}}^{a} z$. Since $h_{1}{ }^{a} \in H \cap N^{\prime}$, we conclude that $z \in H \cap N^{\prime}$. In particular, $[a,[a, h]]^{a^{-1}} \in H \cap N^{\prime}$, which is a contradiction.

Let $w$ be a group-word and let $G$ be a group. A subgroup $H$ of $w(G)$ is said to have finite w-index if the elements of $G_{w}$ lie in finitely many right cosets of $H$ in $w(G)$. The subgroup $H$ has finite $w$-index $m$ if there are exactly $m$ right cosets of $H$ in $w(G)$ containing elements of $G_{w}$. The centraliser $C_{w(G)}(x)$ has finite $w$-index $m$ if and only if $\left|x^{G_{w}}\right|=m$. Thus, $G$ is an $F C(w)$-group if and only if $C_{w(G)}(x)$ has finite $w$-index for all $x \in G$. Further, $G$ is a $B F C(w)$-group if and only $C_{w(G)}(x)$ has finite $w$-index bounded by a constant which does not depend on the choice of $x \in G$.

The following lemma is taken from [4]. Its proof is straightforward.
Lemma 2.6. Let w be a group-word, let $G$ be a group and let $H_{1}, \ldots, H_{n}$ be subgroups of $w(G)$ having finite $w$-indices $m_{1}, \ldots, m_{n}$, respectively. Then $\bigcap_{i=1}^{n} H_{i}$ has finite $w$-index at most $m_{1} \ldots m_{n}$.

Lemma 2.7. Let w be a group-word.
(i) If $G$ is a finitely generated $F C(w)$-group, then the set $(G / Z(G))_{w}$ is finite.
(ii) If $G$ is an n-generator BFC(w)-group such that $\left|x^{G_{w}}\right| \leq m$ for all $x \in G$, then the set $(G / Z(G))_{w}$ has finite order at most $m^{n}$.
Proof. Write $G=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Since $G$ is an $F C(w)$-group, for every $i=1, \ldots, n$ the subgroup $C_{w(G)}\left(x_{i}\right)$ has finite $w$-index, say, $m_{i}$. It is clear that

$$
w(G) \cap Z(G)=\bigcap_{1 \leq i \leq n} C_{w(G)}\left(x_{i}\right)
$$

Thus, by Lemma 2.6, $w(G) \cap Z(G)$ has finite $w$-index at most $m_{0}=m_{1} m_{2} \ldots m_{n}$. It follows that $(G / Z(G))_{w}$ has at most $m_{0}$ elements. Finally, if $\left|x^{G_{w}}\right| \leq m$ for all $x \in G$, then $m_{i} \leq m$ for all $i=1, \ldots, n$. Hence $m_{0} \leq m^{n}$.

Note that, for any element $g$ of a group $G, g \in G_{w}$ if and only if $g^{-1} \in G_{w^{-1}}$. Thus $w(G)=w^{-1}(G)$ and so $C_{w(G)}(x)=C_{w^{-1}(G)}(x)$ for all $x \in G$. We do not know whether the condition that $C_{w(G)}(x)$ has finite $w$-index necessarily implies that $C_{w(G)}(x)$ also has finite $w^{-1}$-index. Our next goal is to show that this is true in the case where $G$ is an $F C(w)$-group.

Lemma 2.8. Let w be a group-word and let $x$ be an element of a group $G$ such that $C_{w(G)}(x)$ has finite w-index $m$. Suppose that $C_{w(G)}(x)$ contains a subgroup $N$ of finite index $l$ which is normal in $w(G)$. Then the $w^{-1}$-index of $C_{w(G)}(x)$ is at most $m l$.

Proof. Put $C=C_{w(G)}(x)$. We have $G_{w} \subseteq \bigcup_{i=1}^{m} C g_{i}$ and $C=\bigcup_{j=1}^{l} c_{j} N$, for some $g_{i} \in G_{w}$ and $c_{j} \in C$. Then $G_{w} \subseteq \bigcup_{i, j} c_{j} N g_{i}$ and so $G_{w^{-1}} \subseteq \bigcup_{i, j} g_{i}^{-1} N c_{j}^{-1}$. Since $N$ is normal in $w(G)$, we get $G_{w^{-1}} \subseteq \bigcup_{i, j} C g_{i}^{-1} c_{j}^{-1}$.

The next proposition provides the main technical tool for the proof of our main results.

Proposition 2.9. Let $w=w\left(x_{1}, \ldots, x_{n}\right)$ be a group-word .
(i) The group $G$ is an $F C(w)$-group if and only if it is an $F C\left(w^{-1}\right)$-group.
(ii) The group $G$ is a $B F C(w)$-group if and only if it is a BFC $\left(w^{-1}\right)$-group. More precisely, if $G$ is a $B F C(w)$-group such that $C_{w(G)}(x)$ has w-index at most $m$ for all $x \in G$, then $C_{w(G)}(x)$ has finite $\{m, n\}$-bounded $w^{-1}$-index.

Proof. We will deal only with the statement (ii), since the proof of (i) can be obtained in the same way by simply forgetting the bounds. More precisely, assuming that $G$ is a $B F C(w)$-group such that $C_{w(G)}(x)$ has finite $w$-index at most $m$ for all $x \in G$, we will prove that $C_{w(G)}(x)$ has finite $\{m, n\}$-bounded $w^{-1}$-index for all $x \in G$.

Let $M$ be the monoid generated by $G_{w}$, that is, the set of all finite products of $w$-values in $G$ (here, and in the subsequent work, the empty product stands for the element 1). Take any $x \in G$ and put $H=\left\langle x^{M}\right\rangle$. Choose elements $a_{1}, \ldots, a_{m} \in G_{w}$ such that $x^{G_{w}}=\left\{x^{a_{1}}, \ldots, x^{a_{m}}\right\}$. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and denote by $A_{0}$ the set of all simple commutators of the form $\left[x, b_{1}, \ldots, b_{j}\right]$, with $j \geq 1$ and $b_{1}, \ldots, b_{j} \in A$. Note that $\left[x, b_{1}, \ldots, b_{j}\right] \in H$ by Lemma 2.3. Hence $\left\langle x, A_{0}\right\rangle \leq H$. We claim that $H=\left\langle x, A_{0}\right\rangle$. For any $j \geq 1, x^{b_{1} \ldots b_{j}} \in\left\langle x, A_{0}\right\rangle$ for any $b_{1}, \ldots, b_{j} \in A$. In fact, $x^{b_{1}}=x\left[x, b_{1}\right] \in\left\langle x, A_{0}\right\rangle$ and, if $j>1$, the induction hypothesis implies that $x^{b_{1} \ldots b_{j}}=\left(x^{b_{1} \ldots b_{j-1}}\right)^{b_{j}} \in\left\langle x, A_{0}\right\rangle^{b_{j}} \leq\left\langle x, A_{0}\right\rangle$. On the other hand, for any $j \geq 1$ and $y_{1}, \ldots, y_{j} \in G_{w}$, by Lemma 2.2, $x^{y_{1} \ldots y_{j}}=x^{b_{1} \ldots b_{j}}$ for some $b_{1}, \ldots, b_{j} \in A$. Thus $x^{y_{1} \ldots y_{j}} \in\left\langle x, A_{0}\right\rangle$ and therefore $H=\left\langle x, A_{0}\right\rangle$, as claimed.

Put $C=C_{w(G)}(x)$. Since $w$ depends on $n$ variables and $C$ has finite $w$-index $m$, we can choose a subgroup $J$ generated by at most $m n+1$ elements of $G$ with $x \in J$ and $a_{1}, \ldots, a_{m} \in J_{w}$. By (ii) of Lemma 2.7, $(J / Z(J))_{w}$ has finite $\{m, n\}$-bounded order. Then, by Lemma 2.1, $w(J)^{\prime}$ has finite $\{m, n\}$-bounded order modulo $Z(J)$. Applying Lemma 2.5, we get $H^{a}=H$ for all $a \in A$, from which it follows that $H^{y}=H$ for all $y \in G_{w}$. Indeed, for any $y \in G_{w}$, there exists $a \in A$ such that $y \in C a$. Of course, both $C$ and $a$ normalise $H$. Hence $y \in N_{G}(H)$, as required. Thus $H$ is normal in $w(G)$.

Let $B$ be the subgroup generated by $A$ and all commutators $[x, a]$ with $a \in A$. Since $B \leq w(J)$, the commutator subgroup of $B / Z(B)$ has finite $\{m, n\}$-bounded order. By Lemma 2.4 used with $B$ in place of $G$, there are only $\{m, n\}$-boundedly many commutators of the form $\left[x, b_{1}, \ldots, b_{j}\right]$, with $j \geq 1$ and $b_{1}, \ldots, b_{j} \in A$. Moreover, the weight of these commutators is at most some $\{m, n\}$-bounded number $k$. Since $H=\left\langle x, A_{0}\right\rangle$, it follows from Lemma 2.3 that

$$
H=\left\langle x^{d} \mid d \in D\right\rangle
$$

where $D$ is the set of all products of at most $k$ factors from $A$. Obviously, $D$ is finite with $\{m, n\}$-boundedly many elements. Let $S$ be the set of all right cosets of $C$ in $w(G)$ containing products of at most $k$ factors from $G_{w}$. By Lemma 2.2, $S$ is precisely the set of all right cosets of $C$ containing products of at most $k$ factors from $A$. Write $S=\left\{C d_{1}, \ldots, C d_{s}\right\}$, where $d_{i} \in D$ and $s$ is $\{m, n\}$-bounded. Clearly, $C$ acts by conjugation on the set $S$. Denote by $K$ the kernel of this action. Then the index $|C: N|$ is finite and depends only on $s$, so it is $\{m, n\}$-bounded.

We claim that $K \leq C_{w(G)}(H)$. For any $c \in K, C d_{i}^{c}=C d_{i}$ for all $i=1, \ldots, s$. Therefore $d_{i} d_{i}^{-c} \in C$ and thus $c \in C^{d_{i}}$ for all $i$, and hence $K \leq C \cap C^{d_{1}} \cap \cdots \cap C^{d_{s}}$. Now let $c \in C \cap C^{d_{1}} \cap \cdots \cap C^{d_{s}}$. For any $d \in D$, there exists $i \in\{1, \ldots, s\}$ such that $C d=C d_{i}$, so $x^{d}=x^{d_{i}}$ and $\left[c, x^{d}\right]=1$. Hence $[c, H]=1$, which proves that $C \cap C^{d_{1}} \cap \cdots \cap C^{d_{s}} \leq C_{w(G)}(H)$. Consequently, $K \leq C \cap C^{d_{1}} \cap \cdots \cap C^{d_{s}} \leq C_{w(G)}(H)$.

Finally, put $N=C_{w(G)}(H)$. Since $H$ is normal in $w(G)$, the subgroup $N$ is normal in $w(G)$. Also, by the above, $K \leq N$. It follows that $|C: N| \leq|C: K|$ is $\{m, n\}$-bounded. By Lemma 2.8, we conclude that $C_{w(G)}(x)$ has finite $\{m, n\}$-bounded $w^{-1}$-index, as required.

## 3. Proofs of Theorems 1.1 and 1.2

Lemma 3.1. Let $w=w\left(x_{1}, \ldots, x_{n}\right)$ be an arbitrary group-word and let

$$
v=\left[w\left(x_{1}, \ldots, x_{n}\right), w\left(x_{n+1}, \ldots, x_{2 n}\right)\right] .
$$

Let $G$ be a BFC(w)-group such that $\left|x^{G_{w}}\right| \leq m$ for all $x \in G$. Then $G$ is a BFC(v)-group such that $x^{G_{v}}$ has only $\{m, n\}$-boundedly many elements for all $x \in G$.

Proof. Let $y \in G_{v}$. We have $y=z t$, where $z=w\left(g_{1}, \ldots, g_{n}\right)^{-1} \in\left(G_{w}\right)^{-1}=G_{w^{-1}}$ and $t=w\left(g_{1}, \ldots, g_{n}\right)^{w\left(g_{n+1}, \ldots, g_{2 n}\right)} \in G_{w}$, for some $g_{i} \in G$. Given $x \in G$, put $C=C_{w(G)}(x)$ and let $a_{1}, \ldots, a_{m} \in G_{w}$ be such that $x^{G_{w}}=\left\{x^{a_{1}}, \ldots, x^{a_{m}}\right\}$. Thus $G_{w} \subseteq \bigcup_{1=1}^{m} C a_{i}$. Furthermore, by Proposition 2.9(ii), $C$ has finite $\{m, n\}$-bounded $w^{-1}$-index, say, $m^{\prime}$. So there exist $b_{1}, \ldots, b_{m^{\prime}} \in G_{w^{-1}}$ such that $G_{w^{-1}} \subseteq \bigcup_{j=1}^{m^{\prime}} C b_{j}$. It follows that $z=c_{1} b_{j}$ and $t=c_{2} a_{i}$ for some $c_{1}, c_{2} \in C$ and $i, j$. Hence

$$
x^{y}=x^{c_{1} b_{j} c_{2} a_{i}}=x^{b_{j} c_{2} a_{i}}=x^{b_{k} a_{i}}
$$

where $x^{b_{j}{ }^{c_{2}}}=x^{b_{k}}, 1 \leq k \leq m^{\prime}$ and $1 \leq i \leq m$. This proves the result.

Lemma 3.2. Let $w=w\left(x_{1}, \ldots, x_{n}\right)$ be an arbitrary group-word and let

$$
v=\left[w\left(x_{1}, \ldots, x_{n}\right), w\left(x_{n+1}, \ldots, x_{2 n}\right)\right] .
$$

Let $G$ be a BFC(w)-group such that $\left|x^{G_{w}}\right| \leq m$ for all $x \in G$. There exists an $\{m, n\}$ bounded positive integer e such that $y^{e} \in Z(G)$ for any $y \in G_{v}$.

Proof. Take any $y \in G_{v}$. Then there exist $y_{1}, \ldots, y_{2 n} \in G$ such that

$$
y=\left[w\left(y_{1}, \ldots, y_{n}\right), w\left(y_{n+1}, \ldots, y_{2 n}\right)\right] .
$$

Let $y_{0}$ be an arbitrary element of $G$, and put $J=\left\langle y_{i} \mid 0 \leq i \leq 2 n\right\rangle$. Of course, $y \in v(J)$, and $J$ is a finitely generated $B F C(w)$-group such that $\left|x^{J_{w}}\right| \leq m$, for all $x \in J$. By Lemma 2.7(ii), the set $(J / Z(J))_{w}$ has finite order at most $m^{2 n+1}$. Hence, by Lemma 2.1, the commutator subgroup of $w(J / Z(J))$ has finite $\{m, n\}$-bounded order. In particular, $v(J)$ has finite $\{m, n\}$-bounded order modulo $Z(J)$, say, $e$. Therefore $y^{e} \in Z(J)$ and $\left[y^{e}, y_{0}\right]=1$.

We are now in the position to prove Theorem 1.2.
Proof of Theorem 1.2. Recall that $w=w\left(x_{1}, \ldots, x_{n}\right)$ is a group-word and that $G$ is a $B F C(w)$-group. We will prove that $w(G)^{\prime}$ is $B F C$-embedded in $G$.

Set $v=\left[w\left(x_{1}, \ldots, x_{n}\right), w\left(x_{n+1}, \ldots, x_{2 n}\right)\right]$ and note that $v(G)=w(G)^{\prime}$. Assume that $\left|x^{G_{w}}\right| \leq m_{0}$ for all $x \in G$. By Lemma 3.1, $G$ is a $B F C(v)$-group such that $x^{G_{v}}$ has $\left\{m_{0}, n\right\}$ boundedly many elements, say, at most $m$, for all $x \in G$. Let $x$ be an arbitrary element of $G$ and choose $a_{1}, \ldots, a_{m} \in G_{v}$ such that $x^{G_{v}}=\left\{x^{a_{1}}, \ldots, x^{a_{m}}\right\}$. Define an order $<$ on the set of all (formal) products of the form $a_{i_{1}} \ldots a_{i_{j}}$, with $1 \leq i_{k} \leq m$ and $j \geq 1$, as follows. Put

$$
\begin{equation*}
a_{i_{1}} \ldots a_{i_{j}}<a_{i_{1}^{\prime}} \ldots a_{i_{j^{\prime}}^{\prime}} \tag{*}
\end{equation*}
$$

if and only if one of the following conditions is satisfied: $j<j^{\prime}$, or $j=j^{\prime}$ and there is a positive integer $l \leq j$ such that $i_{l}<i_{l}^{\prime}$ and $i_{k}=i_{k}^{\prime}$ for all $k>l$.

Let $y$ be an arbitrary element of $v(G)$. Then $y=y_{1} \ldots y_{j}$, where each $y_{i} \in G_{v} \cup G_{v}^{-1}$. It is easy to see that the word $v$ has the property that $G_{v}^{-1}=G_{v}$ and so each $y_{i} \in G_{v}$. Lemma 2.2 tells us that

$$
x^{y}=x^{a_{i_{1}} \ldots a_{i_{j}}}
$$

with $1 \leq i_{k} \leq m$. Clearly, we can choose $a_{i_{1}} \ldots a_{i_{j}}$ to be the smallest (in the sense of the order $<$ ) product of elements from $\left\{a_{1}, \ldots, a_{m}\right\}$ such that $x^{y}=x^{a_{i 1} \ldots a_{i_{j}}}$. Let us now show that $i_{1} \geq i_{2} \geq \cdots \geq i_{j}$. Suppose that $i_{k}<i_{k+1}$ for some $k$. Then

$$
x^{y}=x^{a_{i 1} \ldots a_{i_{k-1}} a_{i_{k}} a_{k_{k+1}} a_{i_{k+2} \ldots a_{i_{j}}}=x^{a_{i_{1}} \ldots a_{i_{k-1}} b a_{i_{k}} a_{i_{k+2}} \ldots a_{i_{j}}}, ~}
$$

where $b=a_{i_{k}} a_{i_{k+1}} a_{i_{k}}^{-1} \in G_{v}$. In view of Lemma 2.2,

$$
x^{a_{i_{1}} \ldots a_{i_{k-1}} b}=x^{a_{i_{1}} \ldots a_{i_{k-1}^{\prime}} a_{i_{k+1}^{\prime}}}
$$

for some $1 \leq i_{1}^{\prime}, \ldots, i_{k-1}^{\prime}, i_{k+1}^{\prime} \leq m$, so that

$$
x^{y}=x^{a_{i_{1}} \ldots a_{i_{k-1}^{\prime}}} a_{i_{k+1}} a_{i_{k}} a_{i_{k+2} \ldots} \ldots a_{i_{j}} .
$$

This contradicts the choice of the product $a_{i_{1}} \ldots a_{i_{j}}$ because

$$
a_{i_{1}} \ldots a_{i_{k-1}} a_{i_{k}} a_{i_{k+1}} a_{i_{k+2}} \ldots a_{i_{j}}>a_{i_{1}^{\prime}} \ldots a_{i_{k-1}^{\prime}} a_{i_{k+1}^{\prime}} a_{i_{k}} a_{i_{k+2}} \ldots a_{i_{j}}
$$

Thus $x^{y}=x^{a_{1} \ldots a_{j}}$ with $i_{1} \geq i_{2} \geq \cdots \geq i_{j}$ or, equivalently,

$$
x^{y}=x^{a_{m}{ }^{\varepsilon_{m} \ldots} \ldots a_{1}{ }^{e_{1}}}
$$

for some nonnegative integers $e_{m}, \ldots, e_{1}$.
Finally, by Lemma 3.2, there exists an $\left\{m_{0}, n\right\}$-bounded positive integer $e$ such that $a_{i}{ }^{e} \in Z(G)$, for all $i$. Thus, we may assume that $e_{i}<e$ for all $i$. Hence $\left|x^{\nu(G)}\right| \leq e^{m}$, and $v(G)$ is $B F C$-embedded in $G$.

The following two results are the analogues of Lemmas 3.1 and 3.2 for $F C(w)-$ groups.
Lemma 3.3. Let $w=w\left(x_{1}, \ldots, x_{n}\right)$ be an arbitrary group-word and let

$$
v=\left[w\left(x_{1}, \ldots, x_{n}\right), w\left(x_{n+1}, \ldots, x_{2 n}\right)\right] .
$$

If $G$ is an $F C(w)$-group, then $G$ is an $F C(v)$-group.
Proof. The proof is similar to that of Lemma 3.1. The modifications required are evident and therefore we omit the details.

Lemma 3.4. Let $w=w\left(x_{1}, \ldots, x_{n}\right)$ be an arbitrary group-word and let

$$
v=\left[w\left(x_{1}, \ldots, x_{n}\right), w\left(x_{n+1}, \ldots, x_{2 n}\right)\right] .
$$

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ be a finite subset of $G_{v}$. If $G$ is an $F C(w)$-group, then, for any $x \in G$, there exists a positive integer e such that $a_{i}{ }^{e} \in Z(\langle x, A\rangle)$ for all $a_{i} \in A$.
Proof. Let $x$ be an arbitrary element of $G$. For any $a_{i} \in A$, there exist $g_{i, 1}, \ldots, g_{i, 2 n} \in G$ such that

$$
a_{i}=\left[w\left(g_{i, 1}, \ldots, g_{i, n}\right), w\left(g_{i, n+1}, \ldots, g_{i, 2 n}\right)\right] .
$$

Put $J=\left\langle x, g_{i, j} \mid 1 \leq i \leq m, 1 \leq j \leq 2 n\right\rangle$. Of course, each $a_{i} \in v(J)$ and, by Lemma 2.7(i), the set $(J / Z(J))_{w}$ is finite. Thus, by Lemma 2.1, the commutator subgroup of $w(J / Z(J))$ is finite. It follows that $v(J)$ has finite order modulo $Z(J)$, say, $e$. Therefore $a_{i}{ }^{e} \in Z(J)$ for all $i$. As $\langle x, A\rangle \leq J$, the result follows.
Proof of Theorem 1.1. Recall that $w$ is a group-word and that $G$ is an $F C(w)$-group. We need to prove that $w(G)^{\prime}$ is $F C$-embedded in $G$.

Set $v=\left[w\left(x_{1}, \ldots, x_{n}\right), w\left(x_{n+1}, \ldots, x_{2 n}\right)\right]$. Clearly, $v(G)=w(G)^{\prime}$ and, by Lemma 3.3, $G$ is an $F C(v)$-group. Let $x$ be an arbitrary element of $G$ and choose $a_{1}, \ldots, a_{m} \in G_{v}$ such that $x^{G_{v}}=\left\{x^{a_{1}}, \ldots, x^{a_{m}}\right\}$. Define the order $<$ on the set of all (formal) products of the form $a_{i_{1}} \ldots a_{i_{j}}$, with $1 \leq i_{k} \leq m$ and $j \geq 1$, as in $\left({ }^{*}\right)$ in the proof of Theorem 1.2.

Let $y$ be an arbitrary element of $v(G)$. Arguing as in the proof of Theorem 1.2, write $x^{y}=x^{a_{m}{ }^{e_{m}} \ldots a_{1}{ }^{e_{1}}}$ for some nonnegative integers $e_{m}, \ldots, e_{1}$. If $A=\left\{a_{1}, \ldots, a_{m}\right\}$, by Lemma 3.4, there exists a positive integer $e$ such that $a_{i}{ }^{e} \in Z(\langle x, A\rangle)$ for all $i$. Hence we may assume that $e_{i}<e$ for all $i$, and so $\left|x^{v(G)}\right| \leq e^{m}$. Thus $x^{\nu(G)}$ is finite for all $x \in G$. We conclude, therefore, that $v(G)$ is $F C$-embedded in $G$.

## Acknowledgement

This work was carried out during the second author's visit to the University of Salerno. He wishes to thank the Department of Mathematics for excellent hospitality.

## References

[1] S. Brazil, A. Krasilnikov and P. Shumyatsky, 'Groups with bounded verbal conjugacy classes', J. Group Theory 9(1) (2006), 127-137.
[2] G. A. Fernández-Alcober and M. Morigi, 'Outer commutator words are uniformly concise', J. Lond. Math. Soc. (2) 82(3) (2010), 581-595.
[3] G. A. Fernández-Alcober, M. Morigi and G. Traustason, 'A note on conciseness of Engel words', Comm. Algebra 40(7) (2012), 2570-2576.
[4] S. Franciosi, F. de Giovanni and P. Shumyatsky, 'On groups with finite verbal conjugacy classes', Houston J. Math. 28(4) (2002), 683-689.
[5] R. M. Guralnick and A. Maróti, 'Average dimension of fixed point spaces with applications', $A d v$. Math. 226(1) (2011), 298-308.
[6] B. H. Neumann, 'Groups with finite classes of conjugate elements', Proc. Lond. Math. Soc. (3) 1 (1951), 178-187.
[7] P. M. Neumann and M. R. Vaughan-Lee, 'An essay on BFC groups', Proc. Lond. Math. Soc. (3) 35(2) (1977), 213-237.
[8] D. J. R. Robinson, Finiteness Conditions and Generalized Soluble Groups, Part 1 (Springer, New York, Berlin, 1972).
[9] D. Segal and A. Shalev, 'On groups with bounded conjugacy classes', Quart. J. Math. Oxford Ser. (2) 50 (1999), 505-516.
[10] J. Wiegold, 'Groups with boundedly finite classes of conjugate elements', Proc. R. Soc. Lond. A 238 (1957), 389-401.

COSTANTINO DELIZIA, Dipartimento di Matematica, Università di Salerno, Via Giovanni Paolo II, 132-84084 - Fisciano (SA), Italy e-mail: cdelizia@unisa.it

PAVEL SHUMYATSKY, Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900, Brazil
e-mail: pavel@unb.br
ANTONIO TORTORA, Dipartimento di Matematica, Università di Salerno, Via Giovanni Paolo II, 132-84084 - Fisciano (SA), Italy
e-mail: antortora@unisa.it


[^0]:    The second author was supported by the 'National Group for Algebraic and Geometric Structures and their Applications' (GNSAGA - INdAM) and FAPDF-Brazil.
    (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

