BULL. AUSTRAL. MATH. SOC. VOL. 10 (1974), 365-370.

On common fixed points of mappings

Kiyoshi Iséki

The object of this paper is to study common fixed points of mappings of a complete metric space into itself. The results obtained are generalizations of Ray Theorems.

Recently Ray [2] and Wong [4] proved some interesting theorems about common fixed points of mappings of a complete metric space in itself. In this note, we shall prove some theorems about common fixed points which are generalizations of results in Ray [2].

THEOREM 1. Let X be a complete metric space, T_n (n = 1, 2, ...)a sequence of mappings of X into itself. Suppose that there are nonnegative numbers α , β , γ such that for $x, y \in X$,

$$\begin{split} \rho\big(T_{i}(x), T_{j}(y)\big) &\leq \alpha\big(\rho\big(x, T_{i}(x)\big) + \rho\big(y, T_{j}(y)\big)\big) \\ &+ \beta\big(\rho\big(x, T_{j}(y)\big) + \rho\big(y, T_{i}(x)\big)\big) + \gamma\rho(x, y) \end{split},$$

where $2\alpha + 2\beta + \gamma < 1$. Then the sequence of mappings $\{T_n\}$ has a unique common fixed point.

Proof. Let $x_0 \in X$. Put

$$x_n = T_n(x_{n-1})$$
, $(n = 1, 2, ...)$;

then we have

Received 29 January 1974.

Kiyoshi lséki

$$\begin{split} \rho(x_{1}, x_{2}) &= \rho(T_{1}(x_{0}), T_{2}(x_{1})) \\ &\leq \alpha(\rho(x_{0}, x_{1}) + \rho(x_{1}, x_{2})) + \beta(\rho(x_{0}, x_{2}) + \rho(x_{1}, x_{1})) + \gamma \rho(x_{0}, x_{1}) \\ &= (\alpha + \gamma) \rho(x_{0}, x_{1}) + \alpha \rho(x_{1}, x_{2}) + \beta \rho(x_{0}, x_{2}) \\ &\leq (\alpha + \gamma) \rho(x_{0}, x_{1}) + \alpha \rho(x_{1}, x_{2}) + \beta(\rho(x_{0}, x_{1}) + \rho(x_{1}, x_{2})) \end{split}$$

Hence

$$\rho(x_1, x_2) \leq \frac{\alpha + \beta + \gamma}{1 - \alpha - \beta} \rho(x_0, x_1) .$$

Similarly we have

$$\rho(x_2, x_3) = \rho(T(x_1), T(x_2))$$

$$\leq (\alpha + \gamma)\rho(x_1, x_2) + \alpha\rho(x_2, x_3) + \beta(\rho(x_1, x_2) + \rho(x_2, x_3)) .$$

Therefore, we have

$$\rho(x_2, x_3) \leq \frac{\alpha + \beta + \gamma}{1 - \alpha - \beta} \rho(x_1, x_2) .$$

In general, we have

$$\rho(x_n, x_{n+1}) \leq \left(\frac{\alpha+\beta+\gamma}{1-\alpha-\beta}\right)^n \rho(x_0, x_1)$$

This means that the sequence $\{x_n\}$ is a Cauchy sequence. Hence, by the completeness of X , $\{x_n\}$ converges to some point x in X. For the point x ,

$$\begin{split} \rho(x, T_n(x)) &\leq \rho(x, x_{m+1}) + \rho(x_{m+1}, T_n(x)) \\ &= \rho(x, x_{m+1}) + \rho(T_{m+1}(x_m), T_n(x)) \\ &\leq \rho(x, x_{m+1}) + \alpha(\rho(x_m, T_{m+1}(x_m)) + \rho(x, T_n(x))) \\ &\quad + \beta(\rho(x_m, T_n(x)) + \rho(x, T_{m+1}(x_m))) + \gamma \rho(x_m, x) \\ &= \rho(x, x_{m+1}) + \alpha(\rho(x_m, x_{m+1}) + \rho(x, T_n(x))) \\ &\quad + \beta(\rho(x_m, T_n(x)) + \rho(x, x_{m+1})) + \gamma \rho(x_m, x) \end{split}$$

Letting $m \rightarrow \infty$, then we have

$$\rho(x, T_n(x)) \leq (\alpha+\beta)\rho(x, T_n(x))$$

Therefore $\rho(x, T_n(x)) = 0$; that is, the point x is a common fixed

366

point of all T_n .

To show that x is a unique common fixed point of all T_n , we consider a point y in X such that $T_n(y) = y$ for every n. Then we have

$$\begin{split} \rho(x, y) &= \rho(T_n(x), T_n(y)) \\ &\leq \alpha(\rho(x, T_n(x)) + \rho(y, T_n(y))) + \beta(\rho(x, T_n(y)) + \rho(y, T_n(x))) \\ &+ \gamma \rho(x, y) = (2\beta + \gamma)\rho(x, y) \;. \end{split}$$

Hence $\rho(x, y) = 0$; that is, x = y. This completes the proof of Theorem 1.

THEOREM 2. Let $\{T_n\}$ be a sequence of mappings of a complete metric space X into itself. Let x_n be a fixed point of T_n (n = 1, 2, ...), and suppose that T_n converges uniformly to T_0 . If T_0 satisfies the condition

$$(1) \quad \rho(T_0(x), T_0(y)) \leq \alpha(\rho(x, T_0(x)) + \rho(y, T_0(y))) \\ + \beta(\rho(x, T_0(y)) + \rho(y, T_0(x))) + \gamma\rho(x, y) ,$$

where α , β , γ are non-negative and $2\alpha + 2\beta + \gamma < 1$, then $\{x_n\}$ converges to the fixed point x_0 of T_0 .

Under condition (1), T_0 has a unique fixed point by a result of Ćirić [1] (quoted from Rus [3], p. 21).

Proof. Let $\varepsilon_{i} > 0$ be given; then there is a natural number N such that

(2)
$$\rho(T_n(x), T_0(x)) < \varepsilon$$

for all $x \in X$ and $N \leq n$. Hence

367

$$\begin{split} \rho(x_n, x_0) &= \rho(T_n(x_n), T_0(x_0)) \\ &\leq \rho(T_n(x_n), T_0(x_n)) + \rho(T_0(x_n), T_0(x_0)) \\ &\leq \rho(T_n(x_n), T_0(x_n)) + \alpha(\rho(x_n, T_0(x_n)) + \rho(x_0, T_0(x_0))) \\ &\quad + \beta(\rho(x_n, T_0(x_0)) + \rho(x_0, T_0(x_n))) + \gamma\rho(x_n, x_0) \\ &\leq \rho(T_n(x_n), T_0(x_n)) + (\alpha + \beta)\rho(T_n(x_n), T_0(x_n)) \\ &\quad + (\alpha + \beta)(\rho(x_0, x_n) + \rho(T_n(x_n), T_0(x_n))) + \gamma\rho(x_n, x_0) \\ &= (1 + 2(\alpha + \beta))\rho(T_n(x_n), T_0(x_n)) + ((\alpha + \beta) + \gamma)\rho(x_n, x_0) . \end{split}$$

Hence

$$(1-(\alpha+\beta+\gamma))\rho(x_n, x_0) \leq (1+2(\alpha+\beta))\rho(T_n(x_n), T_0(x_n))$$

From the hypotheses, $2(\alpha+\beta) + \gamma < 1$. Hence, for $n \ge N$, we have

$$\rho(x_n, x_0) \leq \frac{1+2(\alpha+\beta)}{1-(\alpha+\beta+\gamma)} \varepsilon$$
,

which shows that $\{x_n\}$ converges to x_0 . We complete the proof.

THEOREM 3. Let T_n (n = 1, 2, ...) be a sequence of mappings with fixed point x_n of a metric space X into itself. Suppose that

(3)
$$\rho(T_n(x), T_n(y)) \leq \alpha(\rho(x, T_n(x)) + \rho(y, T_n(y))) + \beta(\rho(x, T_n(y)) + \rho(y, T_n(x))) + \gamma \rho(x, y),$$

where α , β , γ are non-negative and $2\alpha + 2\beta + \gamma < 1$. If $\{T_n\}$ converges to a mapping T_0 , and x_0 is an accumulation point of $\{x_n\}$, then x_0 is a fixed point of T_0 .

Proof. Since x_0 is an accumulation point of the set $\{x_n\}$, there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ which converges to x_0 :

$$\rho(x_{0}, T_{0}(x_{0})) \leq \rho\left(x_{0}, T_{n_{i}}(x_{n_{i}})\right) + \rho\left(T_{n_{i}}(x_{n_{i}}), T_{n_{i}}(x_{0})\right) + \rho\left(T_{n_{i}}(x_{0}), T_{0}(x_{0})\right) .$$

Let $\varepsilon > 0$; then there is a natural number N such that

$$\begin{split} \rho \Big(x_0, \ x_{n_i} \Big) &< \varepsilon \ , \\ \rho \Big(T_{n_i} \big(x_0 \big), \ T_0 \big(x_0 \big) \Big) &< \varepsilon \ , \end{split}$$

for $N \leq n_i$. Hence for $N \leq n_i$, we have

(4)
$$\rho(x_0, T_0(x_0)) < 2\varepsilon + \rho(T_{n_i}(x_{n_i}), T_{n_i}(x_0))$$
.

To estimate $\rho\left(T_{n_i}\left(x_{n_i}\right), T_{n_i}\left(x_0\right)\right)$, we use the condition (3). Then

$$\begin{split} \rho \Big(T_{n_i} \Big(x_{n_i} \Big), \ T_{n_i} \Big(x_0 \Big) \Big) &\leq \alpha \Big(\rho \Big(x_{n_i}, \ T_{n_i} \Big(x_{n_i} \Big) \Big) + \rho \Big(x_0, \ T_{n_i} \Big(x_0 \Big) \Big) \Big) \\ &+ \beta \Big(\rho \Big(x_0, \ T_{n_i} \Big(x_{n_i} \Big) \Big) + \rho \Big(x_{n_i}, \ T_{n_i} \Big(x_0 \Big) \Big) \Big) + \gamma \rho \Big(x_{n_i}, \ x_0 \Big) \end{split}$$

For $N \leq n_i$, we have

$$\rho\left(T_{n_i}\left(x_{n_i}\right), T_{n_i}\left(x_0\right)\right) \leq \alpha\rho\left(x_0, T_{n_i}\left(x_0\right)\right) + (\beta+\gamma)\varepsilon + \beta\rho\left(x_{n_i}, T_{n_i}\left(x_0\right)\right)$$

Hence

(5)
$$(1-\beta)\rho\left(x_{n_{i}}, T_{n_{i}}(x_{0})\right) \leq \alpha\rho\left(x_{0}, T_{n_{i}}(x_{0})\right) + (\beta+\gamma)\varepsilon .$$

Next consider $\rho\left(x_0, T_{n_i}(x_0)\right)$; then

$$\rho\left(x_{0}^{*}, T_{n_{i}}^{*}(x_{0}^{*})\right) \leq \rho\left(x_{0}^{*}, x_{n_{i}^{*}}\right) + \rho\left(x_{n_{i}^{*}}, T_{n_{i}^{*}}^{*}(x_{0}^{*})\right) .$$

For $N \leq n_i$, we have

(6)
$$\rho\left(x_{0}, T_{n_{i}}(x_{0})\right) \leq \epsilon + \rho\left(x_{n_{i}}, T_{n_{i}}(x_{0})\right)$$

(5) and (6) imply

$$(1-\beta)\rho\left(x_{0}, T_{n_{i}}(x_{0})\right) \leq (1-\beta)\varepsilon + \alpha\rho\left(x_{0}, T_{n_{i}}(x_{0})\right) + (\beta+\gamma)\varepsilon .$$

Hence

(7)
$$\rho\left(x_0, T_{n_i}(x_0)\right) \leq \frac{1+\gamma}{1-\alpha-\beta} \epsilon .$$

From (4), (5) and (7), we have

$$\begin{split} \rho\left(x_{0}^{}, \ T_{0}^{}\left(x_{0}^{}\right)\right) &\leq 2\varepsilon + \frac{1}{1-\beta} \left[\alpha\rho\left(x_{0}^{}, \ T_{n_{i}^{}}^{}\left(x_{0}^{}\right)\right) + (\beta+\gamma)\varepsilon\right] \\ &\leq \left[2 + \frac{1}{1-\beta} \left[\frac{\alpha(1+\gamma)}{1-\alpha-\beta} + (\beta+\gamma)\right]\right]\varepsilon \end{split}$$

This shows that x_0 is a fixed point of T_0 . We complete the proof.

References

- [1] Ljubomir B. Ćirić, "Generalized contractions and fixed-point theorems", *Publ. Inst. Math. Beograd*, N.S. 12 (26) (1971), 19-26.
- [2] Baidyanath Ray, "Some results on fixed points and their continuity", Collog. Math. 27 (1973), 41-48.
- [3] Ioan A. Rus, Teoria punctului fix. II Teoria punctului fix in analiza funcțională (Universitatea "Babeş-Bolyai" din Cluj, Cluj, 1973).
- [4] Chi Song Wong, "Common fixed points of two mappings", Pacific J. Math.48 (1973), 299-312.

Department of Mathematics, Kobe University, Rokko, Kobe, Japan.

370