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Numerical investigation of the formation and
stability of homogeneous pairs of soft particles
in inertial microfluidics
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We investigate the formation and stability of a pair of identical soft capsules in channel
flow under mild inertia. We employ a combination of the lattice Boltzmann, finite element
and immersed boundary methods to simulate the elastic particles in flow. Validation tests
show excellent agreement with numerical results obtained by other research groups. Our
results reveal new trajectory types that have not been observed for pairs of rigid particles.
While particle softness increases the likelihood of a stable pair forming, the pair stability
is determined by the lateral position of the particles. A key finding is that stabilisation of
the axial distance occurs after lateral migration of the particles. During the later phase
of pair formation, particles undergo damped oscillations that are independent of initial
conditions. These damped oscillations are driven by a strong hydrodynamic coupling of
the particle dynamics, particle inertia and viscous dissipation. While the frequency and
damping coefficient of the oscillations depend on particle softness, the pair formation
time is largely determined by the initial particle positions: the time to form a stable pair
grows exponentially with the initial axial distance. Our results demonstrate that particle
softness has a strong impact on the behaviour of particle pairs. The findings could have
significant ramifications for microfluidic applications where a constant and reliable axial
distance between particles is required, such as flow cytometry.
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1. Introduction

Microfluidic devices play an increasingly important role in disease diagnostics. Due
to their small footprint, high portability, relatively low cost and ever-improving
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manufacturing techniques, microfluidic devices have the potential to revolutionise
point-of-care applications. Microfluidic devices exploit physical effects, such as flow and
cell dynamics, at a smaller scale than conventionally sized devices. For example, cells
can be manipulated into forming regularly spaced pairs and trains that are required for
applications such as flow cytometry (Hur, Tse & Di Carlo 2010) and cell encapsulation
(Moon et al. 2018).

Inertial microfluidics (IMF) is a relatively new research field that emerged in the late 2000s
(DiCarloetal.2007;Russometal.2009).Whileconventionalmicrofluidicdevicesaremostly
operated in the limit of small Reynolds number, the Reynolds number in IMF is typically
of the order of 10–100 due to relatively high flow speeds. Besides an increased throughput,
IMF features additional physical effects that can be exploited for particle manipulation,
focusing in the channel cross-section, and separation. At finite inertia, particles and cells
experience additional lift forces which lead to cross-streamline migration of particles that
would not migrate in the Stokes limit (Ho & Leal 1974; Schonberg & Hinch 1989; Asmolov
1999; Matas, Morris & Guazzelli 2009). Inertial effects can also lead to axial ordering of
particles (Matas et al. 2004; Lee et al. 2010), an effect that can be exploited to overcome the
Poisson statistics that is often plaguing applications in the non-inertial regime (Lagus &
Edd 2013). The ultimate aim is to bring IMF to maturity and routinely use it for diagnostic
applications, such as recovery of rare cells from blood (Tanaka et al. 2012), separation
of particles by deformability (for instance, diseased red blood cells from healthy ones) or
search for sepsis markers (Gossett et al. 2012).

When the Reynolds number is of the order of 10–100, rigid spherical particles in tube
flow migrate to a radial equilibrium position approximately 60 % away from the tube
centreline. This so-called Segré–Silberberg effect (Segre & Silberberg 1961) is caused
by a balance of inertial shear-gradient lift forces, pushing the particles towards the wall,
and wall repulsion forces caused by an increased pressure between the particles and the
wall (Ho & Leal 1974; Schonberg & Hinch 1989; Asmolov 1999; Matas et al. 2009). The
resulting lateral motion of the particles towards their equilibrium position is termed inertial
migration. Altering the channel cross-section (Kim et al. 2016) or curving the channel into
serpentine (Zhang et al. 2014) or spiral (Warkiani et al. 2014) geometries changes the
number and location of lateral equilibrium positions and can accelerate lateral focusing of
particles (Martel & Toner 2014).

Soft particles give rise to more complex behaviour than rigid particles since particle
softness alone leads to cross-streamline migration, even in the non-inertial limit (Chen
2014). Additionally, the analysis of soft particle dynamics is more difficult due to
the changing particle shape. The inertial migration of a single soft particle has been
investigated extensively in a variety of different flow conditions, including shear flows
(Ma et al. 2019), channel flows (Coclite et al. 2020), stratified flows (Jyothi, Renganathan
& Pushpavanam 2019) and viscoelastic flows (Ni & Jiang 2020). Hur et al. (2011) identified
experimentally that softer particles migrate to equilibrium positions closer to the channel
centre. Kilimnik, Mao & Alexeev (2011) also demonstrated that the equilibrium position of
soft particles is essentially independent of Reynolds number, a result confirmed by Schaaf
& Stark (2017).

The situation gets even more interesting when particles are sufficiently close and interact
hydrodynamically. In IMF stable pairs and trains of particles can form under some
circumstances, which brings up important implications for particle manipulation, focusing
and sorting. Lee et al. (2010) first identified the self-assembly of particle pairs in inertial
flows through the mechanism of reversing streamlines. Since then, a number of studies
have investigated the pair/train formation further, both numerically and experimentally.
For stable pairs, axial distance has been shown to be independent of initial position for
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rigid particle pairs (Humphry et al. 2010; Schaaf & Stark 2020), while different trajectory
types have been identified, depending on the interaction between the particles. Of these
identified trajectory types, only damped oscillation trajectories have been shown to lead to
stable pairs (Lan & Khismatullin 2014; Schaaf, Rühle & Stark 2019). Kahkeshani, Haddadi
& Di Carlo (2016) observed the existence of two different axial equilibrium distances
between rigid pairs, with the preference to each being Reynolds number dependent.
Importantly, Schaaf & Stark (2020) identified that during the formation of particle trains,
stable particle pairs first form and then group together to build particle trains. Patel &
Stark (2021) investigated the effect of pair softness and shape for mono- and bi-disperse
pairs, finding that increased particle softness leads to increased pair stability. However,
the formation mechanisms of particle pairs and the conditions leading to stable pairs are
still not well understood. Moreover, the distinct properties of soft particle pairs, compared
with rigid particle pairs, need to be explored further to improve the design of inertial
microfluidic devices that are used for soft cells.

In this paper we investigate the dynamics of a pair of identical soft capsules in straight
channel flow at moderate inertia via immersed-boundary-lattice-Boltzmann-finite-element
(IB-LB-FE) simulations (§ 2). We validate the model by simulating the interaction of
a pair of soft capsules in a simple shear flow and the lateral migration of a single soft
capsule in channel flow (§ 3). Our results (§ 4) show that pairs of identical soft capsules
exhibit six different trajectory types, two of which have not been observed for rigid pairs.
We demonstrate that the lateral equilibrium positions of the particles largely determine
the stability of the pair and that the stabilisation of the axial distance between both
particles occurs only after the lateral migration phase. These observations lead to the
hypothesis that certain mechanisms contribute more strongly to the overall system: flow
development as zeroth-order, single particle lateral migration as first-order, and axial
spacing as second-order effects. We also observe two distinct phases of pair formation,
an early axial approach phase and a later spiralling convergence phase that is largely
independent of the initial phase. During the spiralling phase, particles are tightly coupled
through hydrodynamic interactions. The spiralling dynamics is characterised by frequency
and damping coefficients that are determined by particle softness, while the pair formation
time is mostly dependent on the initial positions of the particles. We argue that our findings
have strong implications for the understanding of particle interactions in mildly inertial
flows and the design of inertial microfluidic devices aiming at the formation of regularly
spaced particle pairs and trains (§ 5).

2. Physical and numerical model

The physical and numerical models are briefly outlined in §§ 2.1 and 2.2, respectively.

2.1. Physical model

2.1.1. Governing equations and physical parameters
We consider a single or two soft capsules flowing in a simple planar shear flow or in a
straight channel. We assume an incompressible Newtonian liquid. The suspended particles
are hyperelastic and neutrally buoyant capsules which are filled with the same liquid and
are spherical in their undeformed state. While the liquid is governed by the incompressible
Navier–Stokes equations, we employ two different elastic models for the capsules, either
the Skalak model (Skalak et al. 1973)

ws = κs

12
(I2

1 + 2I1 − 2I2) + κα

12
I2
2 (2.1)

937 A4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

85
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.85


B. Owen and T. Krüger

or the neo-Hookean model

ws = κs

6

(
I1 − 1 + 1

I2 + 1

)
, (2.2)

where ws is the areal energy density, I1 and I2 are the in-plane strain invariants (Krüger,
Varnik & Raabe 2011), and κs and κα are the elastic shear and area dilation moduli. We
include a membrane bending energy

wb = κb

2

(
H − H(0)

)2
, (2.3)

where H and H(0) are the trace of the surface curvature tensor and the spontaneous
curvature, respectively, and κb is the bending modulus.

The two flow scenarios considered are (i) simple shear flow between two flat and
rigid plates and (ii) force-driven flow in a straight and rigid channel with a rectangular
cross-section. The no-slip boundary condition is assumed at the surfaces of the channel
and the particles.

The relevant parameters are liquid density ρ and kinematic viscosity ν; the radius a
of the undeformed capsules; the elastic shear modulus κs, bending modulus κb and area
dilation modulus κα of the capsules; the channel half-width w, half-height h and length
L; and either shear rate γ̇ for simple shear flow or maximum velocity Umax at the channel
centre for force-driven flow.

2.1.2. Dimensionless groups
The particle Reynolds number Rep is used for the simple shear flow cases and as defined
by Doddi & Bagchi (2008),

Rep = γ̇ a2

ν
. (2.4)

For the channel flow cases, the channel Reynolds number Rec is used. We adopt the
definition of Schaaf & Stark (2017), Schaaf et al. (2019),

Rec = Umaxw
ν

. (2.5)

The capillary number Ca is the ratio of the viscous stress of the liquid to the characteristic
elastic shear stress of the capsule membrane,

Ca = ρνγ̇ a
κs

. (2.6)

While the capillary number depends on the flow field, the Laplace number La is a
combination of material properties only and suitable to isolate the contribution of particle
softness in inertial flows (Schaaf & Stark 2017). The Laplace number is defined as the ratio
between the particle Reynolds number and the capillary number,

La = Rep

Ca
= κsa

ρν2 . (2.7)

Other dimensionless groups are the confinement ratio χ = a/h or χ = a/w, depending on
whether h or w is smaller, the channel aspect ratio α = w/h, the reduced dilation modulus
κ̃α = κα/κs and the reduced bending modulus κ̃b = κb/(κsa2).
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2.1.3. Characteristic scales
In order to non-dimensionalise reported distances (or positions) and times, we use
characteristic length scales and a time scale. Depending on context, distances or locations
are non-dimensionalised either by particle radius a, channel half-width w or channel
half-height h. For channel flow, time is non-dimensionalised by the advection time

tad = a
Umax

. (2.8)

2.2. Numerical model
The numerical model consists of a partitioned fluid-structure interaction solver in which
the lattice Boltzmann (LB) method is used for the liquid, the finite element (FE) method
for the capsule dynamics and the immersed boundary (IB) method for the fluid-structure
interaction. This IB-LB-FE solver has previously been employed in the study of the
dynamics of deformable red blood cells and capsules (Krüger et al. 2013; Krüger,
Holmes & Coveney 2014). Here, we provide essential properties of the model, while
comprehensive details are available elsewhere (Krüger et al. 2011).

For the LB method, we use the D3Q19 lattice (Qian, D’Humières & Lallemand 1992)
and the BGK collision operator (Bhatnagar, Gross & Krook 1954) with relaxation time τ .
The viscosity of the liquid and the relaxation time satisfy

ν = c2
s

(
τ − 	t

2

)
, (2.9)

where cs is the lattice speed of sound and 	t is the time step. For the D3Q19 lattice,
c2

s = 	x2/(3	t2) holds where 	x is the lattice resolution. For the channel flow cases,
flow is driven by a constant body force following the forcing method of Guo, Zheng & Shi
(2002). This form of the LB method is widely used in the field of fluid dynamics, including
in previous IMF studies (Schaaf & Stark 2017; Schaaf et al. 2019).

Each capsule is represented by a surface mesh with Nf flat triangular faces (or elements)
defined by three nodes (or vertices) each. At a given time step, the capsule mesh is
generally deformed. The hyperelastic forces acting on each vertex are calculated as a
function of the mesh deformation state through an explicit scheme. The shear and area
dilation forces result from the deformation gradient tensor of each face, while the bending
forces are related to the angles between normal vectors of pairs of neighbouring faces
(Krüger et al. 2013).

We employ an IB method with a three-point stencil (Peskin 2002). The forces obtained
from the FE scheme are spread from the Lagrangian mesh to the Eulerian lattice where
they act on the surrounding fluid nodes through the LB algorithm. The updated fluid
velocity is then interpolated at the location of each mesh node. The positions of the mesh
nodes are updated using the forward-Euler method, assuming a massless membrane which
is appropriate for neutrally buoyant capsules. This treatment recovers the no-slip boundary
condition at the surface of the capsules and the momentum exchange between the liquid
and the capsule membrane.

The no-slip boundary condition at the resting and moving walls for channel and shear
flow, respectively, is realised by the standard half-way bounce-back condition (Ladd 1994).
The flow is periodic along those directions that are not confined by walls (flow direction
in the channel case, and shearing plane in the shear flow case). The channel length L is
chosen sufficiently long to avoid the interaction of capsules with their periodic images.
In all simulations the hydrodynamic forces are sufficient to prevent contact between
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z
x

δx0

(b)(a)

Figure 1. Schematic of the first benchmark case: soft particle pair in shear flow. (a) Both particles are located
on a plane parallel to the shear direction. (b) The shear rate is defined by the speed of the moving walls and
their separation: γ̇ = 2uw/L. Both particles have the same distance from the walls, where one particle is closer
to the bottom and the other closer to the top wall. Particles are initially separated by δx0 and δz0 along the x-
and z-axes, respectively. Simulation parameters are reported in table 1.

capsules – capsules do not come closer than approximately 2	x – and an artificial
repulsion force between capsules is not required. Likewise, capsules always keep a large
distance from the confining walls due to hydrodynamic lift, and an artificial capsule-wall
repulsion force is not needed.

3. Benchmark tests

We test our model by comparing simulation results obtained from our solver with
previously published results from other groups: trajectories of a soft particle pair in shear
flow (§ 3.1) and lateral migration of a single soft capsule in channel flow (§ 3.2).

3.1. Soft particle pair in shear flow
Doddi & Bagchi (2008) numerically investigated the effect of inertia on the interaction
between a soft particle pair in a shear flow, whereby the particles are slightly offset
from the centre of the channel as shown in figure 1. By increasing the shear rate γ̇ , the
trajectories of the pair switch from passing to reversing. Doddi & Bagchi employed the
neo-Hookean model, (2.2), for the capsules and the front-tracking/IB method proposed by
Unverdi & Tryggvason (1992). Here, we reproduce these results with our solver to test
the accuracy of the IB-LB-FE method and its ability to capture hydrodynamic interactions
of soft capsules in mildly inertial flows. Table 1 shows the relevant parameters of this
benchmark case.

While Doddi & Bagchi (2008) did not report whether they used a bending resistance,
the work originally employing the numerical method included a finite bending resistance
to avoid folding of the membrane (Eggleton & Popel 1998). Therefore, we ran two sets
of simulations: one without bending resistance, the other with a finite bending resistance
(κ̃b = 0.00287). Figure 2(a) shows our simulated particle trajectories for different values
of Rep in the plane highlighted in figure 1 in comparison with the results of Doddi &
Bagchi (2008). Good agreement is seen between the original results and our simulations
that include a bending resistance, while simulations without bending resistance show some
differences in the later stages of the passing trajectories. Independent of the bending
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Parameter Value

Rep 0.125, 0.375, 0.575, 0.75
Ca 0.025
ν 1/6	x2/	t
κb 0, 0.00287
a 14.4	x
L 12.5a = 180	x

δx0 8.0a = 115.2	x
δz0 0.4a = 5.76	x

Table 1. Parameters of the first benchmark case: soft particle pair in shear flow. See figure 1 for an illustration
of the set-up. The shear rate γ̇ depends on Rep according to (2.4), and the shear elasticity κs is obtained from
(2.6). The liquid density is set to 1 in simulation units.

–5 –4 –3 –2 –1 0 1 2 3 4 5

–5 –4 –3 –2 –1 0 1 2 3 4 5
x/a

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

z/a

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

z/a

Rep = 0.125

Rep = 0.375

Rep = 0.575

Rep = 0.75

No bending
Bending
Doddi & Bagchi

Neo-Hookean
Skalak

(b)

(a)

Figure 2. Trajectories of particle pairs in simple shear flow for various Reynolds numbers. Blue: Rep = 0.125;
orange: Rep = 0.375; green: Rep = 0.575; red: Rep = 0.75. Black circles indicate the initial position of each
particle. See figure 1 for the geometry set-up and table 1 for simulation parameters. (a) Comparison of our
results for the neo-Hookean model with and without bending resistance with previous data (Doddi & Bagchi
2008). Squares are data points extracted from figure 8 in Doddi & Bagchi (2008) using WebPlotDigitizer
v4.4. (b) Comparison between neo-Hookean and Skalak models with bending resistance obtained from
our IB-LB-FE solver. (a) Comparison of our simulations with original results. (b) Comparison between
neo-Hookean and Skalak models.

resistance, we see that, as Rep is increased, each particle moves closer to the mid-plane
between the walls, resulting in the transition from passing to reversing trajectories. Using
the IB-LB-FE model, we observed this transition between Rep = 0.375 and 0.575, in
agreement with previous results.
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Figure 3. Schematic of the first benchmark case: soft particle migration in channel flow. (a) The arrow
indicates the flow direction. The grey plane indicates the channel cross-section. (b) The particle is initially
located away from the channel centreline. Simulation parameters are reported in table 2.

Doddi & Bagchi (2008) employed the neo-Hookean model only. Since other elastic
capsule models are often used, we have repeated the same test for capsules equipped
with the Skalak model to investigate the sensitivity of the trajectories to the details
of the capsule model. The reduced bending modulus is κ̃b = 0.00287 for both elastic
models, and κ̃α = 2 for the Skalak model (note that κ̃α is not defined for the neo-Hooken
model). Figure 2(b) shows the comparison of trajectories for the neo-Hookean and the
Skalak models as obtained from the IB-LB-FE solver. Overall, details of the trajectories
are not significantly altered by the model. The Skalak model leads to slightly larger
lateral displacements. This difference is probably caused by the reduced deformation of
the capsules due to the strain-hardening properties of the Skalak model compared with
the strain-softening neo-Hookean model. While the difference between the constitutive
models is not trivial, the trajectories are qualitatively similar, and the transition between
passing and reversing trajectories is also between Rep = 0.375 and 0.575 for the Skalak
model.

3.2. Lateral migration of a single soft particle in channel flow
Before investigating the interaction of a particle pair in channel flow with moderate inertia,
it is crucial to ensure the inertial effects on a single particle are captured accurately. We
consider the inertial migration of a single soft capsule in a pressure-driven Poiseuille flow
through a square duct with edge length 2w and axial length L = 8w, as shown in figure 3.
Periodic boundary conditions are used along the flow axis.

Schaaf & Stark (2017) investigated the effect of Laplace number on the lateral
equilibrium position of a soft capsule at a given channel Reynolds number in the same
geometry. They demonstrated that the lateral equilibrium position moves away from the
channel centre as La increases. For the case Rec = 100, a transition occurs where the
equilibrium position switches from a diagonal location to a channel face centre. As a
hallmark of lateral migration in a square duct, one can generally distinguish two phases of
migration: a first phase during which the capsule quickly migrates in the radial direction,
and a second phase defined by a slower circumferential migration along a heteroclinic orbit
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Parameter Value

Rec 10, 100
La 1, 5, 10, 50, 100
ν 1/6	x2/	t
κ̃α 2
κ̃b 0.00287
a 9	x
w 5a = 45	x
L 8w = 360	x
y0 0.2w = 9	x
z0 0.8w = 36	x

Table 2. Parameters of the second benchmark case: soft particle migration in channel flow. See figure 3 for
an illustration of the set-up. The channel Reynolds number is varied by the body force and, therefore, Umax via
(2.5), and the Laplace number is controlled by the shear elasticity via (2.7). The liquid density is set to 1 in
simulation units.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y/w
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y/w
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z/w

0

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

La = 1
La = 5
La = 10
La = 50
La = 100

Present
Schaaf & Stark (2017)

(a) (b)

Figure 4. Cross-sectional trajectories and lateral equilibrium positions of a single capsule in channel flow for
various values of La at (a) Rec = 10 and (b) Rec = 100. Our results are indicated by solid lines with circles, and
dashed lines with squares show the results reported by Schaaf & Stark (2017). Grey symbols mark the initial
capsule position, and colourful symbols indicate the final positions on the channel cross-section. The channel
centreline is located at ( y, z) = (0, 0). Dashed grey lines are guides for the eyes.

(Nakagawa et al. 2015). This behaviour is caused by the shear gradients of the velocity field
being more pronounced in the radial than in the circumferential direction.

We have run simulations for Rec = 10 and 100, and for La between 1 and 100.
The Skalak model was employed for the capsule membrane. Table 2 summarises the
simulation parameters. The initial position of the capsule is the same for each set of
parameters considered. We compare cross-sectional particle trajectories obtained from
our solver with those results reported by Schaaf & Stark (2017). Figure 4 shows that the
capsule trajectories and lateral equilibrium positions generally agree well. In the cases
where results do not agree well, the equilibrium positions recovered by our solver are
located either on the channel diagonals or midway along channel faces, as expected from
symmetry considerations, whereas the trajectories of Schaaf et al. appear to have stopped
short. This discrepancy could be explained by the runtime of the simulations by Schaaf &
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Figure 5. Schematic of particle pairs in a rectangular duct. Parameter values are given in § 4.1. (a) The flow
is along the x-axis (blue arrow). Particles are initially located on the mid-plane with y = const. (indicated by
grey plane). (b) Depending on their initial position along the x-axis, we distinguish between the leading and
the lagging particle.

Stark (2017) who mentioned that not all of the particles ‘reach their equilibrium position
on the diagonal or the main axis during the simulations’.

We also noticed some oscillations in the results of Schaaf et al. at La = 5 and 10 that
appear to affect the trajectories during the second phase of migration. Our simulations did
not show these oscillations, which could be due to a different bending model employed.

Overall, our IB-LB-FE solver produces results consistent with those of previously
validated solvers and has been shown to be suitable for the investigation of inertial
migration and the hydrodynamic interaction of soft capsules.

4. Results and discussion

Previous works have investigated the formation and stability of pairs (Gupta et al. 2018;
Udono 2020) and trains (Kahkeshani et al. 2016; Hu et al. 2020) of rigid particles in
channel flow. Schaaf et al. (2019) identified four different types of the trajectories of two
rigid particles, depending on their initial positions in the channel. Patel & Stark (2021)
also observed each of these trajectory types for soft particles in mono- and bi-disperse
pairs. In the following we analyse the interaction of a pair of equally soft capsules for
different Laplace numbers. In § 4.1 we define the cases investigated and parameters used,
while § 4.2 presents the trajectory types that occur at a given Laplace number. Section
4.3 investigates the relationships of the lateral equilibrium position of each particle and
the axial equilibrium distance between both particles with Laplace number and initial
positions. Section 4.4 analyses the formation of stable pairs with a view to understanding
how Laplace number and initial position effect focusing time and distance.

4.1. Case definition
Originally proposed by Schaaf et al. (2019), two particles are placed in a pressure-driven
flow through a rectangular duct with width 2w and height 2h with aspect ratio w/h = 2
(figure 5). The length of the channel is L = 10h, and the flow is periodic along the flow
direction.

Both capsules are initially located on the mid-plane between the side walls (y = const.),
while the initial x- and z-coordinates are varied. We distinguish between the initially
leading (farther downstream) and lagging (farther upstream) particles, according to their
initial positions on the flow axis (x-axis). The limitation to the mid-plane is justified
since particle equilibrium positions in high aspect-ratio channels at the Reynolds number
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investigated here are usually in the middle of the long channel edges (Prohm & Stark 2014).
Particles initially located on this mid-plane will usually stay on this plane while moving
along the x-axis and migrating along the z-axis. We have not observed particles leaving the
mid-plane in any of our simulations. We expect that changing the channel aspect ratio w/h
will have only a minor influence on the results as long as the confinement by the side walls
is lower than that by the top and bottom walls. Investigating the more general cases with
arbitrary channel aspect ratios and initial particle positions not confined to the mid-plane
would lead to an unmanageable number of free parameters and is beyond the scope of this
paper.

In all following simulations we have employed the Skalak membrane model with
a reduced dilation modulus κ̃α = 2 and reduced bending modulus κ̃b = 0.00287. The
channel Reynolds number is Rec = 10 in all cases, and the numerical viscosity is kept at
ν = 1/6	x2/	t. The channel dimensions are 2w = 80	x, 2h = 160	x and L = 560	x.
The undeformed capsule radius is a = 16	x. We focus on La, δx0, zlead

0 and zlag
0 as free

parameters (figure 5).

4.2. Interaction types of homogeneous soft particle pairs
We consider pairs of identical capsules (homogeneous pairs). First, we characterise the
interaction types of the capsules before investigating the effects of Laplace number and
initial particle positions in more detail.

In order to understand the general effect of softness and initial positions of the
capsules, we simulated pairs at three different Laplace numbers: La = 1, 10 and 100. The
investigated range of Laplace number was chosen to allow comparison with previous work
(Schaaf & Stark 2017) while also ensuring numerical instabilities did not occur for more
rigid particles. Softer particles were not considered since additional interesting behaviour
was not observed beyond La = 1 for the considered confinement. The initial positions of
both capsules along the height axis (z-axis) is varied with a total of 66 combinations (six
initial positions of the leading particle: five in the top half of the channel and one at the
centre; 11 initial positions of the lagging particle: five in the top half, five in the bottom
half and one at the centre). Note that initial configurations mirrored at the x–y-plane lead
to identical results. We also considered three different initial axial distances between the
particle centres (3a, 5a and 7a), leading to 3 × 66 × 3 = 594 configurations in total. The
actual number of simulations is 549 since there are 45 symmetric cases when the leading
particle is initially midway between the bottom and top walls.

Using rigid particles, Schaaf et al. (2019) identified four different particle interaction
types: swap & scatter, pass & scatter, scatter and capture. Examples of each trajectory
type are shown in figure 6, and brief descriptions are included in table 3. We changed the
original names of the trajectory types that Schaaf et al. (2019) used in order to improve
clarity when discussing the trajectories observed for soft particles. ‘Scatter’ refers to
cases where the axial distance between particles eventually grows such that particles stop
interacting with each other. ‘Capture’ indicates an interaction where the axial distance of
the two particles is bound. Interestingly, we observe two capture subtypes: one where the
axial (and also lateral) distance between the particles becomes constant after some time
(‘stable’) and the other where the axial distance does not grow arbitrarily, but does not
converge to a constant value either (‘partially stable’).

Using soft particles, we identified the same four previously observed trajectory types of
rigid particles, and two new types that have not been found for rigid particles. We label
the two new types as ‘swap & capture’ and ‘pass & capture’. Examples of the new types
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Figure 6. Typical snapshots at selected points in time and space for each trajectory type observed for soft
particles. Cases (a–d) have been previously observed for rigid particles as well, while cases (e– f ) have not.
The initially leading/lagging particle is shown in red/blue, respectively. Note that the axial distances between
different snapshots are not to scale. The six interaction types are characterised in more detail in table 3. (a)
Swap & scatter. (b) Pass & scatter. (c) Capture. (d) Scatter. (e) Swap & capture. ( f ) Pass & capture.
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Type Description Rigid

(a) Swap & scatter The lagging particle approaches the leading
particle and attempts to overtake. As it does so,
the particles swap their lateral positions, which
means that the particle that was initially farther
away from the channel centre is now closer, and
vice versa. The lagging particle fails to overtake
the leading particle and, due to the swapping of
the lateral positions, is now farther away from
the channel centre than the leading particle. The
leading particle is now faster and moves away
from the lagging particle.

Yes

(b) Pass & scatter The lagging particle approaches the leading
particle and overtakes on the side closer to the
channel centre. The initially lagging particle
(now leading particle) is closer to the channel
centre and moves away from the initially leading
(now lagging) particle.

Yes

(c) Capture The lagging particle approaches the leading
particle but does not overtake. Instead, the
lagging particle follows the leading particle at a
constant distance. In some cases, a damped
oscillation of the axial distance between the
particles occurs.

Yes

(d) Scatter The leading particle is faster than the lagging
particle and moves away.

Yes

(e) Swap & capture Similarly to the swap & scatter trajectory, the
lagging particle approaches the leading particle
and the lateral positions swap. However, once the
lagging particle fails to overtake, it follows the
leading particle, not necessarily at a constant
distance.

No

( f ) Pass & capture Similarly to the pass & scatter trajectory, the
lagging particle overtakes the leading particle on
the side closest to the channel centre. Once it has
overtaken, the initially lagging particle begins to
move away. However, the now lagging particle is
able to follow, not necessarily at a constant
distance.

No

Table 3. Descriptions of trajectory types of soft particle pairs with indication of whether this type is also
observed for rigid particle pairs. Scatter means that the axial distance between particles grows until particles
stop interacting with each other. Capture means that the axial distance is bound. Figure 6 visualises some
example cases.

are shown in figure 6 and described in table 3. The newly observed partially stable particle
pairs seem to occur only when particles are sufficiently soft, as will be discussed later.

Figure 7 shows the key results of our work: trajectory types resulting from all studied
configurations (various initial lateral positions; initial axial particle distances of 3a, 5a and
7a; Laplace numbers La = 1, 10 and 100). On first inspection, a general trend can be seen
that particle capture occurs under a wider range of initial conditions when the particles
are softer (smaller La). Furthermore, particle capture is more likely when the initial axial
distance δx0 is smaller. For example, for the extreme case La = 1 and δx0 = 3a, 90 %
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Figure 7. Particle interaction types as a function of Laplace number, initial axial distance δx0 and initial lateral
positions z0 for homogeneous pairs. The x- and y-axes of each panel indicate the lateral initial positions of
the lagging and leading particles with respect to the channel centreline (z0 = 0). The symbols indicate the
interaction type as defined in table 3 and shown in figure 6. Symbols with a white background indicate a
scattering trajectory. A dark grey background denotes a stable pair, while a light grey background indicates a
partially stable pair. The dashed boxes define those configurations that are analysed in more detail in figure 8.

of all studied initial positions lead to capture. Only in cases where the leading particle
is initially much closer to the channel centre (and, therefore, sufficiently faster) than the
lagging particle, capturing does not occur.

The increase of capture probability with decreasing δx0 can be explained by the stronger
hydrodynamic interaction of particles when they are initially closer. Additionally, particle
softness is beneficial for capture since an initially lagging particle that is softer is able
to increase its axial velocity more quickly than a more rigid particle by migrating closer
towards the channel centre where the axial free-stream flow velocity is higher. Thus, a
softer lagging particle has a higher chance of catching up with the leading particle before
the leading particle moves away. We will take a closer look at the effect of Laplace number
on particle dynamics in § 4.3.

Another notable effect of particle softness is that the diagrams in figure 7 become
more symmetric with respect to z0 ↔ −z0 of the lagging particle. For La = 100 (more
rigid particles), capture essentially only occurs when the leading and lagging particles
are on different sides of the channel (positive z0 for leading particle and negative z0 for
lagging particle). This effect can be explained by the known observation that pairs of
rigid particles at high confinement a/h are more stable when both particles are located
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Figure 8. Time evolution of the axial distance δx for various initial lateral positions of the lagging particle
(shown in different colours) for (a) La = 10 and (b) La = 100. The line style denotes the resulting trajectory
type. In all cases, zlead

0 = 0.4h and δx0 = 3a.

on different sides of the channel centre (Patel & Stark 2021). Softer particles, however,
migrate more quickly, and they migrate closer to the channel centre; therefore, the
initial lateral position of softer particles is less important. Furthermore, the faster lateral
migration of softer particles provides more opportunity for a soft lagging particle to remain
within interaction range of the leading particle, resulting in a captured pair rather than
being scattered.

Schaaf et al. (2019) did not observe the swap & capture and pass & capture types
for rigid particle pairs. Figure 7 shows that both types become less common when La
increases. Thus, the results suggest that a critical Laplace number exists where these
trajectory types disappear. Similarly, we found partially stable particle pairs only for
La < 100.

Examination of figure 7 reveals that a small variation in the initial position can have a
large effect on the trajectory type of the two particles. To investigate this effect further,
two sets of configurations are selected where the Laplace number, the initial axial distance
between the particles and the initial lateral position of the leading particle remain constant.
The initial lateral position of the lagging particle is varied between −0.5h and +0.5h. The
selection of initial conditions is highlighted by the dashed areas in figure 7.

The time evolution of the axial distance between both particles is shown in figure 8.
For a given value of La and changing initial position of the lagging particle, various
trajectory types can be seen, with stable pairs forming in some cases. Softer particle pairs
(La = 10) result in more trajectory types where captured particle pairs are created, but
some similarities exist between the cases for La = 10 and 100. For La = 10, the trajectory
type transitions from capture when the lagging particle is located at the extreme of the
opposite side of the channel centreline (zlag

0 = −0.5h) to swap & capture as the lagging
particle is released closer to the centreline. Similarly, for La = 100, the capture trajectory
type also occurs when the lagging particle is at the extreme of the opposite side of the
channel centreline. Once the initial position of the lagging particle is closer to the channel
centreline, the early interaction for the stiffer particles (La = 100) is similar to that of
the softer particles (La = 10) with some degree of swapping of lateral positions between
the particles. However, differences begin to occur after this early interaction: the lagging
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particle moves away from the leading particle for La = 100, resulting in a swap & scatter
type. Upon zlag

0 becoming positive (i.e. both particles are initially on the same side of
the channel), another trajectory type transition occurs: for La = 10, we find a transition
to pass & capture, while the pair at La = 100 transitions to pass & scatter, marking a
further difference between the cases for both Laplace numbers. The point of transition
to a passing trajectory is also La-dependent; zlag

0 = 0 for La = 100 and zlag
0 = 0.2h for

La = 10. Finally, for the largest studied values of zlag
0 , the trajectory types transition to

scatter, irrespective of the Laplace number. All transitions described here are also visible
in figure 7.

On a finer sweep of the initial position range of the lagging particle where zlag
0 was

varied by increments of 0.033h (data not shown), no additional transitions were found,
confirming that not all trajectory types exist for a given Laplace number.

For the same system properties (Reynolds number, Laplace number, channel aspect
ratio, particle-channel confinement), different initial particle configurations can lead to
entirely different outcomes: captured or scattered pairs. Captured pairs are observed within
a wider range of initial positions when the particles are softer. Furthermore, depending on
the initial configuration, the axial distance between particles in (partially) stable pairs can
be different. Figure 8(a) shows the partially stable axial distance can vary between around
2.5a and 3.5a, a variation of nearly 50 %. For the swap & capture and pass & capture types,
the axial distances are different and also vary with the initial particle position. For the
capture trajectory type at La = 10, the variation in final axial distance is smaller, however
it remains dependent on the initial particle position. In contrast, the final axial distance of
capture trajectory type pairs at La = 100 are independent of initial positions (figure 8b).
We explore this behaviour further in § 4.3 since these are important observations given
the formation of stable pairs is useful in many microfluidic applications when the particle
spacing within a channel is required to be predictable and reproducible.

As we will elaborate next, the role of Laplace number and lateral equilibrium position
are tightly connected with the stability of a captured particle pair.

4.3. Effect of softness on lateral and axial particle migration
After having identified different interaction types of soft particle pairs, we now turn our
attention to the dynamics of particle capture. In their investigation of rigid particle pairs
under the same flow conditions as this work, Schaaf et al. (2019) found that stable particle
pairs form for certain initial lateral positions. Rigid particles show a damped oscillation of
their relative distance before reaching their stable equilibrium configuration. We observed
a similar oscillation for soft particles.

We investigated the oscillation of the relative distance between soft particles for zlead
0 =

0.2h, zlag
0 = −0.2h and δx0 = 3a in the range La = [5, 125]. All these cases have capture

trajectories and lead to either stable or partially stable pairs. Figure 9(a) shows the time
evolution of the lateral position of both particles as a function of La. In the early stages of
migration, each particle undergoes a damped oscillation before reaching a La-dependent
lateral equilibrium position. Trajectories of single particles at the same La are included
for comparison. Single particles follow similar migration paths to the particles within the
pair of equal stiffness but without oscillation, demonstrating that the oscillations are a
result of particle–particle interaction. While the softest particles (La ≤ 15) migrate to the
channel centre, stiffer particles reach equilibrium positions farther away from the channel
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Figure 9. Lateral motion of soft particles for δx0 = 3a and various Laplace numbers. (a) Time evolution of
single, leading and lagging particles. Rigid limits extracted from Schaaf et al. (2019) for lateral equilibrium
positions of rigid particles under the same flow conditions. (b) Zoomed area of (a) in the region of transition
between off-centre and centreline lateral equilibrium positions. (a) Time evolution of lateral particle position.
(b) Lateral equilibrium positions.

centre as La increases, converging to rigid limits extracted from Schaaf et al. (2019). This
observation is in agreement with the results of Kilimnik et al. (2011).

Figure 9(b) shows a zoomed area of figure 9(a), highlighting the transition between
off-centre and centreline lateral equilibrium positions, also in comparison with the
single-particle lateral trajectories. The point of transition between off-centre and centreline
equilibrium positions for a single particle is termed the critical Laplace number and was
found to be Lacr ≈ 18 for a single particle (the full migration time at the critical Laplace
number is large and not fully shown in figure 9b). However, figure 9(b) shows a particle
pair with La = 18 migrating to an off-centre equilibrium position, as does a slightly softer
pair with La = 17. These observations demonstrate that the formation of pairs slightly
alters the inertial migration characteristics of soft particles.

The damped oscillation is also seen in the axial distance between both particles
(figure 10). While particle pairs with La > 15 converge to a stable axial equilibrium
distance, softer particles fail to do so. However, their axial distance remains small during
the runtime of the simulations, indicating that these pairs are partially stable, rather
than scattered. We find that pairs that form stable axial equilibrium distances have
off-centre lateral equilibrium positions, while partially stable pairs have centreline lateral
equilibrium positions in all cases. This observation can be attributed to the absence of
shear-gradient-induced lift at the channel centreline. As a result, other forces have larger
contributions to the overall dynamics of the system while the influence of numerical
artefacts cannot be fully ruled out.

We observed that, for the investigated parameter range, all pairs at the centreline are
partially stable while all stable pairs are off-centre. We hypothesise that the determining
factor for stability is lateral equilibrium position, rather than particle softness (Laplace
number). For a given confinement and Reynolds number, the Laplace number determines
the lateral equilibrium position. In particular, at χ = 0.4 and Re = 10, we found Lacr ≈
15. To test the hypothesis, we investigated the behaviour of a particle pair at χ = 0.2 and
La = 15 for which we expect a single particle and particle pairs to assume an off-centre
equilibrium position. Figure 11 shows the trajectories of particle pairs for two initial axial
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Figure 10. Time evolution of axial distance for various Laplace numbers. The initial conditions are the same
as in figure 9.
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Figure 11. Time evolution of a single particle and particle pair motion with particles of La = 15 and χ = 0.2.
Initial lateral positions of the particles are identical to figures 9 and 10 in non-dimensional units while the initial
axial distance is equal to figures 9 and 10 in terms of channel height (δx0 = 6a) and in terms of particle radius
(δx0 = 3a). (a) Time evolution of lateral particle positions. (b) Time evolution of axial particle distance.

distances: δx0 = 3a to have the same δx0/a ratio and δx0 = 6a to have the same δx0/h ratio
as the case with χ = 0.4. The lateral migration of a single particle with the same softness,
confinement and initial lateral position is included for comparison. Both sets of initial
conditions lead to the pair migrating to an off-centre equilibrium position (figure 11a)
and to stable pairs forming (figure 11b). Hence, the findings for χ = 0.2 provide evidence
that stable pairs require off-centre equilibrium positions. Applications relying on finely
tuned axial distances between particles, therefore, might benefit from arrangements with
sufficiently small χ and large La for which particles do not migrate to the centreline.

The dependence of axial distance on initial configuration when particles are located at
the centreline may explain some observations previously reported where the axial distance
between particles is distributed within a certain range, with most of the measured distances
clustered around one or several preferred distances (Lee et al. 2010; Kahkeshani et al.
2016). In realistic problems, a channel contains more than two particles, and each scatter
interaction means that the leading particle may catch up with another particle that is
farther downstream in the channel. This way, after some time, stable trains might form,
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Figure 12. (a) Lateral equilibrium positions for leading particle (blue), lagging particle (green) and a single
particle under the same conditions (red). Note that leading and lagging particle have essentially the same
lateral equilibrium positions and green markers are not always visible. Crosses indicate the difference between
the lateral positions of the leading particle in a pair and the single particle. (b) Axial equilibrium distance. (c)
Focusing times for the leading particle in a pair in the lateral direction and for the axial distance. The focusing
time is defined as the time until the last occurrence of the position/distance being outside its equilibrium value
± the specified tolerance. Three different tolerances are included to highlight the general trends. (a) Lateral
equilibrium positions. (b) Axial equilibrium distances. (c) Focusing time of particles with varying Laplace
number for lateral equilibrium position and axial distance.

even if individual pairs are not stable. Future studies should therefore investigate how the
dynamics of single pairs is related to the dynamics of longer particle trains.

Figure 12(a) shows the absolute value of the lateral equilibrium position of the
leading and lagging particles as a function of inverse La; the equilibrium position of
a single particle under the same conditions is included for comparison. Also included
for comparison is the equilibrium position of a rigid pair as reported by Schaaf et al.
(2019) with which we obtain good agreement. There are two important findings beside
the fact that softer particles end up closer to or at the channel centre. First, the absolute
values of the lateral positions of both particles in a pair are virtually indistinguishable
from each other. However, the lagging particle is slightly farther from the channel centre
than the leading particle. This finding was also observed by Schaaf et al. (2019) for rigid
particles. Second, both particles in a pair are consistently farther away from the channel
centre than a single particle under the same conditions. This difference becomes smaller
for increasing La, and our findings suggest that in the rigid limit (1/La → 0), lateral
equilibrium positions are the same for a single particle and particles in a pair. Indeed,
Schaaf et al. (2019) found rigid particles having the same lateral equilibrium position
when in a pair and in isolation. Interestingly, Gupta et al. (2018) found lateral equilibrium
positions of a rigid particle train to be slightly closer to the channel wall than for a single
particle. It is currently unclear how a train of soft particles under significant confinement
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would behave in relation to a single particle. Furthermore, we observed that the lateral
equilibrium positions are independent of initial positions and the type of the particle
interaction (data not shown).

For the stable pairs, where the axial distance δx converges to a constant value after some
time, figure 12(b) shows the axial equilibrium distance as a function of 1/La. We find that
particles tend to form closer pairs when they are softer, and the lowest stable axial distance
we observed is around 2.4a, just above one particle diameter. Note that these particle pairs
are also off-centre and on different sides of the channel centreline, so the actual distance
between the particles is larger. We include the axial distance reported by Schaaf et al.
(2019) for rigid pairs for comparison. The explanation of the gap between the rigid limit
and the most rigid particle we have simulated is currently unclear. The axial distance could
be strongly sensitive to mild particle deformation (1/La < 0.01), and future investigation
of this parameter range is recommended.

The focusing time and distance, the time or distance until the last occurrence of a
particle outside its equilibrium position within a given tolerance, is an important parameter
in many inertial microfluidic applications. Figure 12(c) shows the focusing time of the
leading particle in the lateral direction and the axial distance between the particles in a pair.
Three tolerances have been selected for each direction as representative low, medium and
high values. The magnitude of these tolerances are arbitrary and intended to demonstrate
the general trend of lateral and axial focusing times. Note that the absolute tolerances in the
lateral and axial directions are equal to reflect tolerances in practical applications. We find
that the focusing time decreases slightly in the lateral direction for softer particles in the
range La = 50–125. However, for soft particles below La = 50, the focusing time tends
to increase, surpassing the focusing time of the most rigid particles investigated when
La = 20. This general trend is repeated for the focusing time in the axial direction, with
the softest particles having the longest focusing time. Given that the softest particles have
lateral equilibrium positions closest to the channel centreline, where the axial velocity is
larger, this also corresponds to the softest particles having the largest focusing distance.

Figure 12(c) shows that the lateral focusing occurs before the axial focusing. We will
return to this observation in § 4.4 where we hypothesise that the particles within a pair must
reach their lateral equilibrium position before being able to find their axial equilibrium
distance.

Summarising the results so far, we have observed a number of ‘rules’ that all
simulated particle pairs obey for the chosen value of Reynolds number (Re = 10) and
particle-channel confinement (a/h = 0.4) and the range of Laplace numbers and initial
positions investigated.

(i) For all partially stable pairs, both particles are located at the channel centre.
(ii) For all stable pairs, both particles are off-centre and on different sides of the

centreline and with essentially identical ‖zeq‖, i.e. zlag
eq ≈ −zlead

eq .
(iii) A critical Laplace number exists for a given confinement ratio where particles with

La ≤ Lacr always migrate to the channel centre and never form stable pairs.

These observations suggest that hydrodynamic particle interactions are fundamentally
different for on-centre and off-centre pairs. Our findings, therefore, have important
implications for microfluidic applications that rely on well-tuned axial distances between
particles.

Finally, we observed that focusing of the lateral position occurs before stabilising the
axial distance. We propose a high-level breakdown of the formation of stable particle
pairs, shown schematically in figure 13. We distinguish between zeroth-, first- and
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0th order 1st order 2nd order

Figure 13. Contributions to the overall formation of stable particle pairs.

second-order effects. Zeroth-order effects are those that occur without particles present,
i.e. the flow field development. First-order effects denote the behaviour of single
particles that cannot be explained by the unperturbed flow field alone, in particular the
single-particle lateral migration. Second-order effects are caused by the interaction of two
particles, including the oscillation of the lateral position and the stabilisation of the axial
distance between particles. Our results reveal that second-order effects strongly depend on
the first-order effects while the presence of a second particle has only minor consequences
for the lateral motion of the other particle. The notion of second-order effects depending on
first-order effects have been observed experimentally; Gao et al. (2017) found that particle
trains only begin to form once particles reach their lateral equilibrium positions. As a
result, microfluidic designers must consider the key parameters of the application carefully.
Devices that are used for cytometry rely on axial particle ordering (second-order effects)
and will require a different quality of consideration than devices for particle separation
(mostly relying on first-order effects).

4.4. Effect of initial position on lateral and axial particle migration
To better understand how stable pairs form, we analyse the oscillations of captured pairs
when initial positions are varied. We first investigate the effect of initial axial distance
δx0. Figure 14 shows the lateral positions of the leading and lagging particle and axial
distance in time for initial distances in the range [3a, 11a]. The Laplace number is set
to La = 36 so that the lateral equilibrium position is equal to the initial position and the
time development is mostly caused by axial rearrangement. Under these conditions, lateral
oscillations are small (figure 14a); they arise from the flow field perturbations caused by
the axially approaching particles (figure 14b).

We identify the time tax it takes for the axial distance to reach its first minimum as
illustrated by vertical lines in figure 14(b). The resulting times tax are shown in figure 15(a).
It can be seen that the axial attraction time tax has an exponential relationship with initial
axial separation, with a behaviour tax/tad ∝ exp(0.85δx0/a). Thus, even a small increase in
initial particle separation might lead to pairs not forming before the particles have reached
the device outlet.

Figure 15(b,c) shows the lateral position of the lagging particle and the axial distance
shifted in time such that the first minima of δx(t) coincide (t → t′ = t − tax). We find that
the amplitudes of both the lateral and axial oscillations increase with δx0, converging to
a constant magnitude when δx0 ≈ 7a. These observations suggest two phases exist in the
axial migration of particle pairs. The first phase at δx ≥ 7a is slow, while the second phase
at δx < 7a is faster and includes stronger particle interactions leading to oscillations in
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Figure 14. Time evolution of (a) lateral particle positions and (b) axial distance between particles at La = 36
and χ = 0.4. Initial lateral positions are set to zeq. The initial axial distance is increased until a captured pair
does not form before t/tad ≥ 10 000.
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Figure 15. (a) Axial attraction time tax at which the axial distance reaches its first minimum as denoted by
vertical lines in figure 14(b). The solid line is an exponential ∝ exp(0.85δx0/a). (b) Time evolution of lateral
position of the lagging particle for different initial axial distances. (c) Time evolution of axial distance for
different initial axial distances. (a) Axial attraction time as a function of initial axial distance. (b) Lateral
position of the lagging particle vs shifted time t′ = t − tax. (c) Axial distance vs shifted time t′ = t − tax.
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Figure 16. Time evolution of (a) lateral particle position and (b) axial distance at La = 90, χ = 0.4 and
δx0 = 3a ≈ δxeq. Initial lateral positions obey zlag

0 = −zlead
0 and are varied in the range [0.1h, 0.45h]. (c)

Lateral centre of mass position of the pair vs axial distance; the inset shows the zoomed area close to initial
and equilibrium positions. (d) Time evolution of the half-lateral distance between particles compared with
trajectories of single particles. Note that a reduced selection of initial positions are included in (c) to improve
readability. The line colours in all panels correspond to the legend in (a). (a) Lateral positions vs time. (b)
Axial distance vs time. (c) Lateral centre of mass position vs axial distance. (d) Half-lateral distance vs time.

both lateral position and axial distance. Importantly, the data shows that the second phase
is not strongly affected by the first phase. Only for cases where particles are initially closer
than 7a, the system is initialised directly in the second phase, and the outcomes strongly
depend on the initial distance δx0.

Next we investigate the effect of initial lateral position z0. The parameters are La = 90
and χ = 0.4 for which the lateral equilibrium position is zeq ≈ ±0.3h and the axial
equilibrium distance is δxeq ≈ 3a for all cases investigated. Particles are released at
δx0 = 3a and on different sides of the centreline, i.e. zlag

0 = −zlead
0 . Figure 16(a,b) shows

the time evolution of the lateral position of both particles and their axial distance for a
range of initial lateral positions, [0.1h, 0.45h]. Oscillations are visible in both the lateral
position and the axial distance. The oscillation amplitude tends to be larger when the
initial position z0 is farther away from zeq. As expected, for the special case z0 ≈ zeq,
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there are virtually no oscillations since particles are initialised close to their equilibrium
configuration. For the majority of cases, the initial lateral motion of both particles is
towards the equilibrium position. However, lagging particles initially located between their
equilibrium lateral position and the channel centreline behave differently: these particles
first move away from their equilibrium position (towards the centreline) before changing
direction and eventually converging at the equilibrium. Given that single particles in our
simulations always move towards their equilibrium lateral position, this observation can
be attributed to hydrodynamic particle–particle interactions.

The direction of the initial oscillation of the axial particle distance (figure 16b) differs
either side of the lateral equilibrium position with growing amplitude as the difference
between initial and equilibrium lateral position increases: when particles in a pair are
initially closer to the centreline than their lateral equilibrium positions, particles first
decrease their axial distance. Particles initially farther away from the centreline first
increase their axial distance. The inset in figure 16(b) shows the two extreme cases with
initial lateral positions of 0.1h and 0.45h. Despite the amplitude of the first oscillation
of both pairs being similar, the oscillation of the pair farthest away from the channel
centreline damps more quickly than the pair closest to the centreline. We will explore
the damping of the oscillations in more detail in § 4.5.

We now consider the centre-of-mass behaviour of the particle pair. Figure 16(c) shows
the lateral centre of mass position vs the axial particle distance. Since particles are released
with the same axial distance and at the same distance either side of the channel centre, the
centre of mass always starts at the same point on the centreline (circle in figure 16c). The
inset shows a zoomed area close to the initial and equilibrium positions. At early times, the
centre of mass leaves the centreline, begins to oscillate and eventually spirals towards the
equilibrium back on the centreline. The initial direction of the motion of the centre of mass
depends on the initial lateral position of the particles. However, as the pairs approach the
equilibrium positions at later times, all trajectories converge to a similar counterclockwise
path. This convergence implies that the time history of the pair is eventually forgotten,
which is in line with observations in figure 15 suggesting that the behaviour during the
second phase is largely independent of that during the first phase of migration.

Finally, figure 16(d) shows the time evolution of the half-lateral distance between
particles in a pair, compared with the lateral position of a single particle with the
same initial position. Generally, both types of curves follow the same trend, i.e. to first
order, particles in a pair and single particles behave similarly. Interestingly, particles in
a pair reach their lateral equilibrium distance faster than the single particle converges to
its lateral equilibrium position when particles are initially close to the centreline. This
difference could be caused by the initial proximity of both particles which repel each
other hydrodynamically, hence accelerating the initial lateral migration away from the
centreline. Particles in a pair that are initially farther away from each other experience a
weaker hydrodynamic repulsion and behave nearly like single particles. Another important
observation is that the lateral oscillations seen in figure 16(a) are nearly completely absent
in figure 16(d). On long time scales – of the order of hundreds of advection times –
particles can change their lateral distance and migrate towards their equilibrium; but on
the shorter time scale of the lateral oscillations – tens of advection times – particles
do not oscillate relatively to each other. We hypothesise that a fast oscillation of the
lateral particle distance is suppressed by the liquid between the particles: a fast lateral
oscillation would require liquid being repeatedly squeezed in and out of the gap between
the particles, which is energetically unfavourable. Therefore, the particles’ lateral positions
are hydrodynamically coupled on a short time scale, which also explains why in some
cases one particle in a pair initially moves away from its equilibrium position (figure 16a).
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Taking all observations from figure 16 together, we can now explain the
counterclockwise sense of the oscillation seen in figure 16(c). During periods when the
lagging particle is closer to the centreline than the leading particle, the lateral centre of
mass position is positive and the lagging particle is able to catch up with the leading
particle (δx decreases) since the lagging particle is exposed to a faster portion of the flow
field. Once particles approach axially, the gap between both particles is decreasing, and
liquid needs to be pushed out of the gap, causing a repulsion of the particles. This repulsion
force affects both particles differently. The particle currently closer to the centreline
experiences a smaller shear-gradient force and can move more easily away from the
centreline than the particle currently in a higher shear-gradient region. As a consequence
and supported by particle inertia, the lateral centre-of-mass location crosses the centreline
and turns negative, and the leading particle becomes faster, therefore increasing the
axial distance δx. Upon increasing the axial distance, the gap grows and liquid needs to
move into the gap, therefore causing particle attraction. The process then continues with
swapped roles of both particles and repeats itself. While inertia drives this oscillation,
viscosity causes the damping and eventual convergence to the equilibrium state.

Having identified the importance of oscillations in the formation of a pair, we now focus
our investigation on the dynamics of these oscillations and their effect on focusing time.

4.5. Capture oscillation dynamics and focusing time
Previous studies have identified the existence of a damped oscillation of the relative
distance between captured particles (Schaaf et al. 2019; Hu et al. 2020; Udono 2020). To
understand better how stable pairs form, we analyse the oscillations of the axial distance
between particles when different parameters are varied: Laplace number, initial lateral
position z0 and initial axial distance δx0. Note that the trajectories analysed in this section
have already been presented in § 4.3 for variable Laplace number and § 4.4 for variable
initial positions. We evaluated the damped frequencies by measuring the time periods
between oscillation peaks, similar to the earlier analysis of rigid particle pairs (Schaaf
et al. 2019). Figure 17(a) shows that the oscillation frequency increases with La until
approximately La > 60 beyond which the frequency becomes approximately constant. The
oscillation frequency of the softest particle pair studied is approximately 50 % smaller than
that of the most rigid particle pair studied. The inset in figure 17(a) reveals the results of a
fast Fourier transform of the time data, confirming the findings in the main graph.

We investigated the influence of initial configuration on the resulting oscillation
frequency during pair capture. Figure 17(b,c), respectively, show the obtained frequencies
as a function of initial lateral position for La = 90 and initial axial distance for La = 36.
Figure 17(b) corresponds to the cases in figure 16, and figure 17(c) corresponds to the cases
in figure 14. We see a slight increase in frequency with lateral position and a slight decrease
in frequency with initial axial distance. However, the variation in both relationships is over
an order of magnitude smaller than that of the variation with Laplace number. We conclude
that particle softness is the key determining factor for the oscillation behaviour, and initial
positions have a negligible effect on the late-stage capturing dynamics where oscillations
are strong. These findings support our hypothesis that the particle dynamics during the
second phase of migration are largely independent of the initial details and the first phase
of migration.

Next we analyse the damping of the oscillations of the axial distance. To obtain
the damping coefficient γ for each case, we fitted decaying exponentials of the form
A exp(−γ (t − t0)) + δxeq to the maxima and minima of the time data δx(t). Since the
initial axial distance δx0 generally has a mismatch with the axial equilibrium distance δxeq,

937 A4-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

85
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.85


B. Owen and T. Krüger

20 40 60 80 100 120

La

4

5

6

7

8
Ω

·
t ad

(×10−3) (×10−3) (×10−3)

0 0.01
Ω·tad

0

0.05

0.10

am
p
 (

a.
u
.)

0 0.1 0.2 0.3 0.4 0.5

|z0/h|

4

5

6

7

8

3 6 9 12

δx0/a

4

5

6

7

8

(a) (b) (c)

Figure 17. Oscillation frequency Ω as a function of (a) Laplace number, (b) initial lateral position (La = 90)
and (c) initial axial distance (La = 36). The inset in (a) shows results from a fast Fourier transform of the time
data for a selection of Laplace numbers (colours correspond to those in figure 10a). (a) Frequency as function
of softness. (b) Frequency as a function of initial lateral position (La = 90). (c) Frequency as a function of
initial axial distance (La = 36).
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Figure 18. Damping ratio γ as a function of (a) Laplace number, (b) initial lateral position (La = 90) and (c)
initial axial distance (La = 36). The inset in (a) depicts the process of obtaining the damping coefficient γ

(see main text for details). (a) Damping as a function of softness. (b) Damping as a function of initial lateral
position (La = 90). (c) Damping as a function of initial axial distance (La = 36).

the oscillations of δx(t) show pronounced transients at early times. To improve results, we
ignored the first two periods of each curve in the fitting process. The inset of figure 18(a)
illustrates our procedure. Figure 18 shows the results for the damping ratio γ ; panels (a–c)
correspond to those in figure 17. Figure 18(a) reveals that the damping ratio increases
with La. Unlike the frequency Ω in figure 17(a), γ keeps increasing beyond La = 60 and
does not seem to converge to a ‘rigid limit’ in the range of Laplace numbers investigated.
However, figure 18(b,c) shows that the damping ratio – as the frequency in figure 17(b,c) –
is essentially independent of initial lateral position and initial axial distance. The behaviour
of the damping coefficient provides further support to the importance of particle softness
to the oscillation dynamics, while details of the initial conditions are less relevant.

A key parameter in the formation of particle pairs is the focusing time for both the lateral
position and the axial distance. In § 4.3 we presented the dependence of both focusing
times on La. We showed that particles are focused laterally before the axial distance
equilibrates. Figure 19 reveals the dependence of focusing time on particle softness, initial
particle position and initial axial distance with moderate tolerance (δxeq ± 0.05a and
zeq ± 0.02h). For clarity, figure 19(a) contains the relevant subset of data from figure 12(c).
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Figure 19. Focusing time for lateral position of the leading particle and the axial distance as a function of
(a) Laplace number, (b) initial lateral position (La = 90) and (c) initial axial distance (La = 36). (a) Focusing
time as function of softness. (b) Focusing time as a function of initial lateral position. (c) Focusing time as a
function of initial axial distance.

As expected, figure 19(b,c) show that the initial conditions have a strong effect on the
focusing time. While focusing times are minimal when particles are initialised close
to their equilibrium lateral position (zeq ≈ 0.3h in this case), focusing times increase
with |z0 − zeq| (figure 19b). Interestingly, focusing times become particularly large when
particles are initially close to the centreline; probably because shear gradients are smaller
in this region. This trend follows the change in oscillation amplitudes observed in
figure 16. Likewise, focusing times are smallest when the initial axial distance matches the
equilibrium distance (δxeq ≈ 3a in this case), while the focusing time increases strongly
with δx0, in particular for δx0 > 9a (figure 19c). At lower values of δx0, the increase in
focusing time is much more gradual, perhaps offsetting the decrease in axial distance
with the changing oscillation dynamics that are constant at larger initial axial distance
(figure 15c).

In our capsule model, we have chosen to constrain the bending modulus of the
membrane by introducing a dependency on the elastic shear modulus so that it is no longer
a free parameter. The relationship chosen between the strain and bending moduli has been
derived from that of a red blood cell and, therefore, has physical significance. We suggest
that in future work, the effect of bending rigidity should be investigated further.

Our analysis shows that both the initial positions and particle softness play an
important role in the dynamics of stable pair formation. Particle softness dominates
the characteristics of trajectory oscillations while initial positions play a larger role in
determining focusing time. We conclude that designers of inertial microfluidic devices
must also consider the particle positions prior to interaction, with device performance
optimised through consideration of particle softness.

5. Conclusions

The formation of stable particle pairs is the foundation for many applications within
the field of inertial particle microfluidics, including particle focusing, cytometry and
separation. Identifying the conditions under which stable pairs form is crucial to improving
the design process and performance of some inertial microfluidic devices. Despite most
particles processed in microfluidic devices being soft biological cells, the majority of
numerical investigations to date have concentrated on the modelling of rigid particles.
It is known that particle deformability affects the migration behaviour under the influence
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of inertia. Here, we have investigated the effect of particle softness on the formation and
stability of particle pairs in straight channels under moderate inertial flow conditions.

We used an in-house immersed-boundary-lattice-Boltzmann-finite-element solver to
simulate single and pairs of soft capsules in channel flow under the influence of fluid
inertia at channel Reynolds number 10 and particle-to-channel confinement of 0.4. The
code has been benchmarked against previously published numerical results involving a
pair of capsules interacting in inertial shear flow and a single soft particle migrating in a
channel.

There are the following several important results.

(i) We first investigated the general effect of particle softness, characterised by the
Laplace number, and initial particle position for a pair of equally soft particles. We
observed two new trajectory types termed swap & capture and pass & capture that
appear in some cases and have not been found for rigid particle pairs in the same
geometry in earlier studies. Particle softness was found to increase the likelihood of
a captured particle pair forming.

(ii) We observed that particle pairs that migrate to the channel centre are stable only in
the lateral direction, but not in the axial direction (partially stable pairs). In contrast,
particle pairs that migrate to an off-centre lateral equilibrium position form pairs
that are stable in both the lateral and axial directions. We found that particle softness
seems to affect the pair stability only through the resulting lateral equilibrium
position. Generally, the lateral equilibrium positions of soft particles in a pair are
nearly the same as those of single particles under the same conditions. Importantly,
our simulations show that the stabilisation of the axial particle distance occurs only
after particles have migrated laterally. Our findings suggest that the observations can
be classified as zeroth-, first- and second-order effects which refer to effects caused
by the background flow field, the behaviour of a single particle and the interaction
of two particles, respectively.

(iii) The formation of a stable pair consists of two phases: an early and a late phase.
During the early phase, particles migrate laterally and approach each other until the
axial distance becomes small. The later phase involves a spiralling motion leading
to a converged state. We found the late phase to be largely independent of the first
phase, as long as the initial conditions lead to the eventual formation of a stable
pair. During the spiralling motion towards the converged state, particles are tightly
coupled through hydrodynamic interactions. The spiralling motion is driven by an
interplay of flow-induced lift, particle inertia and viscous dissipation. Importantly,
the pair formation time grows exponentially with the initial axial distance of the
particles.

(iv) The particle oscillations during the late phase of pair formation are characterised
by their frequency and damping coefficient. Both quantities increase with Laplace
number until a rigid particle limit is reached, but they are largely independent of
initial conditions. Finally, we show that the pair formation time is determined by the
initial conditions while particle softness has only a mild influence.

Through our investigation, we have identified new physical effects in the formation of
stable particle pairs that are softness-dependent. These effects should be considered in
the design of inertial microfluidic devices, given that soft particles are used extensively
in real-world applications. Since axial stabilisation comes after lateral migration, our
observations put lower limits on the required time and distance necessary to generate
stable pairs. Furthermore, devices relying on appropriate axial spacing require more
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consideration than devices that focus or separate particles by lateral position. Our findings
could have significant ramifications for applications where a constant and reliable axial
distance between particles is required, such as flow cytometry.

Future work could include a detailed analysis of the role of the flow field in the formation
of pairs and trains of particles and the development of reduced-order models to predict
pair formation without the need for resolved simulations. Since many inertial microfluidic
applications involve heterogeneous particle mixtures, an investigation of heterogeneous
pairs and trains over a larger range of Laplace numbers would provide further insight.
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