
J. Fluid Mech. (2023), vol. 962, A42, doi:10.1017/jfm.2023.193

Significance of skewness and kurtosis on the
solute dispersion in pulsatile Carreau–Yasuda
fluid flow in a tube with wall absorption
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Solute dispersion in Carreau–Yasuda fluid flow in a tube presented in Rana & Murthy
(Proc. R. Soc. Lond. A, vol. 472, 2016, p. 20160294) was limited to a steady-state velocity
profile due to the nonlinearity associated with the Yasuda parameter a with power-law
exponent n. This limitation is overcome and the velocity profile is obtained for all values of
the Yasuda parameter by using the Lagrange inversion theorem, which admits power series
solution for the flow field. An analytical solution for the concentration distribution in the
circular tube is obtained for the unsteady and pulsatile flow with n ≤ 1 and α << 1 and the
numerical solution is presented for all values of α and n. The solute dispersion is analysed
analytically using the Sankarasubramanian–Gill generalized dispersion method and also
using the Aris–Barton method of moments considering up to fourth-order moments. The
solute dispersion is also simulated numerically by using a new class of computationally
explicit Runge–Kutta method. The axial mean concentration of the solute is estimated by
the exchange, convective and dispersion coefficients. The third- and fourth-order moments
give rise to skewness and kurtosis revealing the deviation from the Gaussianity and
reduction in the peak of the mean concentration profile at a small time of the solute
injection. All time variations of these five moments against flow governing parameters
are thoroughly investigated. The flow and dispersion regimes that are derived here for
moments provide a good understanding of the solute dispersion in the tube. The increase
in the Womersley frequency parameter led to a phase lag at each period. This work is the
initiation of estimating the skewness and kurtosis in a non-yield stress fluid flow in a tube.
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1. Introduction

Drug delivery in the human vasculature needs a great deal of understanding of
the dispersion phenomenon in the Newtonian and non-Newtonian fluid flow in
tubes. Under low shear rates, blood behaves as a non-Newtonian fluid, also in
most of these situations, one needs to model it as a shear-thinning fluid. Solute
dispersion in blood flow across vasculature has several physiological applications,
likewise solute dispersion in non-Newtonian fluid flow has many applications in the
chemical and ceramic industry. Pulsatile flows can be used for mimicking physiological
systems and offers unique advantages over a steady flow, especially in microfluidic
systems.

Taylor (1953) initiated the theoretical and practical study of dispersion in fluid flow.
Aris (1956) proposed the method of moments and explored the asymptotic behaviour
in second-order moments around the mean, building on Taylor (1953) theory. Gill &
Sankarasubramanian (1970) and Barton (1983) investigated the solute dispersion in
Newtonian fluid flow and presented for both the small and large time of injection
of the solute. There have been more studies with mathematical treatment on solute
distribution (Taylor 1953; Aris 1956, 1960; Gill & Sankarasubramanian 1970; Gill,
Sankarasubramanian & Taylor 1971; Sankarasubramanian & Gill 1973; Chatwin 1975;
Joshi et al. 1983; Mazumder & Das 1992; Debnath et al. 2022) considering the Newtonian
fluid model (Aroesty & Gross 1972; Sharp 1993; El Misiery 2002; Nagarani, Sarojamma &
Jayaraman 2004; Boyd, Buick & Green 2007; Rana & Murthy 2016a,b,c, 2017; Alsemiry,
Sayed & Amin 2022) and by considering non-Newtonian fluid modelling, for steady and
unsteady flows in a straight and bent tubes, with and without wall absorption. Rana &
Murthy (2016a) reported research on the dispersion phenomenon of solute with boundary
reaction/absorption in a pulsatile Casson fluid flow in a straight tube. The generalized
dispersion model was used to investigate how the yield stress, the Womersley frequency
parameter and the amplitude of the fluctuating pressure gradient component impact the
solute dispersion. By using a similar methodology, Rana & Murthy (2016b) provided
the Gaussian solution for Herschel–Bulkley (H–B) non-Newtonian flow model and Rana
& Murthy (2017) investigated the two-phase (Casson–Newtonian) model. Bird et al.
(1987) discussed in detail the Carreau–Yasuda (C–Y) model. This model describes the
fluid viscosity behaviour of the shear rate from low to high, as well as the fluid’s
shear-thinning nature. The solute dispersion process was explored by Rana & Murthy
(2016c) for non-pulsatile Carreau and C–Y fluid flow and computed three transport
coefficients (exchange, convection and dispersion). Rana & Murthy (2016c) explored the
large-time action of the axial dispersion process in a steady non-Newtonian C–Y and
Carreau fluid flow with the absorption of solute. By using a finite difference numerical
technique, Das et al. (2022) observed solute dispersion in C–Y fluid flow. The effective
axial diffusion coefficient of non-Newtonian fluids such as C–Y, Carreau, Casson, H–B,
power-law and Bingham fluids (Nagarani et al. 2004; Rana & Murthy 2016a,b,c, 2017)
has been addressed. The C–Y fluid model has enough versatility to suit a large range of
experimental apparent viscosity, which has been beneficial in hemodynamics. Alsemiry
et al. (2022) studied the heat transfer properties of Carreau fluid within a catheterized
artery, considering the Weissenberg number and the eccentric parameter as perturbation
parameters.

Pulsating viscous flow superposed on the steady laminar motion of a Newtonian fluid
in a circular pipe is investigated by Uchida (1956), a phase lag of velocity variation from
that of the pressure gradient is reported, and the distribution of the dissipation of energy
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Significance of skewness and kurtosis on solute dispersion

that is associated with the pulsating viscous flow is estimated. The rate of mass transfer
of a diffusing substance in an oscillatory motion of Newtonian fluid in a pipe has been
investigated by Watson (1983), an analytical solution for the fluid velocity is obtained
for both steady and pulsating pressure gradient. Pedley & Kamm (1988) investigated
axial solute transport in a curved tube considering the unsteady flow that is influenced
by the secondary flow. Sharp et al. (1991) and Sharp, Carare & Martin (2019) discussed
flow and concentration behaviour in the viscous, unsteady and porous regimes based on
the non-dimensional flow influencing parameters. This oscillatory flow with respect to a
curved tube is first established and the Poiseuille scaling laws for transport are obtained
by employing an order-of-magnitude analysis of the governing equations along the lines
of Pedley & Kamm (1988).

Smith (1983) investigated longitudinal solute dispersion in a shear flow while
accounting for the effect of boundary absorption. There is also a significant variation
in the skewness of the solute dispersion curve. Wang & Chen (2017) investigated the
Taylor dispersion in a laminar Newtonian flow considering absorption at the tube’s
surface, taking into account the first to fourth-order moments, and proposed analysis
for the mean concentration distribution with the Hermite polynomials. The analysis
described in Mehta, Merson & McCoy (1974), i.e. the zeroth to fourth-order moment
expansion in terms of Hermite polynomial representation, was employed for this purpose,
which was first proposed and applied in Kubin (1965). Jiang & Chen (2019) examined
the transport of solute through a two-zone packed pipe with Newtonian fluid flow
and explored the non-Gaussian distribution impacts of skewness and kurtosis for the
steady case. Jiang & Chen (2021) studied the transient dispersion of active particles in
restricted planar steady Poiseuille flow. Furthermore, the drift, dispersivity and skewness
were studied. Unsteady solute dispersion in a pulsatile H–B fluid flow in a tube has
been reinvestigated by Singh & Murthy (2022a) to examine the skewness and kurtosis
on the concentration distribution using Aris’ method of moments considering Hermite
polynomials. Yet another yield stress model, the Kuang and Luo (K–L) model, was
also addressed very recently by Singh & Murthy (2022b). These investigations bring
in the accuracy in the estimation and measure the deflection and decrease in the
axial mean concentration distribution of a solute in a tube. The velocity profiles of
the pulsatile H–B fluid model and the K–L fluid have been calculated by using the
regular perturbation technique but the non-yield stress C–Y fluid model requires extra
treatment due to the existence of the Yasuda parameter a. Many researchers tried to find
the unsteady velocity profile of the C–Y fluid model but finally reduced their model
into the steady case (e = 0) only (Rana & Murthy 2016c) or the Carreau fluid model
(a = 2) (Alsemiry et al. 2022). The present investigation is in pursuit of providing
an approximate analytical solution for the velocity of the pulsatile C–Y fluid flow in
the circular tube and investigating the solute dispersion considering the higher-order
moments.

The present investigation examines the unsteady axial dispersion of a solute in the C–Y
pulsatile fluid flow in a cylindrical tube, considering the impact of wall absorption. This
study focuses on exploring the effect of skewness and kurtosis on solute dispersion in
pulsatile non-yield stress fluid flow by using three different solution procedures: (i) Aris’
method of moments (including higher-order moments in § 2.2.1); (ii) Gill’s generalized
dispersion model (including higher-order coefficients in § 2.2.3); and (iii) a numerical
procedure (using a new class of computationally explicit Runge–Kutta (CERK) method
in Appendix A). Using Gill’s method, Jiang & Chen (2018) attempted to determine the
non-Gaussianity in the solute dispersion in the steady Newtonian fluid flow in a circular
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Figure 1. Schematic diagram of physical model.

pipe but the expressions for skewness and kurtosis are obtained using the moments
generated by the Aris’ method of moments.

In this investigation, the solute dispersion in the unsteady C–Y fluid has been examined
by considering the Aris’ method of moments by generating higher-order moments
and expressions for the skewness and kurtosis. In addition, we have investigated the
same problem using Gill’s method and the expressions for skewness and kurtosis
are derived independently. Also, a correspondence between the expressions for both
skewness and kurtosis by using these two methods has been provided. Further to
this, these results for the solute dispersion have been compared with the numerical
solution obtained using a new class of CERK method. The flow and dispersion regimes
are provided in § 3.3 for a better understanding of the solute dispersion. Firstly, the
velocity profile for the pulsatile C–Y fluid is obtained using the Lagrange inversion
theorem for small Womersley frequency parameter (α < 1) and power law exponent
(n < 1) for all other values of α and n, the velocity profile is obtained numerically.
The velocity profiles for Carreau, the simplified Cross and the Newtonian model are
obtained from this C–Y velocity profile. The increase in variance over time is not
enough to provide detailed information about the concentration distribution. Skewness
and kurtosis are also to be calculated for any approach to Gaussianity in the distribution.
The impact of Yasuda parameter a, wall absorption parameter β, Weissenberg number
We, power law exponent n, Womersley frequency parameter α and amplitude of
fluctuating pressure gradient e on convection coefficient K1(t), dispersion coefficient
K2(t), skewness K3(t) and kurtosis K4(t), are investigated. Variations in two-dimensional
concentration distribution C and axial mean concentration Cm are given in § 3.4.
A comparative analysis between Newtonian and non-Newtonian fluid models is presented
in § 3.1–3.4.

2. Mathematical formulation

Consider the pulsatile flow of C–Y fluid in a circular cylindrical tube or radius R as
depicted in figure 1. The flow is unsteady, fully developed and axisymmetric. A solute
slug is introduced into this stream at the initial time. The dispersion of a solute in the
C–Y flow is examined. The solute is absorbed in the tube wall because of an irreversible
first-order catalytic reaction. The rate of solute absorption is directly proportional to the
solute concentration near the boundary. A dilute solution is adopted, which does not give
rise to flux coupling (Sankarasubramanian & Gill 1973; Rana & Murthy 2016c); such a
coupling may arise in certain circumstances where the global transport process is driven
by local gradients.
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2.1. Determination of the flow field
The C–Y fluid equation in one-dimensional shear flow with power-law exponent n, time
constant λ and the Yasuda parameter a is given by

τ ′ = −
[
η∞ + (η0 − η∞)

{
1 +

(
−λ∂w′

∂r′

)a}(n−1)/a
]

∂w′

∂r′ , (2.1)

where, τ ′ is the shear stress, w′ is the axial velocity, r′ is the radial direction and ∂w′/∂r′ is
the shear rate, η∞ is the infinite shear rate viscosity, η0 is the zero shear rate viscosity,
which gives the transition region (transition from zero shear rate region to power-law
region). Equation (2.1) gives Carreau fluid at a = 2 and Newtonian fluid with viscosity
η0 at n = 1 or λ = 0.

The momentum equation is

ρ
∂w′

∂t′
= −∂p′

∂z′ − 1
r′

∂(r′τ ′)
∂r′ . (2.2)

The initial and boundary conditions for (2.2) are

w′(R, t′) = 0, and τ ′(0, t′) is finite. (2.3)

In the above, t′ is the time.
The pulsatile pressure gradient at any axial location z′ is

− ∂p′

∂z′ (t
′) = P0 + P1 sin(ωt′), (2.4)

where, P0 and P1 are steady and fluctuating components of the pressure gradient, and ω

represents the pressure pulsation frequency.
Consider the following non-dimensional variables:

w = w′

W0
, r = r′

R
, t = t′ω, τ = τ ′

η0(W0/R)
, η = η∞

η0
,

e = P1

P0
, C = C′

C0
, z = Dmz′

R2W0
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5a–h)

where η is the viscosity ratio parameter, Dm is the molecular diffusivity and W0 is the
characteristic velocity.

The shear stress (2.1) and momentum equation (2.2) reduces to a non-dimensional form
as

τ = −
[
η + (1 − η)

{
1 +

(
−We

∂w
∂r

)a}(n−1)/a
]

∂w
∂r

, (2.6a)

α2 ∂w
∂t

= 2p(t) − 1
r

∂(rτ)

∂r
. (2.6b)

Here α indicates the Womersley frequency parameter given by α = R/
√

ν/ω and ν

denotes the kinematic viscosity coefficient. Also We = λW0/R is the Weissenberg number.
The pulsating pressure gradient is p(t) = −(2/P0)(∂p′/∂z′) = 2[1 + e sin(t)], where e
indicates the amplitude of fluctuating pressure gradient.

For the case when α2 << 1 and n ≤ 1, an analytical solution for the velocity profile has
been obtained by using the perturbation technique. Here the parameter α2 = ε is treated
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as the perturbation parameter. A new class of CERK method (Yadav et al. 2022) has been
used to compute the velocity profile for all other values of α and n and this procedure is
explained in Appendix A.

The initial and boundary conditions for (2.6a) and (2.6b) are

w(r, 0) = w0(r, 0), w(1, t) = 0 and τ(0, t) is finite. (2.7a,b)

In the above, w0(r, 0) is zeroth-order term of velocity w(r, t) at t = 0, which is defined
in (2.8a,b) and its expression is given in (2.14) below.

Now the first-order series expansions for τ(r, t) and w(r, t) are written as

τ(r, t) = τ0(r, t) + ετ1(r, t) + O(ε2) and w(r, t) = w0(r, t) + εw1(r, t) + O(ε2).
(2.8a,b)

Using these expansions in (2.6a) and (2.6b), one obtains the constant and first-order ε

equations along with their boundary conditions as

1
r

∂(rτ0)

∂r
− 2p(t) = 0, (2.9a)

τ0(0, t) is finite; (2.9b)

τ0 = −
[

1 + (n − 1)(1 − η)

a

(
−We

∂w0

∂r

)a]
∂w0

∂r
, (2.10a)

w0(1, t) = 0; (2.10b)

∂w0

∂t
= −1

r
∂(rτ1)

∂r
, (2.11a)

τ1(0, t) is finite; (2.11b)

τ1 = −
[

1 + (a + 1)(n − 1)(1 − η)

a

(
−We

∂w0

∂r

)a]
∂w1

∂r
, (2.12a)

w1(1, t) = 0. (2.12b)

Following Aroesty & Gross (1972), the solution for τ0(r, t) is obtained from (2.9a), with
boundary condition (2.9b) and it is given by

τ0(r, t) = rp(t). (2.13)

The velocity profile of the C–Y fluid model requires one extra treatment other than
classical regular perturbation as seen in (2.8a,b), due to the existence of the Yasuda
parameter a in (2.10a). The unsteady solution for all values of a is obtained here using
the Lagrange inversion theorem or Lagrange–Bürmann formula (Abramowitz & Stegun
1964).

The solution w0(r, t) is obtained from (2.10a) with the corresponding boundary
condition (2.10b) by using Lagrange inversion theorem or Lagrange–Bürmann formula
(details are given in Abramowitz & Stegun (1964)) and it is written as an infinite series as

w0(r, t) =
∞∑

k=0

Weakp(t)ak+1

(−1)k+1(ak + 1)(ak + 2)

(
ak + k

k

)(
(n − 1)(1 − η)

a

)k (
rak+2 − 1

)
.

(2.14)
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Using w0(r, t) in (2.11a) with the boundary condition (2.11b), the first-order term of shear
stress τ1(r, t) is obtained as

τ1(r, t) =
∞∑

k=0

Weakp(t)ak

(−1)k(ak + 2)

∂p(t)
∂t

(
ak + k

k

)(
(n − 1)(1 − η)

a

)k ( rak+3

ak + 4
− r

2

)
.

(2.15)

Using τ0(r, t), w0(r, t) and τ1(r, t) in (2.12a) with the boundary condition (2.12b), the
first-order velocity w1(r, t) is obtained and it is given by

w1(r, t) = − 1
32

∂p(t)
∂t

(r4 − 4r2 + 3) − Wea (a + 1)(n − 1)(1 − η)

a
p(t)a ∂p(t)

∂t

×
[
(ra+2 + r2 − 2)

4(a + 2)
− (a2 + 6a + 16)

8(a + 2)(a + 4)2 (ra+4 − 1)

]

− We2a (n − 1)2(1 − η)2

a2 p(t)2a ∂p(t)
∂t

×
[

1
(2a + 4)

{
(a + 1)2

(a + 2)(a + 4)
+ (2a + 1)(a + 1)

8
+ 2a + 1

4(a + 2)

}
(r2a+4 − 1)

−(2a + 1)

8
(r2a+2 − 1) − (a+1)2

2(a+2)2 (ra+2 − 1) − (2a + 1)

8
(r2 − 1)

]
. (2.16)

The stress τ(r, t) and velocity w(r, t) have been computed using (2.8a,b).

2.2. Determination of the concentration field
The unsteady solute transport in the present physical configuration is governed by the
initial boundary value partial differential equations given by

∂C′

∂t′
+ w′(r′, t′)

∂C′

∂z′ = Dm

(
1
r′

∂

∂r′

(
r′ ∂C′

∂r′

)
+ ∂2C′

∂z′2

)
, (2.17)

C′(r′, z′, 0) = M
πR2 δ(z′), −Dm

∂C′

∂r′ (R, z′, t′) = kC′(R, z′, t′), (2.18a)

∂C′

∂r′ (0, z′, t′) = 0, C′(r′, ∞, t′) = 0,
∂C′

∂z′ (r′, ∞, t′) = 0, (2.18b)

where δ(z′)is a Dirac delta function and k is the reaction rate constant.
Using (2.5a–h) the non-dimensional form of above equation is

P2 ∂C
∂t

+ w(r, t)
∂C
∂z

= 1
r

∂

∂r

(
r
∂C
∂r

)
+ 1

Pe2
∂2C
∂z2 , (2.19)

C(r, z, 0) = δ(z)/Pe,
∂C
∂r

(1, z, t) = −βC(1, z, t), (2.20a)

∂C
∂r

(0, z, t) = 0, C(r, ∞, t) = 0,
∂C
∂z

(r, ∞, t) = 0. (2.20b)
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The Péclet number Pe is given by Pe = RW0/Dm and the oscillatory Péclet number P2

is given by P2 = α2Sc = R2ω/Dm (Sharp et al. 2019). The Schmidt number Sc is given
by Sc = ν/Dm and the value of the Schmidt number is considered to be O(103), which
is consistent with those value for blood flow in arteries. The wall absorption parameter is
represented by β = kR/Dm.

2.2.1. Aris’ method of moments for concentration distribution
Following the standard method of moments (Aris 1956; Barton 1983), define the nth
moment of concentration as

Cn(r, t) =
∫ +∞

−∞
znC(r, z, t) dz. (2.21)

Multiplying the diffusion equation (2.19) with zn and integrate with respect to z and using
(2.21), the equations for determining the Cn(r, t) are obtained as

P2 ∂Cn

∂t
− 1

r
∂

∂r

(
r
∂Cn

∂r

)
= nw(r, t)Cn−1 + 1

Pe2 n(n − 1)Cn−2, (2.22)

where n = 0, 1, 2, 3, 4, . . . ., with C−1 and C−2 set to zero.
Accordingly, the initial and boundary conditions given in (2.20a) are written as

Cn(r, 0) = 1
Pe

δn0,
∂Cn

∂r
(0, t) = 0,

∂Cn

∂r
(1, t) + βCn(1, t) = 0. (2.23a–c)

The cross-sectional averaged nth moment of solute distribution is given by

〈Cn(t)〉 =
∫ 1

0
2rCn(r, t) dr, (2.24)

where 〈·〉 indicate the mean of cross-section. The nth central moment about the mean
concentration distribution is written as

Mn(t) =

∫ 1

0

∫ +∞

−∞
2r(z − μg)

nC dz dr

∫ 1

0

∫ +∞

−∞
2rC dz dr

, (2.25)

where

μg =

∫ 1

0

∫ +∞

−∞
2rzC dz dr

∫ 1

0

∫ +∞

−∞
2rC dz dr

= 〈C1〉
〈C0〉 , (2.26)

it represents the centroid, 〈C0〉 is the dimensionless initial (or entire) mass of chemical
species in the flow.

2.2.2. Estimation of Cn(r, t) and Kn(t) for n = 0, 1, 2, 3, 4
By taking n = 0, 1, 2, 3, 4 in (2.22) and (2.23a–c), the resulting homogeneous and
non-homogeneous initial boundary value problems are solved using the eigenfunction
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expansion method suggested by Boyce & DiPrima (2001). The eigenfunction expansion
solutions of Cn(r, t) for n = 0, 1, 2, 3, 4 are given by (C1)–(C5) in Appendix B.

The mass of solute is exponentially decaying with time owing to absorption at the
boundary (Dalal & Mazumder 1998), so the exchange coefficient K0(t) may be written
as

K0(t) = P2 d
dt

(log〈C0(t)〉) = −

∞∑
n=1

A
′
nμnJ1(μn) exp(−μ2

nt/P2)

∞∑
n=1

(A
′
nJ1(μn)/μn) exp(−μ2

nt/P2)

. (2.27)

The rate with which the centre of mass proceeds is equivalent to the fluid convection
(Dalal & Mazumder 1998), so the convection coefficient K1(t) is obtained from

K1(t) = −P2 dμg

dt
= −P2 d

dt

( 〈C1〉
〈C0〉

)
. (2.28)

Here M2 is the second-order central moment that represents the variance of solute
concentration. According to Aris (1956), the rate of change of variance is proportional
to the sum of the molecular diffusion coefficient along the axial direction and apparent
dispersion coefficient in the radial direction. As the axial diffusion is small in comparison
with the lateral diffusion, the apparent dispersion coefficient K2(t) can be written as

K2(t) = P2

2
dM2

dt
= P2

2
d
dt

( 〈C2〉
〈C0〉 − μ2

g

)
= F1(t)

F3(t)
+ F2F4(t)

F3(t)2

+ 2
F5(t)F6(t)

F3(t)2 + 2
F5(t)2F4(t)

F3(t)3 . (2.29)

The skewness K3(t) measures the degree of symmetry of the axial concentration
distribution (Dalal & Mazumder 1998), and it is represented by

K3(t) = M3

M3/2
2

=
〈C3〉
〈C0〉 − 3μgM2 − μ3

g

M3/2
2

. (2.30)

Also, the kurtosis K4(t) measures the peak of the concentration distribution (Dalal &
Mazumder 1998) and it is represented by

K4(t) = M4

M2
2

− 3, where M4 = 〈C4〉
〈C0〉 − 4μgM3 − 6μ2

gM2 − μ4
g. (2.31)

In the above equations, μn are roots of μnJ1(μn) = βJ0(μn), n = 0, 1, 2, 3, . . . 10 and
these are plotted in figure 2 (the intersection points of μnJ1(μn) and βJ0(μn) are μn).
The initial guess value of the first root has been considered from this figure. By using the
Newton–Raphson method all other roots are obtained. A

′
n, A

′′
m, B1 to B4, X1 to X4, F1 to

F6 is given in Appendix D with Bessel functions of first kind of order zero J0 and one J1.

2.2.3. Gill’s generalized dispersion method for concentration distribution
The convective diffusion equation (2.19) is solved using Gill’s generalized dispersion
method in this section along with the initial and boundary conditions. Following Gill &
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–5

0

5

0 10 20 30 0 10 20 30
–50

0

50

100

μnJ1(μn)

βJ0(μn)

μn μn

(a) (b)

Figure 2. Solutions for the transcendental equation μnJ1(μn) = βJ0(μn). The intersection points are the
locations of root μn: (a) β = 0.01 and (b) β = 100.

Sankarasubramanian (1970), the solute concentration C(t, z, r) is expanded in an infinite
series as

C(t, z, r) =
∞∑

n=0

fn(r, t)
∂nCm(z, t)

∂zn , (2.32)

where the mean concentration Cm(z, t) is defined by

Cm(z, t) =
∫ 1

0
2rC(r, z, t) dr. (2.33)

Substituting the expansion (2.32) into the governing equation (2.19), we obtain the
important Taylor–Gill expansion equation for Cm(z, t) as

P2 ∂Cm(z, t)
∂t

=
∞∑

n=0

kn(t)
∂nCm(z, t)

∂zn , (2.34)

where the transport coefficients kn, n = 0, 1, 2, 3, 4 are given by

kn(t) = δn2

Pe2 + 2
∂fn(r, t)

∂r

∣∣∣∣
r=1

−
∫ 1

0
2rw(r, t)fn−1(r, t) dr. (2.35)

Here, k0(t), k1(t), k2(t) are the exchange coefficient due to non-zero solute flux at the
tube wall, convection coefficient due to the velocity of solute and dispersion coefficient
due to the molecular diffusion and the velocity of the fluid, respectively (Rana & Murthy
2016a).

Substituting (2.34) and (2.32) into (2.19), and equating the coefficients of
∂nCm(z, t)/∂zn (n = 0, 1, 2, 3, 4), the set of differential equations for fn are obtained as

P2 ∂fn
∂t

= 1
r

∂

∂r

(
r
∂fn
∂r

)
− w(r, t)fn−1 + fn−2

Pe2 −
∞∑

i=0

ki(t)fn−i. (2.36)
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Significance of skewness and kurtosis on solute dispersion

Using (2.32) and (2.19) in the initial and boundary conditions (2.20a), the coefficients Cm
and fn are expressed as

Cm(z, 0) = δ(z)
Pe

, Cm(∞, t) = 0,
∂Cm

∂z
(∞, t) = 0. (2.37a–c)

fn(r, 0) = δn0

Pe
,

∂fn
∂r

(0, t) = 0,
∂fn
∂r

(1, t) + βfn(1, t) = 0. (2.38a–c)

2.2.4. Estimation of fn(t, r) and kn(t)
Equation (2.36) can be rewritten as

P2 ∂fn
∂t

− 1
r

∂

∂r

(
r
∂fn
∂r

)
+ k0(t)fn = −

[
w(r, t)fn−1 − fn−2

Pe2 +
∞∑

i=1

ki(t)fn−i

]
. (2.39)

The solution of the above equation is

fn(r, t) = exp
(

−
(∫ t

0
k0(s) ds

)
/P2

)
gn(r, t), (2.40)

where gn(r, t) is the solution of the governing equation

P2 ∂gn

∂t
− 1

r
∂

∂r

(
r
∂gn

∂r

)
= −

[
w(r, t)gn−1 − gn−2

Pe2 +
∞∑

i=1

ki(t)gn−i

]
. (2.41)

The method of eigenfunction expansion is used to determine gn(r, t) and fn(r, t) and it is
given by

g0(r, t) =
∞∑

m=0

A
′
mJ0(μmr) exp(−μ2

mt/P2), (2.42)

f0(r, t) = exp
(

−
(∫ t

0
k0(s) ds

)
/P2

)[ ∞∑
m=0

A
′
mJ0(μmr) exp(−μ2

mt/P2)

]
, (2.43)

fn(r, t) = − exp
(

−
(∫ t

0
k0(s) ds

)
/P2

)[ ∞∑
m=0

A
′′2
m J0(μmr)

×
∫ t

0

(∫ 1

0
rFn(r, s)J0(μmr) dr

)
exp(−μ2

m(s − t)/P2)

P2 ds

]
, n ≥ 1,

(2.44)

where,

Fn(r, t) =
[

w(r, t)gn−1 − gn−2

Pe2 +
∞∑

i=1

ki(t)gn−i

]
. (2.45)

Now using the mean concentration Cm(z, t) as defined in (2.33) into (2.32), we have∫ 1

0
rfn(r, t) dr = δn0

2
. (2.46)

962 A42-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.193


S. Singh and P.V.S.N. Murthy

By using the above condition in (2.44), gives the solution of
∫ t

0 kn(s) ds as

exp
(

−
(∫ t

0
k0(s) ds

)
/P2

)
= 1

∞∑
m=0

2A
′
m(J1(μm)/μm) exp(−μ2

mt/P2)

, (2.47)

∫ t

0
k1(s) ds = −P2 Y1(t)

Y0(t)
, (2.48)

∫ t

0
k2(s) ds = P2 Y2(t)Y0(t) − Y1(t)2

2Y0(t)2 , (2.49)

∫ t

0
k3(s) ds = P2 Y1(t)3 − 3Y1(t)3 + 3Y2(t)Y1(t)Y0(t) − Y3(t)Y0(t)2

6Y0(t)3 , (2.50)

∫ t

0
k4(s) ds = P2 Y4(t)Y0(t)3 + 6Y0(t)Y1(t)2Y2(t) − 4Y0(t)2Y1(t)Y3(t) − 3Y1(t)4

24Y0(t)4 ,

(2.51)

where Y0 to Y4 are given in Appendix C.
Since, K0(t), K1(t), K2(t) are the exchange coefficient, convection coefficient and

dispersion coefficient (same as k0(t), k1(t), k2(t)). Thus, it can be written as

K0(t) = k0(t), K1(t) = k1(t), K2(t) = k2(t). (2.52a–c)

Following Jiang & Chen (2018), skewness K3(t) and kurtosis K4(t) can be written in
terms of coefficients kn(t) as

K3(t) = −
3P

∫ t

0
k3(s) ds

√
2
(∫ t

0
k2(s) ds

)3/2 , K4(t) =
6P2

∫ t

0
k4(s) ds

(∫ t

0
k2(s) ds

)2 . (2.53a,b)

The effects of non-Gaussian distribution are captured by the higher-order dispersion
model. Skewness and kurtosis can also measure how important higher-order coefficients
are in comparison with second-order coefficients. Jiang & Chen (2018) provided the
relationship between kn(t) and Mn(t) as kn(t) = P2((−1)n/n!)(dMn/dt) for the steady
Newtonian fluid. From the present analysis for the non-Newtonian model, we notice that∫ t

0 kn(s) ds = ((−1)n/n!)P2Mn, which is the same as the above relation as given in Jiang
& Chen (2018) at P2 = 1. This is evident from sets of equations given in (2.48)–(2.51)
and (2.28)–(2.31). In figure 3, the expressions for K1(t), K2(t), K3(t) and K4(t) computed
by using the Aris method of moments and Gill’s method are shown for Newtonian and
non-Newtonian fluids which are seen to agree up to higher-order precision.

2.2.5. Axial mean concentration Cm(z, t) and two-dimensional concentration C(r, z, t)
The axial mean concentration distribution is now approximated by applying fourth-order
Hermite polynomials to describe non-Gaussian curves after the initial five concentration
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Figure 3. Variation of (a) negative convection coefficient −K1(t); (b) dispersion coefficient K2(t);
(c) skewness coefficient K3(t); (d) kurtosis coefficient K4(t) by using Aris’ method of moments and Gill’s
generalized dispersion model (triangular marker) with time t for different Newtonian and non-Newtonian fluids,
when α = 0.5, β = 0.01, Pe = 1000, Sc = 1000 and e = 0.5.

moments have been computed. It is obtained as

Cm(z, t) = 〈C0(t)〉 e−ζ 2
∞∑

n=0

an(t)Hn(ζ(t)), (2.54)
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Fluid a n We η e α β

C–Y 0.05–5 0.02–5 0.02–2 0.01–5 0–50 0.5–10 0.01–100
C–Y 1 0.644 0.392 0.025 0.1 0–0.5 0.5 0.01
C–Y 2 1.01 0.398 0.025 0 0–0.5 0.5 0.01
Carreau 2 0.538 0.025 0 0–0.5 0.5 0.01
Simplified Cross 1 0 0.025 0.038462 0–0.5 0.5 0.01
Modified Cross 2.406 0.388876 0.025 0.038462 0–0.5 0.5 0.01
Newtonian — 1 — 1 0–0.5 0.5 0.01

Table 1. Newtonian and non-Newtonian fluid model non-dimensional parameter (We, η) values.

where, ζ(t) = (z − μg(t))/
√

2M2(t) and H0(ζ ) = 1. The Hermite polynomials Hi obey
the recurrence relation

Hi+1(ζ ) = 2ζHi(ζ ) − 2iHi−1(ζ ), i = 0, 1, 2, 3, . . . . (2.55)

Also, the coefficients an(t) mentioned in (2.54) are given by

a0(t) = 1√
2πM2(t)

, a1 = a2 = 0, a3(t) =
√

2a0K3(t)
24

, a4(t) = a0K4(t)
96

.

(2.56a–d)

Now, the two-dimensional concentration distribution C(r, z, t) is calculated by Andersson
& Berglin (1981) using Cn(r, t) in the place of 〈Cn(t)〉 for moments M0, M1, M2, M3, M4
and transport coefficients K0, K1, K2, K3, K4.

3. Results and discussion

Most of the results are reported in this investigation considering three periods (3T), where
T = 2π. The physically realistic range of values of the parameters is chosen by following
Sankarasubramanian & Gill (1973), Caro et al. (1978), Yasuda, Armstrong & Cohen
(1981), Bird et al. (1987), Cho & Kensey (1991), Gijsen, van de Vosse & Janssen (1999),
Abraham, Behr & Heinkenschloss (2005), Chandran, Rittgers & Yoganathan (2012), Rana
& Murthy (2016a), Rana & Murthy (2016c), Singh & Murthy (2022a) and Singh & Murthy
(2022b), and these are listed in table 1. By following integrals that are seen in convection
K1(t), dispersion K2(t), skewness K3(t), kurtosis K4(t), expressions are evaluated using
Simpson’s 1/3 rule using MATLAB (2019).

3.1. The effect of β, e, a, n, η, We, Pe, α,P2 on K0(t), K1(t) and K2(t) coefficients
Much discussion on Ki(t), i = 0, 1, 2, is seen even for various non-Newtonian fluids such
as the yield stress Casson, H–B, K–L and non-yield stress C–Y fluids in the literature
(Rana & Murthy 2016a,b,c, 2017; Singh & Murthy 2022a,b). What follows is a brief
discussion on these coefficients with the parameters due to the pulsatile fluid nature.
Because of the absorption at the boundary, the volume of solute in the tube decreases
steadily. The coefficient −K0(t) is dependent on β. For small β in figure 4, there is
no significant change in −K0(t), but for higher values of β, the magnitude of −K0(t)
decreases with increasing t, and eventually it reaches the steady state as seen in figure 4.
This was noticed in Sankarasubramanian & Gill (1973), Singh & Murthy (2022a,b) and
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Figure 4. Variation of negative exchange coefficient −K0(t) with time t for different β = 0.01, 1, 10, 100 and
Pe = 1000.
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Figure 5. Variation of (a) negative convection coefficient −K1(t); (b) dispersion coefficient K2(t);
(c) skewness K3(t); (d) kurtosis K4(t) with time t for different β, when α = 0.5, n = 0.2, a = 0.9, We = 0.025,
η = 0.1, Pe = 1000, Sc = 1000 and e = 0.5.

Rana & Murthy (2016a,b,c). Also, −K0(t) is unaffected by the pulsatility and the type of
the fluid, whether it is a Newtonian or non-Newtonian fluid.
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Figure 6. Variation of (a) negative convection coefficient −K1(t); (b) dispersion coefficient K2(t) with large
range of time t, when α = 0.5, n = 0.2, a = 0.9, We = 0.025, η = 0.1, Pe = 1000, Sc = 1000 and e = 0.5.
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Figure 7. Variation of negative convection coefficient −K1(t) at (a) α = 1; (b) α = 4; (c) α = 6; and
dispersion coefficient K2(t) at (d) α = 1; (e) α = 4; ( f ) α = 6; with time t for different a, when We =
0.025, n = 0.2, β = 0.01, e = 0.5, Pe = 1000, Sc = 1000 and η = 0.1.

Newtonian and various non-Newtonian fluid models, C–Y, Carreau, simplified Cross
fluids, are presented in figure 3(a,b) for small time variations in −K1(t) and K2(t).
The data is presented by using both Aris’ and Gill’s methods. The amplitude of −K1(t) and
K2(t) is seen to increase in the following order: Newtonian; Carreau; C–Y 2; simplified
Cross; C–Y 1. The explanation for such a behaviour is that the average fluid velocity is
seen to increase in this order of the fluid model. The solute is convected with the lowest
velocity for Newtonian fluid and with the highest velocity for C–Y fluid 1.
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Figure 8. Variation of negative convection coefficient −K1(t) at (a) α = 1; (b) α = 4; (c) α = 6; and
dispersion coefficient K2(t) at (d) α = 1; (e) α = 4; ( f ) α = 6; with time t for different n, when We =
0.025, a = 0.90, β = 0.01, e = 0.5, Pe = 1000, Sc = 1000 and η = 0.1.

The fluctuations in −K1(t) are not significant for smaller β, as evident from figure 5(a),
where it is shown for when β = 0.01 for small times. With the increase in values of β,
the amplitude and oscillations of −K1(t) increased. The reason for this increase in both
amplitude and oscillations is due to the rise in the depletion in the boundary due to wall
absorption β; leading to a lesser amount of solute that is available for convection. So,
the solute distribution is weighted in favour of the central region, and solute is convected
with faster velocity near the central region than that at the wall region. It is noticed that
these oscillations reach a non-transient state with an increase in time which is shown in
figure 6(a). At the small time, K2(t) is also seen to increase in its oscillations but reaches
a non-transient state as time increases which are seen from figure 6(b) and thereafter the
dispersion of solute takes place with the period of oscillation at a uniform rate. Time
variation of −K1(t) and K2(t) are shown for We, n and a in figures 7–9. With the increment
in the value of a and n, the amplitude of −K1(t) and K2(t) decreased and these oscillations
are suppressed in both magnitude and amplitude. This is because when a, n decreases,
the fluid behaviour shifts to a shear thinning nature. So, the rise in fluid velocity leads to
an increase in K2(t). The increasing value of We also has a significant and aiding nature
of both the convection and diffusion coefficients, the reason being again that it leads to
the shear thinning nature of the C–Y fluid – this is seen from figure 9. The variations
in K1(t) and K2(t) with time t for different values of α are shown for a large value of
e (= 10) and is shown in figure 10(a,b); while the variation for different values of e is
shown in figure 10(c,d). At large value of e, the convective velocity is seen to be changing
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Figure 9. Variation of negative convection coefficient −K1(t) at (a) α = 1; (b) α = 4; (c) α = 6; and
dispersion coefficient K2(t) at (d) α = 1; (e) α = 4; ( f ) α = 6; with time t for different We, when n = 0.2,

a = 0.90, β = 0.01, e = 0.5, Pe = 1000, Sc = 1000 and η = 0.1.

its sign in every period of oscillation; which is evident from figure 10(c). The dispersion
coefficient seen to change its sign in every period of oscillation for even for small values of
α with some higher value of e > 1. As it is evident that for e > 1 the oscillatory pressure
gradient dominates, for a large value of amplitudes these oscillations of K2(t) grow in
time with increasing value of e. Also, it is worth mentioning that the double pulse is
seen for an increasing value of e for both K1(t) and K2(t). But with increasing value of α

that amplitude is seen to be decreasing. The variations in K1(t) and K2(t) with time t is
seen decreasing with increasing value of viscosity ratio η, and these variations for −K1(t)
and K2(t) are shown in figure 11(a,b). The magnitude and amplitude of the convection
coefficient −K1(t) and the dispersion coefficient K2(t) rises with the fluctuating pressure
component e and this is presented in figure 12(a,b). As e increases, the flow velocity
increases, resulting in an increase in −K1(t) and K2(t).

The parameter α is seen to have a substantial impact on −K1(t) and K2(t) in the
non-Newtonian fluids. With a rise in the value of α, the amplitude of −K1(t) decreases for
all (a, n, We) which is evident from figures 7–9. As α increases, the phase lag gets larger.
It can also be observed that with a rise in the value of α, −K1(t) oscillates with positive
values over each oscillation period with increased phase lag. The amplitude of oscillations
of K2(t) reduces as the value of α rises, and K2(t) turns positive with phase lag all along
each of the oscillation period. It is worth mentioning that the dispersion coefficient K2(t)
attains higher phase lag in three cycles of oscillations when α = 6 for various values of (a,
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Figure 10. Variation of (a) negative convection coefficient −K1(t) for varying α at large e = 10; (b) dispersion
coefficient K2(t) for varying α at large e = 10; (c) negative convection coefficient −K1(t) for varying large
values of e at α = 0.5 and (d) dispersion coefficient K2(t) for varying large values of e at α = 0.5 with time t,
when We = 0.2, n = 0.9, a = 0.9, η = 0.1, Sc = 1000, β = 0.01 and Pe = 1000.

n, We). The amplitude of K2(t) decreases consistently with the phase lag with time at each
cycle, this is clear from the figures 7( f ), 8( f ) and 9( f ).

3.2. The effect of β, e, a, n, η, We, Pe,P2, α on skewness K3(t) and kurtosis K4(t)
The time dependent data for the exchange K0(t), convection K1(t) and dispersion
coefficients K2(t) all together does not provide the complete information about the
unsteady solute distribution in any fluid flow. The degree of symmetry of the axial
mean concentration distribution is measured by skewness. Negative kurtosis represents
a platykurtic distribution. When kurtosis is negative, the tail of the platykurtic distribution
will be thinner than that of a Gaussian distribution (which is known as a sub-Gaussian
distribution). The curve peak upstream of the mean concentration distribution profile is
lowered by solute consumption in the rear section. The large-time behaviour of skewness
and kurtosis coefficients is that both tend to zero, and both of these coefficients will be
0 if the concentration distributions are perfectly Gaussian. As a result, measuring these
parameters is more important in an attempt to achieve Gaussianity of the solute dispersion,
making this investigation more significant for both the Newtonian and non-Newtonian
flows. A brief discussion on the effect of β, e, We, n, a, η, t, Pe and α on the skewness and
kurtosis is presented below.
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Figure 11. Variation of (a) negative convection coefficient −K1(t); (b) dispersion coefficient K2(t);
(c) skewness K3(t); and (d) kurtosis K4(t) with time t for different η, when We = 0.025, n = 0.2, a = 0.90,
β = 0.01, e = 0.5, Pe = 1000, Sc = 1000 and α = 0.5.

3.2.1. Effect of wall absorption parameter β and fluctuating pressure component e
Wall absorption coefficient β has a significant effect on the skewness K3(t) and kurtosis
K4(t) parameters and the results are presented in figure 13(a,b) for the case of static
pressure gradient (e = 0). The large rate of absorption (β = 10, 100) is seen to change
the sign of K3(t), as evident from figure 13(a), indicating that the mean concentration
distribution upstream-tailed (K3(t) > 0) will revert to a downstream-tailed (K3(t) < 0)
one. The fluid velocity and the concentration distribution are the physical sources of the
skewness. The majority of the solute remains in the faster-moving flow region, far from
the boundary. As a result, a limited number of moles at the boundary will tend to leave a
long tail (i.e. negative skewness). Wall absorption tends to reduce the dispersion that leads
to a decrease in the values of K3(t), which is observed in all these curves. With increasing
time t, It is observed that K3(t) is approaching 0, as expected.

With increase in the wall absorption parameter, kurtosis K4(t) decreased initially and
after a certain time (say t > 125), it increased and tends to zero limit. At small time of the
injection of the solute in the free stream the kurtosis parameter is also seen to change its
behaviour. This behaviour is shown in figure 13(b) for large β (for example β = 10, 100).
An increase in β leads to a reduction in the upstream mean concentration, resulting in
a new curve peak in the downstream. As a result, even if the global concentration has
dropped, the kurtosis has increased. It is noticed that K4(t) approached 0 when β = 0.01, 1
at large time. So, this discussion on non-Gaussian effects cannot be ignored in the early
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Figure 13. Variation of (a) skewness coefficient K3(t); (b) kurtosis coefficient K4(t) with all time t for
different β, when n = 0.2, a = 0.9, We = 0.025, η = 0.1, Pe = 1000, Sc = 1000, α = 0.5 and e = 0.

stages of the solute transport (Andersson & Berglin 1981; Mazumder & Das 1992; Wang
& Chen 2017; Jiang & Chen 2018; Guo et al. 2019; Jiang & Chen 2021).

For the case of pulsating pressure component e = 0.5, the effect of wall absorption β on
both K3(t) and K4(t) is presented in figure 5(c,d) for fixed values of other parameters. The
pulsation is seen for K3(t) and K4(t) as time progresses, and these results are presented
for a small time interval (1, 20) with three time periods for the unsteady fluid flow.
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Figure 14. Variation of skewness coefficient K3(t) at (a) α = 0.5; (b) α = 1; and kurtosis coefficient K4(t)
at (c) α = 0.5; (d) α = 1; with time t for different (a, n), when We = 0.025, β = 0.01, e = 0.5, Pe = 1000,

Sc = 1000 and η = 0.1.

With increasing values of β, the skewness coefficient K3(t) decreases in a pulsating
manner. Except the pulsation, qualitative behaviour in the K3(t) and K4(t) is similar to
the steady flow behaviour as seen from the figure 13(a,b). With increase in the value of
e, the pulsatile effect is visible for both K3(t) and K4(t), the amplitude of fluctuation and
magnitude rises with increasing e. This is evident from figure 12(c,d).

3.2.2. Effect of Weissenberg number We, power law exponent n, Yasuda parameter a,
Peclet number Pe and Womersley frequency parameter α

The temporal evolution of K3(t) and K4(t) for Newtonian fluid, C–Y fluid, simplified
Cross fluid and Carreau fluid is given in figure 3(c,d) for absorption parameter β = 0.01.
The minimum values for K3(t) and K4(t) are seen for C–Y fluid 1 and maximum values
for K3(t) and K4(t) are noticed for the Newtonian fluid because of the velocity difference
between these two fluids is the maximum. The effect of the flow pulsation on the skewness
and kurtosis coefficients for varying value of n and a is presented in figure 14(a–d) for
fixed values of other parameters. As the values of a and n increases in their physically
realistic range, both K3(t) and K4(t) increased. Similar behaviour is seen for varying
values of η from figure 11. Reverse behaviour is seen for varying values of We. Velocity
increases as a and n decreases, so the skewness for smallest values of both a and n will
be maximum. Variation of both K3(t) and K4(t) with time at different We is presented in
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figure 15(a–d) and indicates that for larger values of We, the values for both K3(t) and K4(t)
are smaller.

As reported in the earlier section, α has a significant effect on the dispersion coefficient
K2(t). It is natural to expect that this effect should be reflected on the skewness K3(t)
and kurtosis K4(t) with varying α. Figures 14–18 bring out the time variation of
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Figure 17. Variation of skewness coefficient K3(t) at (a) α = 4; (b) α = 6; and kurtosis coefficient K4(t) at
(c) α = 4; (d) α = 6; with time t for different (a, n), when We = 0.025, β = 0.01, e = 0.5, Pe = 1000, Sc =
1000 and η = 0.1.

K3(t) and K4(t) for different values of α = 0.5, 1, 4, 6 with varying values of a, n, We.
The magnitude of K3(t) and K4(t) for large α is less than that for small α = 0.5 (as can be
seen from figures 14–18). It is observed from these results that K3(t) and K4(t) increased
with a single frequency for every oscillation cycle. Similar variation of K3(t) and K4(t) is
seen for varying a, n, We from these figures 14–18. This is because of phase lag and low
amplitude in the flow at the high α.

The effect of the Péclet number Pe in the range of 10–103 on −K1(t) and K2(t)
is shown in figure 19(a,b). It is noticed from these two figures that there are no
significant changes in −K1(t) for varying Péclet number Pe; this can be understood
from the mathematical expression that is given for −K1(t). The dispersion coefficient
K2(t) continuously decreases with increasing value of Pe as seen in figure 19(b). For all
Pe ≥ 500, no significant changes have been seen.

The Péclet number Pe has a significant impact on K3(t) and K4(t). This is seen from
figure 19(c,d). The skewness K3(t) increases continuously with increasing value of Pe.
The kurtosis K4(t) is decreasing with increasing values of Pe. But for the relatively larger
value of Pe, the change in K3(t) and K4(t) is insignificant.

Higher moments provide more precise information regarding the unsteady solute
dispersion in the flow field, whether it is Newtonian fluid or non-Newtonian fluid.

3.3. Flow and dispersion regimes
To have a better understanding of the solute dispersion in the tube, the flow and
dispersion regimes are derived here for moments considering the limiting behaviour
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Figure 18. Variation of skewness coefficient K3(t) at (a) α = 4; (b) α = 6; and kurtosis coefficient K4(t) at
(c) α = 4; (d) α = 6; with time t for different We, when n = 0.2, a = 0.9, β = 0.01, e = 0.5, Pe = 1000, Sc =
1000 and η = 0.1.

of the Womersley frequency parameter α and the other parameter B2 (= P2Pe2).
Following Sharp et al. (2019), we present below the flow and concentration regimes
characterized by the Womersley frequency parameter α. When α2 << 1 the flow is
viscous dominant while when α2 >> 1 the flow is more unsteady. The pressure gradient
which is the combination of static and oscillatory terms drives the flow. The character
of the flow depends mostly on unsteady and viscous terms. The velocity profiles that are
obtained using perturbation solution (α < 1) and those are obtained numerically using
new class of CERK method (for other values of α) are compared with the results presented
in Uchida (1956) for Newtonian fluid and this comparison is shown in figure 20. This
comparison shows a very good agreement. The pulsatile nature with phase lag is noticed
for Newtonian fluid in an unsteady regime at large values of α, as seen in Uchida (1956).

The radial variation of the concentration distribution at different α and B2 (= P2Pe2) is
shown in figure 21 for the three possible regimes: (a) viscous flow (α2 << 1) and diffusive
dispersion (B2 << 1); (b) viscous flow (α2 << 1) and unsteady dispersion (B2 >> 1);
and (c) unsteady flow (α2 >> 1) and unsteady dispersion (B2 >> 1). These results are
qualitatively in agreement with similar results presented by Sharp et al. (2019). The
purpose of presenting these results for velocity and concentration in different flow regimes
is to emphasize that the numerical calculation performed in this investigation for solute
dispersion are agreeing qualitatively with similar results reported in Watson (1983) and
Sharp et al. (2019); it is not the claim that these are the sharp estimates for convective,
dispersive regimes.
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Following Chatwin (1975), Pedley & Kamm (1988) and Sharp et al. (1991, 2019),
the estimates for moments in each regime are presented below. The mean concentration
Cm(z, t) can be interpreted as the probability density function of the longitudinal
displacement of a molecule of solute. Let Z(t) and W(t) denote the axial displacement
and velocity of a molecule of solute at time t. Then we have Z(t) = ∫ t

0 W(s) ds and
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Figure 21. Concentration profiles C(r, z, t) versus radius r for the regimes of dispersion. (a) Diffusive
dispersion (B2 << 1) at α = 0.5, 10 and Pe = 0.01; (b) unsteady dispersion (B2 >> 1) at α = 0.5, 4 and
Pe = 1000. Here z = 0.194, β = 0.01, We = 0.025, n = 0.392, a = 0.9, η = 0.1, e = 0.5, Sc = 1000.

μg = 〈Z(t)〉 = ∫ t
0〈W(s)〉 ds = ∫ +∞

−∞ zCm dz, where 〈·〉 has standard meaning in statistics.
From the above we can write

〈{Z(t) − 〈Z(t)〉}n〉 =
∫ +∞

−∞
(z − μg)

nCm dz =
∫ 1

0

∫ +∞

−∞
2r(z − μg)

nC dz dr

=
〈{∫ t

0
W(s) − 〈W(s)〉 ds

}n〉
. (3.1)

Now, we can write the various order moments as

Mn(t) =

∫ 1

0

∫ +∞

−∞
2r(z − μg)

nC dz dr

∫ 1

0

∫ +∞

−∞
2rC dz dr

=

〈{∫ t

0
W(s) − 〈W(s)〉 ds

}n〉
〈{∫ t

0
W(s) − 〈W(s)〉 ds

}0
〉
∫

A
dA

A
= (wreltc)nA. (3.2)

Now, the nth central moment about the mean concentration distribution Mn is scaled as

Mn = Mn

(W0T)n = (wreltc)n

(W0T)n A, (3.3)

where wrel is the characteristic axial velocity of diffusing molecules relative to the average
velocity, tc is the time during which the velocity of the molecules remains correlated and
A is the fraction of the cross-section over which molecules experience relative motion.
The cycle period scales as T ∼ 1/ω. What follows is the estimates of moments in all the
three flow and dispersion regimes.

(a) Viscous flow (α2 << 1) and diffusive dispersion (B2 << 1): following Pedley &
Kamm (1988), Sharp et al. (1991) and Sharp et al. (2019) the relative velocity
wrel, and the correlation time tc scales as wrel ∼ W0 and tc ∼ R2/Dm, respectively.
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Figure 22. Variation of (a) dispersion coefficient K2(t); (b) skewness K3(t); (c) kurtosis K3(t); (d) mean
concentration Cm(z, t) with B2 = [2.5 × 10−6 to 2.5 × 1014]; when z = 0.1, t = 12.5, β = 0.01, e = 0,

α = 0.5, We = 0.025, n = 0.392, a = 0.644, Sc = 1000 and η = 0.1.

The entire cross-section is involved so A ∼ 1. The nth scaled central moment from
(3.3) can be written as

Mn =
(

wreltc
W0T

)n

A ∼
(

W0(R2/Dm)

W0(1/ω)

)n

=
(

R2ω

ν

ν

Dm

)n

= (α2Sc)n. (3.4)

(b) Viscous flow (α2 << 1) and unsteady dispersion (B2 >> 1): the relative velocity
is limited to the velocity difference across a characteristic diffusion distance wrel ∼
W0

√
DmT/R, tc ∼ T , A ∼ 1. The nth scaled central moment can be written as

Mn =
(

wreltc
W0T

)n

A ∼
(

(W0
√

DmT/R)T
W0T

)n

=
(√

Dm/ω

R

)n

=
(

ν

R2ω

Dm

ν

)n/2

= (α2Sc)−n/2. (3.5)

(c) Unsteady flow (α2 >> 1) and unsteady dispersion (B2 >> 1) –
(i) At large Schmidt number Sc, the molecular diffusion distance is smaller than

the viscous diffusion distance. So wrel ∼ W0
√

Dm/ν, tc ∼ T , and A ∼ √
νT/R.
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Fluid We n a β e α Cm(z, t) × Pe Cm(z, t) × Pe
(up to 2nd (up to 4th
moment) moment)

C–Y fluid 0.025 0.2 0.9 100 0.5 0.5 2.34178 2.33434
C–Y fluid 0.2 0.2 0.9 0.01 0.5 0.5 8.23697 7.68164
C–Y fluid 0.025 0.2 0.9 0.01 1 0.5 9.95501 9.36001
C–Y fluid 0.025 0.2 0.9 0.01 0.5 0.5 9.96411 9.37152
C–Y fluid 0.025 0.2 0.9 0.01 0.5 4 9.97411 9.38042
Simplified Cross fluid 0.025 0 1 0.01 0.5 0.5 10.03381 9.43055
C–Y fluid 0.025 0.2 1.23 0.01 0.5 0.5 10.18621 9.59684
C–Y fluid 0.025 0.938 0.9 0.01 0.5 0.5 10.23431 9.63804
Carreau fluid 0.025 0.2 2 0.01 0.5 0.5 10.25642 9.65697
Newtonian fluid — 1 — 0.01 0.5 0.5 10.25907 9.65925

Table 2. Maxima of mean concentration Cm(z, t) × Pe for different fluids at t = 75, η = 0.1 and Pe = 1000.

The nth scaled central moment can be written as

Mn =
(

wreltc
W0T

)n

A ∼
(

(W0
√

Dm/ν)T
W0T

)n

(
√

νT/R) =
(√

Dm

ν

)n√
ν

ω

1
R

= Sc−n/2α−1. (3.6)

(ii) At small Schmidt number Sc, the molecular diffusion distance is greater than
viscous diffusion distance. Hence wrel ∼ W0, tc ∼ νT/Dm, and A ∼ √

νT/R.
The nth scaled central moment from (3.3) Mn can be written as

Mn =
(

wreltc
W0T

)n

A ∼
(

W0νT/Dm

W0T

)n √
νT
R

=
(

ν

Dm

)n√
ν

ω

1
R

= Scnα−1. (3.7)

These estimates for the Newtonian flow agree with those presented in sharp 2019. The
estimates for these moments in each regime help us in having a rigorous understanding of
the order estimates on the convection coefficient K1(t) and dispersion coefficient K2(t) of
the solute. These estimates will be useful in deciding in variations in skewness K3(t) and
kurtosis K4(t).

Variations of K2(t), K3(t), K4(t) and Cm(z, t) with B2 are shown in figure 22. Variation
of K2(t) continuously decreases with B2 and reaches a constant value. For small B2

variation of K3(t) are insignificant but when B2 moves from diffusion to an unsteady
regime a steep rise in K3(t) is noticed. As B2 approaches infinity, K3(t) becomes constant
with its maximum value. Kurtosis K4(t) is approximately zero and does not change for
B2 < 1 but as it reaches the unsteady dispersion regime kurtosis decreased. At large
B2, K4(t) become constant. As expected mean concentration Cm is the maximum for the
diffusion dispersion regime and it is minimum for the unsteady dispersion regime.

3.4. Axial mean concentration Cm(z, t) and two-dimensional concentration C(r, z, t)
In the preceding subsections, evolution of the coefficients K0(t), K1(t), K2(t), K3(t), K4(t)
and also the effect of various flow governing parameters on these coefficients is presented.
The solute dispersion in the non-Newtonian fluid flow is the culmination of all these effects
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Figure 23. Axial mean concentration Cm(z, t) × Pe variation with z including (i) second moment, (ii) third
moment and (iii) fourth moment at time (a) t = 0.01 × α2Sc, (b) t = 0.1 × α2Sc and (c) t = 5 × α2Sc when
β = 0.01, n = 0.2, a = 0.9, We = 0.025, α = 0.5, Sc = 1000, Pe = 1000 and e = 0.5.
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Figure 24. Axial mean concentration Cm(z, t) × Pe variation with z including (i) second moment, (ii) third
moment and (iii) fourth moment at time (a) β = 0.01, (b) β = 1 and (c) β = 100 when t = 0.1 × α2Sc, n =
0.2, a = 0.9, We = 0.025, α = 0.5, Sc = 1000, Pe = 1000 and e = 0.5.

as a whole, and it is being presented in this subsection. To show the significance of the
present investigation, the peak of Cm calculated up to the second moment and the same
calculated up to the fourth moment have been presented in table 2 with varying We, n, a, β,
e and α. As is evident from this, the difference in the peak of Cm with the second moment
and Cm with the fourth moment is large, indicating that higher moments play a role in the
accuracy of solute distribution. Therefore, the study of the third and fourth moments is
important for a better understanding of solute concentration distribution.

A typical presentation of concentration profile in the tube for three progressive time
levels is made in figure 23(a–c), considering up to the second moments, up to third
moments, and considering all the four moments (or in other words, with the dispersion,
skewness and kurtosis coefficients). As time progresses, the axial mean concentration
decreases drastically, with the inclusion of the K3(t) shifting the Cm curve to the left, while
the inclusion of the kurtosis coefficient reduces the peak of this mean concentration curve
in each case. Pure diffusion of solute results in a Gaussian distribution and the curves
are more compatible with the Gaussian distribution at large time. In the early stages of
the injection of the solute, these distribution characteristics provide a useful estimate of
blood flow. For t = 5, Cm distribution is nearly Gaussian, as seen from the figure 23(c).
It is advised to evaluate the approximations up to the fourth moment. The cumulative
effect of all five coefficients on concentration for varying values of β = 0.01, 1, 10, 100 is
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Figure 25. (a) Concentration contour C(r, z, t) × Pe up to second moment; (b) concentration contour
C(r, z, t) × Pe up to fourth moment for different values of β = 0.01, 1, 10, 100, when t = 0.3 × α2Sc, n = 0.2,
a = 0.9, We = 0.025, α = 0.5, Sc = 1000, Pe = 1000 and e = 0.5.

investigated, and the same is presented in figures 24 and 25. The more solute is given to
deplete at the boundary, the less there is concentration along the regions of the central line
of the tube, and the less solute is accessible for convection/diffusion in the non-Newtonian
fluid flow. More significantly, the analysis of skewness and the kurtosis coefficients clearly
indicated that the Cm is skewed towards the centre zone. The concentration contours
presented in figure 25(a,b) clearly show that the solute convection is more in the central
region than at the boundary of the tube and figure 25(b) gives an accurate solution due to
the consideration up to fourth moments.

The concentration C and maxima of Cm are seen to decrease with increasing values
of Weissenberg number We for solute dispersion in figures 26–27 and maxima of mean
concentration in table 2. The maxima of Cm are seen to grow with increasing values
of a and n as seen in table 2, and solute dispersion decreases with increasing values
of a and n in figures 28 and 29. The fluid velocity reduces with an increase in the a
and n at fixed Péclet number Pe = 1000, and it lowered the solute dispersion. The mean
concentration peak falls with increasing time t. The concentration contours C presented
in figure 30 for increasing values of Péclet number Pe in the range of [0.01–1000] clearly
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Figure 26. Axial mean concentration Cm(z, t) × Pe variation with z including (i) second moment, (ii) third
moment and (iii) fourth moment at time (a) We = 0.025, (b) We = 0.09 and (c) We = 0.2 when t = 0.1 × α2Sc,
n = 0.2, a = 0.9, α = 0.5, β = 0.01, Sc = 1000, Pe = 1000 and e = 0.5.
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Figure 27. (a) Concentration contour C(r, z, t) × Pe up to second moment; (b) concentration contour
C(r, z, t) × Pe up to fourth moment for different values of We, when t = 0.3 × α2Sc, a = 0.9, n = 0.2,
β = 0.01, α = 0.5, Sc = 1000, Pe = 1000, η = 0.1 and e = 0.5.
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Figure 28. Axial mean concentration Cm(z, t) × Pe variation with z including second moment and fourth
moment (with circular marker) at varying (a) a, and (b) n when t = 0.1 × α2Sc, n = 0.2, a = 0.9, We = 0.025,
α = 0.5, β = 0.01, Sc = 1000, Pe = 1000 and e = 0.5.
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Figure 29. (a) Concentration contour C(r, z, t) × Pe up to second moment; (b) concentration contour
C(r, z, t) × Pe up to fourth moment for different values of (n, a), when t = 0.3 × α2Sc, We = 0.025, β = 0.01,
α = 0.5, Sc = 1000, Pe = 1000, η = 0.1 and e = 0.5.
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Figure 30. Concentration contour C(r, z, t) for different Péclet number Pe, when t = 0.3 × α2Sc, a = 0.9,
n = 0.9, β = 0.01, α = 0.5, Sc = 1000, We = 0.2, η = 0.1 and e = 0.5.
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Figure 31. Axial mean concentration Cm(z, t) × Pe variation with z including second moment and fourth
moment (with circular marker) at varying (a) e at η = 0.1, and (b) η at e = 0.5 when t = 0.1 × α2Sc, n = 0.2,
a = 0.9, We = 0.025, α = 0.5, β = 0.01, Sc = 1000, Pe = 1000 and e = 0.5.

depict the diffusion dominance at low Péclet number Pe (= 0.01, 0.1), the significance
of convection and the root to the solute dispersion with increasing value of Pe. For
Pe = [0.01–1000], α = 0.5 and Sc = 1000, the range of B2 (= P2Pe2 = α2ScPe2) is
[0.025–2.5 × 108]. These calculations also ascertain that the diffusive dispersion regime
is seen for B2 < 1 and unsteady dispersion regime is seen for B2 > 1. The velocity and the
dispersion coefficients grow as e rises. As a result, the peak of Cm lowers as e increases.

The convective and the dispersion coefficients are changing with e, especially when the
value of e > 1 a double pulsation is seen for these coefficients. This will alter the mean
concentration significantly. The axial mean concentration shown in figure 31(a) clearly
indicates the effect of the skewness and kurtosis. Consideration of the skewness and
kurtosis lowered the axial mean concentration for all values of e. Axial mean concentration
is seen to be increasing with an increasing value of the viscosity ratio parameter η.
The variation of the axial mean concentration with increasing value of α is shown in
figure 31(a) for a relatively large value of e(= 10). With increasing value of α, the axial
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Figure 32. Variation of axial mean concentration Cm(z, t) × Pe variation with z (a) for varying α at large
e = 10; (b) for varying large values of e at α = 0.5, when We = 0.2, n = 0.9, a = 0.9, η = 0.1, Sc = 1000,
β = 0.01 and Pe = 1000.

mean concentration is seen to increase with increasing value of α with a sharp peak. The
variation in axial mean concentration for large values of e is shown in figure 32(b). These
curves are plotted considering the value of α = 0.5. The comparative study of Cm for
non-Newtonian models (C–Y fluid, Carreau fluid, simplified Cross fluid and Newtonian
fluid) are presented in table 2. Among all these fluid models considered, it is noted that
Cm has the highest peak for Newtonian fluid and the lowest peak for Cm is observed for the
C–Y fluid model. In addition, the Cm profile is scattered axially more for the C–Y fluid and
Carreau fluid model. The fluid velocity and dispersion are relatively more in the C–Y fluid
and Carreau fluid models, resulting in a reduction in the Cm distribution. The difference in
peak of Cm with and without the third and fourth moments is large, indicating that higher
moments, such as the skewness and kurtosis, are important for accurately estimating the
solute distribution in the flow.

4. Conclusions

Considering higher order moments, the unsteady solute dispersion has been investigated
in this study for pulsatile C–Y fluid flow in a tube. Considering the Womersley frequency
parameter α2 as the perturbation parameter the time-dependent velocity profile is obtained
analytically using the Lagrange inversion theorem for α2 < 1 and n < 1. A new class
of CERK method (Yadav et al. 2022) has been used to compute the velocity profile
for all other values of α and n The flow and dispersion regimes are presented in this
investigation for better understanding of solute dispersion. The axial dispersion C and axial
mean concentration Cm of solute are estimated considering exchange coefficient K0(t),
convective coefficient K1(t), dispersion coefficient K2(t), skewness coefficient K3(t) and
kurtosis coefficient K4(t) and variations of all these five coefficients with time t. The
effect of wall absorption parameter β, the Weissenberg number We, power law exponent
n, Yasuda parameter a, fluctuating pressure component e and Womersley frequency
parameter α are thoroughly investigated. Significant conclusions from this analysis are
listed below.

(i) The parameters a, n, η, We and β influenced −K1(t) and K2(t). It is noted that
K1(t) and K2(t) increases and oscillates between positive and negative values for
high values of e. As e increases, the pulsatile effect is visible on K1(t), K2(t), K3(t)
and K4(t) and their amplitude of fluctuation and magnitude rises with e. As a and
n increases, K3(t) and K4(t) also increases. Reverse behaviour is seen for varying
values of We, due to the velocity differences.
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(ii) Opposite behaviour of skewness and kurtosis has been observed for 0.01 < β ≤ 1
and 1 > β ≥ 100. The large rate of absorption (β = 10, 100) is seen to change the
sign of K3(t). For large values of β = 100, K4(t) changes its behaviour during
the small time of solute injection. As the absorption parameter increases, K4(t)
decreased initially and after a certain time, it increased and tends to zero limit. For
smaller values of β = 0.01 and 1, K4(t) steadily approaches zero. K3(t) and K4(t)
decreases with increasing values of α for all (a, n, We). These K3(t) and K4(t) rise
in time with single frequency with small amplitude for every oscillation cycle with
phase lag at large α. This is because of the phase lag and low amplitude of flow
profile at the high α.

(iii) The difference in peak of Cm with the second moment, with the third moment and
Cm with the fourth moment is large. This indicates that higher moments play a role
in the accuracy of solute distribution. The peak of Cm reduces in the axial direction
z as β rises. The maxima of mean concentration are seen to grow with increasing
values of a and n, and solute dispersion decreases with increasing values of a and
n. The opposite behaviour is seen at different Weissenberg number We. The mean
solute concentration Cm drops and its peak lowers as e increases. Here Cm has the
highest peak for Newtonian fluid and the lowest peak is observed for the fluid with
the C–Y model.

Acknowledgements. The authors acknowledge Indian Institute of Technology (IIT) Kharagpur for the
infrastructure and the National Supercomputing Mission (NSM), Government of India for the computing
resources of ‘PARAM Shakti’ at IIT Kharagpur.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Shalini Singh https://orcid.org/0000-0002-5353-1986;
P.V.S.N. Murthy https://orcid.org/0000-0002-6244-0357.

Author contributions. Both authors contributed equally to the development and improvement of this study.

Appendix A. Numerical simulation for concentration distribution

A new class of CERK method (Yadav et al. 2022) has been used to compute the
concentration distribution numerically in the non-Newtonian fluid for the present case.
For spatial discretization, the second-order central difference formula has been used. The
discretized form of transport equation (2.19), shear stress equation (2.6a) and momentum
equation (2.6b) with their initial and boundary conditions (2.7a,b) are given as

Cn+1
i,j = Cn

i,j + Δt
P2

[
−wn+1

i

(
Cn

i,j+1 − Cn
i,j

Δz

)
+ 1

ri

(
Cn

i+1,j − Cn
i−1,j

2Δr

)

+
(

Cn
i+1,j − Cn

i,j + Cn
i−1,j

Δr2

)
+ 1

Pe2

(
Cn

i,j+1 − Cn
i,j + Cn

i,j−1

Δz2

)]
, (A1a)

Cn+1
1,j+1 = Cn+1

2,j , Cn+1
M,j+1 = (1 − βΔz)Cn+1

M,j , Cn+1
i,N = Cn+1

i,N−1, C0
i,1 = 1

Pe
, (A1b)
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Figure 33. Velocity w(r, t) variation with t at small time for Newtonian fluid and different non-Newtonian
fluids with perturbation solution and numerical solution (with circular marker) when r = 0.9, β = 0.01, e =
0.5, Pe = 1000, Sc = 1000 and α = 0.5.

τ n+1
i = −

[
η + (1 − η)

{
1 +

(
−We

wn
i+1 − wn

i−1

2Δr

)a}(n−1)/a](wn
i+1 − wn

i−1

2Δr

)
, (A2a)

τ n+1
1 = τ n+1

2 , τ n+1
M = τ n+1

M−1, (A2b)

wn+1
i = wn

i + ε

ε + Υ Δt

(
Δt
ε

)[
2pn+1 − 1

ri

(
ri+1τ

n+1
i+1 − ri−1τ

n+1
i−1

2Δr

)]
. (A2c)

Here, Δt is the temporal step size and (Δr, Δz) represent the spatial step sizes along r
and z direction, respectively. Moreover, for numerical computations Δr = 10−2, Δz =
10−3, Δt = 10−9 are chosen. Here Υ is the free parameter, an optimal value of Υ (= 105)
is chosen by considering appropriate temporal and spatial steps. The comparison of the
velocity profile obtained using the perturbation solution and the numerical solution are
shown in figures 33 and 20 for α < 1 and n ≤ 1 which shows a good agreement.

Using this method the concentration profile has been obtained numerically, using
which the exchange coefficient K0(t), convection coefficient K1(t), diffusion coefficient
K2(t), skewness K3(t) and kurtosis K4(t) are obtained numerically. A comparison of
K0(t), K1(t), K2(t), K3(t), K4(t) computed numerically, obtained using Aris’ method
and Gill’s method is shown in figure 34. This shows a very good agreement between the
results obtained numerically and analytically.

Appendix B. Solutions of Cn(r, t) for n = 0, 1, 2, 3, 4

The eigenfunction expansion solutions of Cn(r, t) (with 10 number of roots μk, k =
1, 2, 3, . . . , 10) for n = 0, 1, 2, 3, 4 are obtained as

C0(r, t) =
∞∑

n=0

A
′
nJ0(μnr) exp(−μ2

nt/P2), (B1)

C1(r, t) =
∞∑

m=1

∞∑
n=1

A
′
nA

′′2
m J0(μmr)X1(m, n, t) exp(−μ2

mt/P2), (B2)
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Figure 34. Verification of the analytical result with the numerical result: (a) negative convection coefficient
−K1(t); (b) dispersion coefficient K2(t); (c) skewness K3(t); (d) kurtosis K4(t) of the concentration distribution.
Ten eigenfunctions are used for the series expansions for Aris’ and Gill’s method, respectively. Here β =
0.01, e = 0, We = 0.025, n = 0.392, α = 0.5, a = 0.644, η = 0.1, Pe = 1000, Sc = 1000.

C2(r, t) =
∞∑

k=1

∞∑
m=1

∞∑
n=1

2A
′
nA

′′2
m A

′′2
k J0(μkr)X2(k, m, n, t) exp(−μ2

kt/P2)

+
∞∑

k=1

2A
′
kJ0(μkr)
P2Pe2 t exp(−μ2

kt/P2), (B3)

C3(r, t) =
∞∑

j=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

6B3J0(μjr)X3( j, k, m, n, t) exp(−μ2
j t/P2)

+
∞∑

j=1

∞∑
k=1

6A
′
kA

′′2
j J0(μjr)

P2Pe2

(∫ t

0

s
P2 Djk(s) exp((μ2

j − μ2
k)s/P2) ds

+
∫ t

0
X1( j, k, s) ds

)
exp(−μ2

j t/P2), (B4)

C4(r, t) =
∞∑

i=1

∞∑
j=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

24B4J0(μir)X4(i, j, k, m, n, t) exp(−μ2
i t/P2)

+
∞∑

i=1

12A
′
iJ0(μir)t2 exp(−μ2

i t/P2)

P4Pe4 +
∞∑

i=1

∞∑
j=1

∞∑
k=1

24A
′
kA

′′2
j A

′′2
i J0(μir)

P2Pe2
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×
(∫ t

0
Dij(s) exp((μ2

i − μ2
j )s/P2)

∫ s

0

s′

P4 Djk(s′) exp((μ2
j − μ2

k)s
′/P2) ds′ ds

+
∫ t

0

Dij(s) exp ((μ2
i − μ2

j )s/P2)

P2

∫ s

0
X1( j, k, s′) ds′ ds +

∫ t

0
X2(i, j, k, s) ds

)

× exp(−μ2
i t/P2); (B5)

K1(t) = −

( ∞∑
m=1

∞∑
n=1

B1(m, n)X1(m, n, t) exp(−μ2
mt/P2)

)
( ∞∑

n=1

A
′
nμnJ1(μn) exp(−μ2

nt/P2)

)
( ∞∑

n=1

A
′
n exp(−μ2

nt/P2)J1(μn)/μn

)2

−

∞∑
m=1

∞∑
n=1

B1(m, n)
(

exp(−μ2
nt/P2)Dmn(t) − μ2

mX1(m, n, t) exp(−μ2
mt/P2)

)
∞∑

n=1

A
′
n exp(−μ2

nt/P2)J1(μn)/μn

.

(B6)

Appendix C. Solutions of Yn(t) for n = 0, 1, 2, 3, 4

The eigenfunction expansion solutions of Yn(t) for n = 0, 1, 2, 3, 4 are obtained as

Y0(t) =
∞∑

n=0

A
′
n exp(−μ2

nt/P2)
J1(μn)

μn
, (C1)

Y1(t) =
∞∑

m=1

[ ∞∑
n=1

A
′
nA

′′2
m X1(m, n, t)

]
exp(−μ2

mt/P2)
J1(μm)

μm
, (C2)

Y2(t) =
∞∑

k=1

[ ∞∑
m=1

∞∑
n=1

2A
′
nA

′′2
m A

′′2
k X2(k, m, n, t) + 2tA

′
k

P2Pe2

]
exp(−μ2

kt/P2)
J1(μk)

μk
, (C3)

Y3(t) =
∞∑

j=1

⎡
⎣ ∞∑

k=1

∞∑
m=1

∞∑
n=1

6B3X3( j, k, m, n, t) +
∞∑

k=1

6A
′
kA

′′2
j

P2Pe2

×
(∫ t

0

s
P2 Djk(s) exp((μ2

j − μ2
k)s/P2) ds +

∫ t

0
X1( j, k, s) ds

)]

× exp(−μ2
j t/P2)

J1(μj)

μj
, (C4)
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Y4(t) =
∞∑

i=1

⎡
⎣ ∞∑

j=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

24B4X4(i, j, k, m, n, t) + 12A
′
it

2

P4Pe4 +
∞∑

j=1

∞∑
k=1

24A
′
kA

′′2
j A

′′2
i

P2Pe2

×
(∫ t

0

Dij(s)
P2 exp((μ2

i − μ2
j )s/P2)

∫ s

0

s′

P2 Djk(s′) exp((μ2
j − μ2

k)s
′/P2) ds′ ds

+
∫ t

0
Dij(s) exp((μ2

i − μ2
j )s/P2)

×
∫ s

0

X1( j, k, s′)
P2 ds′ ds +

∫ t

0
X2(i, j, k, s) ds

)⎤⎦ exp(−μ2
i t/P2)

J1(μi)

μi
. (C5)

Appendix D. Other variables

The variables given in the method of moments, Gill’s method and appendices B and C are
given by

Dmn(s) =
∫ 1

0
rw
(

r, s/P2
)

J0(μmr)J0(μnr) dr, (D1)

A
′
n = 2β

Pe(μ2
n + β2)J0(μn)

, A
′′2
m = 2

J2
0(μm) + J2

1(μm)
, (D2a,b)

B1(m, n) = A
′
nA

′′2
m

J1(μm)

μm
, B2(k, m, n) = A

′
nA

′′2
m A

′′2
k J1(μk)/μk, (D3a,b)

B3 = A
′
nA

′′2
m A

′′2
k A

′′2
j , B4 = A

′
nA

′′2
m A

′′2
k A

′′2
j A

′′2
i , (D4a,b)

X1(m, n, t) = 1
P2

∫ t

0
Dmn(s) exp((μ2

m − μ2
n)s/P2) ds, (D5)

X2(k, m, n, t) = 1
P2

∫ t

0
Dkm(s) exp((μ2

k − μ2
m)s/P2)X1(m, n, s) ds, (D6)

X3( j, k, m, n, t) = 1
P2

∫ t

0
Djk(s) exp((μ2

j − μ2
k)s/P2)X2(k, m, n, s) ds, (D7)

X4(i, j, k, m, n, t) = 1
P2

∫ t

0
Dij(s) exp((μ2

i − μ2
j )s/P2)X3( j, k, m, n, s) ds, (D8)

F1(t) =
∞∑

k=1

∞∑
m=1

∞∑
n=1

(4B2(k, m, n)Dkm(t)X1(m, n, t) exp(−μ2
mt/P2)

− 4μ2
kB2(k, m, n)X2(k, m, n, t) exp(−μ2

kt/P2))

+
∞∑

k=1

4A
′
kJ1(μk)

μkPe2 (1 − μ2
kt/P2) exp(−μ2

kt/P2), (D9)
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F2(t) =
∞∑

k=1

∞∑
m=1

∞∑
n=1

4B2(k, m, n)X2(k, m, n, t) exp(−μ2
kt/P2)

+
∞∑

k=1

4A
′
kJ1(μk)

μkP2Pe2 t exp(−μ2
kt/P2), (D10)

F3(t) =
∞∑

n=0

(2A
′
nJ1(μn)/μn) exp(−μ2

nt/P2),

F4(t) =
∞∑

n=1

2A
′
nμnJ1(μn) exp(−μ2

nt/P2), (D11a,b)

F5(t) =
∞∑

m=1

∞∑
n=1

2B1(m, n)X1(m, n, t) exp(−μ2
mt/P2), (D12)

F6(t) =
∞∑

m=1

∞∑
n=1

2B1(m, n)
(

Dmn(t) exp(−μ2
nt/P2)

−μ2
mX1(m, n, t) exp(−μ2

mt/P2)
)

. (D13)

Here i = 0, 1, 2, 3, . . . , j = 0, 1, 2, 3, . . . , k = 0, 1, 2, 3, . . . , m = 0, 1, 2, 3, . . . , n =
0, 1, 2, 3, . . .
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