NOWHERE-ZERO 3-FLOWS IN CAYLEY GRAPHS OF ORDER 8*[p](#page-0-0)*

JUNYAN[G](https://orcid.org/0000-0002-0871-2059) ZHANG[®] and HANG ZHO[U](https://orcid.org/0009-0003-6443-406X)[®]

(Received 14 August 2023; accepted 31 August 2023)

Abstract

It is proved that Tutte's 3-flow conjecture is true for Cayley graphs on groups of order 8*p* where *p* is an odd prime.

2020 *Mathematics subject classification*: primary 05C21; secondary 05C25.

Keywords and phrases: nowhere-zero 3-flow, Cayley graph.

1. Introduction

All graphs considered in this paper are undirected finite graphs with no loops, possibly with multiple edges. Let Γ be a graph with vertex set $V(\Gamma)$ and edge set *E*(Γ). An *orientation* D of Γ is an assignment of a direction to each edge of Γ. Given an orientation, $D^+(v)$ (respectively $D^-(v)$) denotes the set of all edges with tail (respectively head) at *v* for every $v \in V(\Gamma)$. Let φ be an integer-valued function on $E(\Gamma)$ and *k* a positive integer. We call the ordered pair (D, φ) a *k*-*flow* of Γ if $\sum_{e \in D^+(v)} \varphi(e) = \sum_{e \in D^-(v)} \varphi(e)$ and $|\varphi(e)| < k$ for all $v \in V(\Gamma)$. If in addition $\varphi(e) \neq 0$ for every edge $e \in F(\Gamma)$ then (D, φ) is called a *nowhere-zero* k-flow every edge $e \in E(\Gamma)$, then (D, φ) is called a *nowhere-zero k*-flow.

In the middle of the last century, Tutte [\[11,](#page-10-0) [12\]](#page-10-1) initiated the study of nowhere-zero integer flows in graphs. He observed that every nowhere-zero *k*-flow on a planar graph gives rise to a *k*-face-colouring of this graph, and *vice versa*. This implies that every planar graph admits a nowhere-zero 4-flow if and only if the four colour conjecture holds. He also proposed three conjectures, namely the 5-flow, 4-flow and 3-flow conjectures. This paper focus on Tutte's 3-flow conjecture which is stated now.

CONJECTURE 1.1. Every 4-edge-connected graph admits a nowhere-zero 3-flow.

Despite a great deal of research on this conjecture, it remains open. Jaeger [\[3\]](#page-9-0) proposed the following so-called weak 3-flow conjecture: there is a positive integer *k* such that every *k*-edge-connected graph admits a nowhere-zero 3-flow. Kochol [\[4\]](#page-9-1) proved that Conjecture [1.1](#page-0-1) is equivalent to the conjecture that every 5-edge-connected

The first author was supported by the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1054).

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

graph admits a nowhere-zero 3-flow. Jaeger's conjecture was confirmed by Thomassen [\[10\]](#page-10-2) who proved that the statement is true when $k = 8$. This breakthrough was further improved by Lovász *et al.* [\[6\]](#page-9-2) who proved that every 6-edge-connected graph admits a nowhere-zero 3-flow.

In the past two decades, nowhere-zero 3-flows in Cayley graphs have received considerable attention. Potočnik *et al.* [\[8\]](#page-9-3) proved that every Cayley graph of valency at least four on an abelian group admits a nowhere-zero 3-flow. This was improved by Nánásiová and Škoviera [\[7\]](#page-9-4) who proved that Conjecture [1.1](#page-0-1) is true for Cayley graphs on groups whose Sylow 2-subgroup is a direct factor of the group. In particular, it is true for Cayley graphs on nilpotent groups. Subsequently, Conjecture [1.1](#page-0-1) was proved to be true for Cayley graphs on more classes of groups, including dihedral groups [\[13\]](#page-10-3), generalised dihedral groups [\[5\]](#page-9-5), generalised quaternion groups [\[5\]](#page-9-5), generalised dicyclic groups [\[1\]](#page-9-6), groups of order pq^2 where p and q are two primes [\[14\]](#page-10-4), supersolvable groups with a noncyclic Sylow 2-subgroup and groups with square-free order derived subgroup [\[15\]](#page-10-5).

At present, it seems impossible to verify Conjecture [1.1](#page-0-1) for all Cayley graphs. As an attempt, it is reasonable to consider Cayley graphs on groups of order a product of a few primes. This has been done for groups of order pq^2 by the first author and Zhang [\[14\]](#page-10-4). In this paper, we deal with a further step by proving that Conjecture [1.1](#page-0-1) is true for Cayley graphs on groups of order 8*p* where *p* is an odd prime.

THEOREM 1.2. *Let p be an odd prime. Then every Cayley graph of valency at least four on a group of order* 8*p admits a nowhere-zero* 3*-flow.*

The paper is structured as follows. After this introductory section, we introduce some preparatory results in Section [2.](#page-1-0) In Section [3,](#page-2-0) we give the proof of Theorem [1.2.](#page-1-1)

2. Preliminaries

Groups considered in this paper are finite groups with identity element denoted by 1. For a set *S*, we use |*S*| to denote the number of elements contained in *S*. Let *G* be a group. Then $|G|$ is the order of *G*. If *S* is a subset of *G*, then we use $\langle S \rangle$ to denote the subgroup of *G* generated by *S*. Let *H* be a subgroup of *G*. Then $N_G(H)$ and $C_G(H)$ denote the normaliser and centraliser of H in G , respectively. It is well known that $|H|$ is a divisor of $|G|$ and $|G : H| := |G|/|H|$ is called the *index* of *H* in *G*. An element of *G* is called an *involution* if it is of order 2. An involution *c* of *G* is called a *central involution* if $cg = gc$ for all $g \in G$. Let *P* be a subgroup of *G* and *p* a prime divisor of |*G*|. If |*P*| is a power of *p* and $|G : H|$ is not divisible by *p*, then *P* is called a *Sylow p-subgroup* of *G*. The *derived subgroup* of *G*, denoted by *G* , is the subgroup generated by all commutators $[x, y] := x^{-1}y^{-1}xy$ of *G* for $x, y \in G$.

Let *X* be a subset of *G* satisfying $1 \notin X$ and $X^{-1} = X$. The *Cayley graph* Cay(*G*, *X*) on *G* with *connection set X* is the graph with vertex set *G* in which two vertices *g* and *h* are adjacent if and only if $g^{-1}h \in X$. If *X* is a multiset with elements in $G \setminus \{1\}$ such that $X = X^{-1}$ and the multiplicity of *x* is equal to that of x^{-1} for every $x \in X$, then the *Cayley multigraph* $Cay(G, X)$ is defined to be the multigraph with vertex set G such that the number of edges joining *g* and *h* is equal to the multiplicity of $g^{-1}h \in X$. It is obvious that the valency of the Cayley graph (multigraph) $Cay(G, X)$ is equal to the cardinality of *X*, and $Cay(G, X)$ is connected if and only if $G = \langle X \rangle$.

Let $Cay(G, X)$ be a Cayley graph (multigraph) on *G* and *N* a normal subgroup of *G* such that every element of *N* is of multiplicity 0 in *X*. Then the Cayley graph (multigraph) $Cay(G/N, X/N)$ is called the *quotient graph* of $Cay(G, X)$ induced by N. Note that $Cay(G/N, X/N)$ may be a multigraph even if $Cay(G, X)$ is not.

LEMMA 2.1 [\[7,](#page-9-4) Proposition 4.1]. *Let G be a group having a normal subgroup N. Let* Cay(*G*, *X*) be a Cayley graph on G such that $N \cap X = \emptyset$. If Cay(G/N , X/N) admits a *nowhere-zero k-flow, then so does* Cay(*G*, *X*)*.*

A graph is said to be *even* if each of its vertices is of even valency. It is well known that a graph admits a nowhere-zero 2-flow if and only if it is even [\[2,](#page-9-7) Theorem 21.4]. Therefore, every even graph admits a nowhere-zero k -flow for any $k \ge 2$. It is also well known (see [\[2,](#page-9-7) Theorem 21.5]) that a 2-edge-connected cubic graph admits a nowhere-zero 3-flow if and only if it is bipartite. Combining these two results gives the following lemma.

LEMMA 2.2. *Let* Γ *be a regular graph of odd valency. If* Γ *has a cubic bipartite spanning subgraph, then* Γ *admits a nowhere-zero 3-flow.*

A group *G* is said to be *supersolvable* if it has a normal series $\{1\} = G_0 \leq G_1 \leq G_2$ \cdots ≤ *G_n* = *G* such that the quotient group *G_i*/*G_{i−1}* is cyclic for $1 \le i \le n$. It is obvious that a group of order 8*p* is supersolvable provided it has a normal Sylow *p*-subgroup. The following lemma is a direct corollary of the main results in [\[15\]](#page-10-5).

LEMMA 2.3. Let G be a group of order 8*p* where p is an odd prime and let Γ = Cay(*G*, *X*) *be a Cayley graph of valency at least* 4*. If G has a normal Sylow p-subgroup, then* Γ *admits a nowhere-zero* 3*-flow.*

PROOF. Assume that *G* has a normal Sylow *p*-subgroup *P*. Then *G* is supersolvable. Let *Q* be a Sylow 2-subgroup of *G*. Then $G/P \cong Q$. By [\[8,](#page-9-3) Theorem 1.1], Γ admits a nowhere-zero 3-flow if *G* is abelian. Now we assume that *G* is nonabelian. Then $G' = P$ provided *Q* is cyclic. Therefore, either *Q* is noncyclic or *G'* is of square-free order. By [\[15,](#page-10-5) Theorems 1.2 and 1.3], Γ admits a nowhere-zero 3-flow. \Box

3. Proof of Theorem [1.2](#page-1-1)

Let *G* be a group of order $8p$ where *p* is an odd prime and let $\Gamma = \text{Cay}(G, X)$ be a Cayley graph of valency at least 4. Since every even graph admits a nowhere-zero 3-flow, we may assume that Γ is of odd valency at least 5. Moreover, since every 6-edge-connected graph admits a nowhere-zero 3-flow [\[6\]](#page-9-2) and the edge connectivity of a Cayley graph is equal to its valency, it suffices to deal with the case that Γ is of valency 5. If Γ is disconnected, then $\langle X \rangle$ is a proper subgroup of *G*. Therefore, the order of $\langle X \rangle$ is a proper divisor of $8p$ and it follows that Cay($\langle X \rangle$, X) admits a nowhere-zero 3-flow. Since every connected component of Γ is isomorphic to Cay($\langle X \rangle$, *X*), we conclude that Γ admits a nowhere-zero 3-flow.

From now on, we assume that Γ is a connected graph of valency 5. Then $G = \langle X \rangle$ and $|X| = 5$.

Let n_p be the number of Sylow *p*-subgroups of *G*. By Sylow's theorem (see [\[9,](#page-10-6) 4.12]), we have $n_p = |G : N_G(P)| \equiv 1 \pmod{p}$, where *P* is an arbitrary Sylow *p*-subgroup of *G*. In particular, $n_p | 8$. If $n_p = 1$, then the unique Sylow *p*-subgroup of *G* is normal in *G*. By Lemma [2.3,](#page-2-1) Γ admits a nowhere-zero 3-flow. In what follows, we assume $n_p \neq 1$. Then $n_p = 4$ or 8. Furthermore, every minimal normal subgroup of *G* is an elementary abelian group of order 2, 4 or 8. Based on this, we divide the rest of the proof into three lemmas.

LEMMA 3.1. *If there is a minimal normal subgroup N of G of order* 2*, then* Γ *admits a nowhere-zero* 3*-flow.*

PROOF. Since $|N| = 2$ and $|G| = 8p$, the quotient group G/N is of order $4p$. Set $N = \langle c \rangle$. Then *c* is a central involution of *G*. Since a Cayley graph of valency 5 admits a nowhere-zero 3-flow provided its connection set contains a central involution [\[7,](#page-9-4) Theorem 3.3], Γ admits a nowhere-zero 3-flow if *c* ∈ *X*.

Now we assume that *X* contains no central involutions, so that $c \notin X$. Then *N* induces a quotient graph $\Gamma_N := \text{Cay}(G/N, X/N)$ of Γ . Since every simple Cayley graph of order 4*p* and valency 5 admits a nowhere-zero 3-flow [\[14,](#page-10-4) Theorem 1.2], it follows from Lemma [2.1](#page-2-2) that Γ admits a nowhere-zero 3-flow if Γ_N is simple. In what follows, we assume that Γ_N is a multigraph. Then there exists an element $x \in X$ such that $xc \in X$. We proceed with the proof in the following three cases.

Case 1: x (or xc) is an involution. Since *c* is a central involution of *G*, both *x* and *xc* are involutions. Since *X* is of cardinality 5 and inverse closed, there exists an involution $a \in X \setminus \{x, xc\}$. Then the Cayley graph Cay($\{\{x, c, a\}\}\$, $\{x, xc, a\}$) is a bipartite graph with the bipartition $\{\langle xa, c \rangle, x\langle xa, c \rangle\}$. It follows that the Cayley graph Cay(*G*, $\{x, xc, a\}$) is a cubic bipartite spanning subgraph of Γ. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero 3-flow.

Case 2: x and xc are both of even order greater than 2. In this case, the Cayley graph Cay($\langle x, c \rangle$, $\{x, x^{-1}, xc, cx^{-1}\}\$) is a bipartite graph with the bipartition $\{\langle x^2, c \rangle, x\langle x^2, c \rangle\}$. It follows that Cay(*G*, {*x*, *x*⁻¹, *xc*, *cx*⁻¹}) is a bipartite spanning subgraph of Γ. Let Γ' be a graph obtained from Cay(G , { x , x^{-1} , xc , cx^{-1} }) by removing a perfect matching. Then Γ' is a cubic bipartite spanning subgraph of Γ. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero 3-flow.

Case 3: x or xc is of odd order. Without loss of generality, we assume that x is of odd order. Since *G* is of order 8*p*, it follows that *x* is of order *p*. Then *xc* is of order 2*p*. In particular, $\langle x \rangle$ is a Sylow *p*-subgroup of *G* and a normal subgroup of the cyclic group $\langle xc \rangle$. Thus, $|G : N_G(\langle x \rangle)| \leq 4$. Recall that $n_p \equiv 1 \pmod{p}$ and $n_p = |G : N_G(P)| \neq 1$ for any Sylow *p*-subgroup *P* of *G*. It follows that $n_p = 4$ and $p = 3$. Therefore, *G* is of order

FIGURE 1. Cay(G , { a , x , x^{-1} }) and some of its subgraphs.

24 and $N_G(P)$ is of order 6. In particular, $N_G(\langle x \rangle) = \langle xc \rangle = C_G(\langle x \rangle)$. By Burnside's normal complement theorem [\[9,](#page-10-6) Theorem 7.50], $\langle x \rangle$ has a normal complement *Q* in *G*. Indeed, *Q* is the unique Sylow 2-subgroup of *G*.

Set $X = \{x, x^{-1}, cx, cx^{-1}, a\}$, where *a* is an involution. Since $c \notin X$, then $c \neq a$. Set $x^{-1}ax = b$ and $x^{-1}bx = d$. Since *x* is of order 3, we get $x^{-1}dx = a$. Note that *a*, *b*, *c*, *d* ∈ *Q* and $|Q| = 8$. Since *c* is a central involution, *a*, *b*, *c*, *d*, *ac*, *bc*, *dc* are pairwise distinct involutions. It follows that *Q* is an elementary abelian group. Since $x^{-1}(ac)x = bc$, $x^{-1}(bc)x = dc$ and $x^{-1}(dc)x = ac$, we see that *c* is the unique involution in *Q* such that $x^{-1}cx = c$. Since $x^{-1}(abd)x = bda = abd$, we have $abd = c$ or 1.

If $abd = c$, then it is straightforward to check that $\langle ac, bc \rangle$ is normal in *G* and therefore Γ has a cubic bipartite spanning subgraph Cay(*G*, {*cx*, *cx*⁻¹, *a*}) with the bipartition $\{\langle ac, bc \rangle \langle x \rangle, \langle ac, bc \rangle \langle x \rangle a\}$. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero 3-flow.

Now we assume that $abd = 1$. Then $d = ab$ and therefore $\langle a, b \rangle$ is normal in *G*. Moreover, it is straightforward to check that $\langle a, b \rangle \langle x \rangle \cong A_4$ and $G = \langle a, b \rangle \langle x \rangle \times \langle c \rangle$. In particular, the Cayley graph Cay(G , { a , x , x^{-1} }) has two connected components which are the first two graphs depicted in Figure [1.](#page-4-0) Let Σ be the graph obtained from Cay(*G*, $\{a, x, x^{-1}\}$) by removing the four edges $\{1, a\}$, $\{b, ab\}$, $\{c, ca\}$ and $\{cb, cab\}$. Then Σ has two connected components which are the third and fourth graphs depicted in Figure [1.](#page-4-0) Let $Λ$ be the graph obtained from Γ by removing all the edges of Σ. Then $Λ$ is a graph with two connected components depicted in Figure [2.](#page-5-0) It is obvious that both Σ and Λ admit a nowhere-zero 3-flow. Since Γ is the edge-disjoint union of Σ and Λ, it follows that Γ admits a nowhere-zero 3-flow. \Box

LEMMA 3.2. *If there is a minimal normal subgroup N of G of order* 4*, then* Γ *admits a nowhere-zero* 3*-flow.*

FIGURE 2. The graph Λ.

PROOF. By Lemma [3.1,](#page-3-0) we can assume that *G* has no minimal normal subgroups of order 2. Let *P* be a Sylow *p*-subgroup of *G*. Then *NP* is a subgroup of *G* of order 4*p*. Moreover, *NP* is normal in *G* as it is of index 2 in *G*. Since *P* is not normal in *G*, it follows that *P* is not a characteristic subgroup of *NP* and therefore not normal in *NP*. By Sylow's theorem, $|G : N_G(P)| \equiv |NP : N_{NP}(P)| \equiv 1 \pmod{p}$. It follows that $p = 3$ and $|G : N_G(P)| = |NP : N_{NP}(P)| = 4$. In particular, $|N_G(P)| = 6$ and $|G| = 24$. Since *G* has no minimal normal subgroups of order 2, $N_G(P)$ is core-free in *G*. Therefore, *G* is isomorphic to *S*₄. Since *N* is of order 4, $|N \cap X| \leq 3$. We proceed with the proof in four cases.

Case 1: $|N \cap X| = 3$. In this case, it can be proved that all elements in *X* are involutions. Otherwise, $X = (N \setminus \{1\}) \cup \{y, y^{-1}\}\$ and $\langle X \rangle = N\langle y \rangle$, where *y* is of order greater than 2. Since $G \cong S_4$, *y* is of order 4 or 3. Therefore, $\langle X \rangle$ is of order 8 or 12, which is a contradiction since $G = \langle X \rangle$.

Take $z \in X \setminus N$. Then $\langle (N \setminus \{1\}) \cup \{z\} \rangle = N\langle z \rangle$. Since *z* is an involution, $N\langle z \rangle$ is of order 8 and therefore a Sylow 2-subgroup of *G*. In particular, $N\langle z \rangle$ is a dihedral group, which contains exactly one central involution. Let *Z* be the subset of *X* obtained from $(N \setminus \{1\}) \cup \{z\}$ by removing the unique central involution of $N\langle z \rangle$. Then $|Z| = 3$, $\langle Z \rangle =$ $N\langle z \rangle$ and all elements in *Z* are involutions outside the index 2 cyclic subgroup *A* of $\langle Z \rangle$. Therefore, the Cayley graph Cay($\langle Z \rangle$, *Z*) is a bipartite graph with the bipartition {*A*, *Az*}. Thus, Cay(*G*, *Z*) is a cubic bipartite spanning subgraph of Γ. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero 3-flow.

Case 2: $N \cap X = \emptyset$. In this case, N induces a quotient graph $\Gamma_N := \text{Cay}(G/N, X/N)$ of ^Γ. Note that *^G*/*^N* is a dihedral group. By [\[13,](#page-10-3) Theorems 1.3 and 4.1], ^Γ*^N* admits a nowhere-zero 3-flow. By Lemma [2.1,](#page-2-2) Γ admits a nowhere-zero 3-flow.

Case 3: $|N \cap X| = 1$ or 2 *and X contains no elements of order* 3. Set $Y = X \setminus N$. Then all elements in *Y* are of even order and $Y \cap NP = \emptyset$. Therefore, the Cayley graph Cay(*G*, *Y*) is a bipartite graph with the bipartition $\{NP, G \setminus NP\}$. Since $|N \cap X| = 1$ or 2, we conclude that $Cay(G, Y)$ is of valency 4 or 3. Therefore, $Cay(G, Y)$ has a cubic bipartite spanning subgraph which is also a spanning subgraph of Γ. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero 3-flow.

Case 4: $|N \cap X| = 1$ or 2 *and X contains an element x of order* 3. Note that $N\langle x \rangle$ is a subgroup of *G* of index 2. In particular, $N\langle x \rangle \cong A_4$. Let *a* be an involution in $N \cap X$.

FIGURE 3. Cay(*G*, {*a*, *c*,*z*}).

Since $G = \langle X \rangle$, there exists $c \in X$ such that $c \notin N \langle x \rangle$ but $c^2 \in N \langle x \rangle$. In particular, *c* is of order 2 or 4. Set $x^{-1}ax = b$. Then $x^{-1}bx = ab$ and the Cayley graph Cay(*G*, {*a*, *x*, x^{-1} }) has two connected components which are the first two graphs depicted in Figure [1.](#page-4-0) The remainder of the proof is divided into three subcases.

Subcase 4.1: $X = \{a, c, z, x, x^{-1}\}\$ *where* $z \in N$. In this subcase, both *c* and *z* are involutions. Note that $N(c)$ is a Sylow 2-subgroup of G which is a dihedral group of order 8. Therefore, either $ac \neq ca$ or $zc \neq cz$. Without loss of generality, assume $zc \neq cz$. Set $y = cz$. Then *y* is of order 4. If $a \neq y^2$, then the Cayley graph Cay($\langle a, c, z \rangle$, $\{a, c, z\}$) is a bipartite graph with the bipartition $\{\langle y \rangle, \langle y \rangle c\}$. Thus, Cay(*G*, {*a*, *c*, *z*}) is a cubic bipartite spanning subgraph of Γ. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero 3-flow. If $a = y^2$, then $Cay(G, {a, c, z}$) is the disconnected graph depicted in Figure [3.](#page-6-0) It is obvious that the graph Σ obtained from Cay(*G*, {*a*, *c*, *z*}) by removing the three edges {*yc*, *yca*}, $\{x, xa\}$, $\{x^2, x^2a\}$ admits a nowhere-zero 3-flow. Moreover, the last graph depicted in Figure [1](#page-4-0) is a connected component of $\Gamma - E(\Sigma)$ and the other connected components of Γ − *E*(Σ) are triangles. Therefore, Γ − *E*(Σ) admits a nowhere-zero 3-flow. It follows that Γ admits a nowhere-zero 3-flow.

Subcase 4.2: $X = \{a, c, z, x, x^{-1}\}$ *where* $z \notin N$ *and* $Nc \neq Nz$. We first prove that both *c* and *z* are involutions. Otherwise, $c = z^{-1}$ and *z* is of order 3 or 4. If *z* is of order 3, then $c, z \in N\langle x \rangle$, which is a contradiction since $G = \langle X \rangle$. If *z* is of order 4, then $z^2 \in N$, which contradicts $Nc \neq Nz$.

Since *c* and *z* are involutions outside *N*, we have $c, z \notin N(x)$. Recall that $N(x)$ is of index 2 in *G*. Therefore, $cz \in N\langle x \rangle$. Set $y = cz$. Since $Nc \neq Nz$, we have $y \in N\langle x \rangle \setminus N$ and hence *y* is of order 3.

Let Σ be the graph obtained from the Cayley graph Cay(*G*, {*a*, *x*, *x*⁻¹}) by removing the four edges $\{1, a\}$, $\{b, ab\}$, $\{c, ca\}$ and $\{cb, cab\}$. Then Σ has two connected compo-nents which are the third and fourth graphs depicted in Figure [1.](#page-4-0) It is obvious that Σ admits a nowhere-zero 3-flow.

Set $\Theta = \Gamma - E(\Sigma)$. If $ac = ca$, then Θ has two connected components which are the first two graphs depicted in Figure [4.](#page-7-0) If $ac \neq ca$, then $c^{-1}ac = b$ or *ab*. Without loss of generality, assume $c^{-1}ac = b$. Then Θ is the third graph depicted in Figure [4.](#page-7-0) Therefore, Θ admits a nowhere-zero 3-flow for either $ac = ca$ or $ac \neq ca$.

FIGURE 5. Cay(*G*/*N*, *^Y*/*N*) and one of its subgraphs.

Now we have proved that both Σ and Θ admit a nowhere-zero 3-flow. Since Γ is the edge-disjoint union of Σ and Θ , we see that Γ admits a nowhere-zero 3-flow.

Subcase 4.3: $X = \{a, c, z, x, x^{-1}\}$ *where* $z \notin N$ *and* $Nc = Nz$. Since $G = \langle X \rangle$ and $Nc =$ *Nz*, neither *c* nor *z* is of order 3. Set $Y = \{c, z, x, x^{-1}\}\$. Then $N \cap Y = \emptyset$. It is straightforward to check that the quotient graph $Cay(G/N, Y/N)$ of $Cay(G, Y)$ induced by N is isomorphic to the first graph depicted in Figure [5.](#page-7-1) Note that $Cay(G/N, Y/N)$ has a cubic bipartite spanning subgraph which is isomorphic to the second graph depicted in Figure [5.](#page-7-1) Therefore, Cay(*G*, *Y*) has a cubic bipartite spanning subgraph which is also a cubic bipartite spanning subgraph of Γ. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero $3-flow.$

LEMMA 3.3. *If there is a minimal normal subgroup N of G of order* 8*, then* Γ *admits a nowhere-zero* 3*-flow.*

PROOF. Assume that *G* has a minimal normal subgroup *N* of order 8. Then *N* is an elementary abelian 2-group. Moreover, *N* is a Sylow 2-subgroup of *G* and a maximal group of *G*. Since *N* is normal in *G*, every involution of *G* is contained in *N*. Since $\Gamma = \text{Cay}(G, X)$ is of valency 5, *X* contains an odd number of involutions. Let *a* be an involution contained in *X*, then $a \in N$. Since $G = \langle X \rangle$, there exists $x \in X \setminus N$. It is obvious that $G = \langle N, x \rangle = N \langle x \rangle$. Thus, $N \cap \langle x \rangle$ is normal in *G*. Since *N* is a minimal normal subgroup of *G*, we have $N \cap \langle x \rangle = \{1\}$. Therefore, *x* is of order *p*. Moreover, the orbit of every nonidentity element under the conjugate action of $\langle x \rangle$ on N is of length *p* and generates *N*. Since *N* contains exactly 7 nonidentity elements, $p = 7$. It is straightforward to check that $N = \langle a \rangle \times \langle x^{-1}ax \rangle \times \langle x^{-2}ax^2 \rangle$ and $x^{-3}ax^3 = ax^{-2}ax^2$ or $x^{-3}ax^3 = ax^{-1}ax$. If $x^{-3}ax^3 = ax^{-1}ax$, then $x^3ax^{-3} = ax^2ax^{-2}$. Therefore, without loss

FIGURE 6. The graph Σ_1 .

of generality, we assume $x^{-3}ax^3 = ax^{-2}ax^2$ (as we can replace *x* by x^{-1}). Set $x^{-1}ax = b$ and $x^{-1}bx = c$. Then $N = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ and $x^{-1}cx = ac$.

Case 1: X contains three involutions. Set $Y = X \setminus \{x, x^{-1}\}\$. Then *Y* consists of the three involutions of *X*. In particular, *Y* is a subset of *N*. If $N = \langle Y \rangle$, then every connected component of the Cayley graph $Cay(G, Y)$ is isomorphic to the cube. Therefore, Cay(*G*, *Y*) is a cubic bipartite spanning subgraph of Γ. By Lemma [2.2,](#page-2-3) Γ admits a nowhere-zero 3-flow.

In what follows, we assume $N \neq \langle Y \rangle$ so that $\langle Y \rangle$ is of order 4.

If $x^{-1}Yx \cap Y \neq \emptyset$, then there exists $y \in Y$ such that $x^{-1}yx \in Y$. Since $\langle Y \rangle$ is of order 4, $Y = \{y, x^{-1}yx, yx^{-1}yx\}$. Without loss of generality, let $y = a$. Then $Y = \{a, b, ab\}$. Let Σ_1 be the subgraph of the Cayley graph Cay(*G*, {*a*, *x*, *x*⁻¹}) depicted in Figure [6.](#page-8-0) Then Σ_1 can be contracted to a cubic bipartite graph and therefore admits a nowhere-zero 3-flow. It is straightforward to check that every connected component of $\Gamma - E(\Sigma_1)$ is either a 4-cycle or a graph obtained from the complete graph of order 4 by removing an edge. Therefore, $\Gamma - E(\Sigma_1)$ admits a nowhere-zero 3-flow and so does Γ.

If $x^{-1}Yx \cap Y = \emptyset$, then $x^{-2}Yx^2 \cap Y \neq \emptyset$. Therefore, there exists $y \in Y$ such that $Y =$ $\{y, x^{-2}yx^2, yx^{-2}yx^2\}$. Without loss of generality, let $y = a$. Then $Y = \{a, c, ac\}$. Note that the subgraph Σ_2 of Cay(*G*, {*a*, *x*, *x*⁻¹}) depicted in Figure [7](#page-9-8) can be contracted to a cubic bipartite graph. Note also that every connected component of $\Gamma - E(\Sigma_1)$ is either a 4-cycle or a graph obtained from the complete graph of order 4 by removing an edge. Therefore, Γ admits a nowhere-zero 3-flow.

Case 2: X contains a unique involution. Set $X = \{a, x, x^{-1}, y, y^{-1}\}$ where *y* is not an involution. As for *x*, we see that *y* is of order 7 and $G = \langle a, y \rangle$. Since $G = \bigcup_{i=0}^{6} Nx^i$ and *N* ∩ *Ny* = ∅, either (*Nx* ∪ *Nx*² ∪ *Nx*³) ∩ *Ny* \neq ∅ or (*Nx*⁴ ∪ *Nx*⁵ ∪ *Nx*⁶) ∩ *Ny* \neq ∅. Without loss of generality, assume $(Nx \cup Nx^2 \cup Nx^3) \cap Ny \neq \emptyset$. Then $Ny = Nx, Nx^2$ or Nx^3 . Since $Nx^{-1} = Ny^2$ if $Ny = Nx^3$, the case $Ny = Nx^3$ reduces to the case $Ny = Nx^2$ by replacing the pair of elements (x^{-1}, y) by (y, x) . Therefore, it suffices to consider the two cases $Ny = Nx$ and $Ny = Nx^2$. Now assume $Ny = Nx$ or Nx^2 . Let Λ be the graph obtained from the Cayley graph Cay(G , { x , x^{-1} , y , y^{-1}) by removing all the edges in $\{h, hx\}$: $h \in N \cup Nx^2 \cup Nx^4 \cup Nx^6\}$. Then the quotient graph Λ_N of Λ induced by *N* is

FIGURE 7. The graph Σ_2 .

FIGURE 8. Λ_N and one connected component of $\Gamma - E(\Lambda)$.

isomorphic to the first or second graph in Figure [8](#page-9-9) according as $Ny = Nx$ or $Ny = Nx^2$. Since Λ_N can be contracted to a cubic bipartite graph, so can Λ . Therefore, Λ admits a nowhere-zero 3-flow. It is straightforward to check that every component of $\Gamma - E(\Lambda)$ is either the third graph depicted in Figure [8](#page-9-9) or an 8-cycle. Since the third graph depicted in Figure [8](#page-9-9) can be contracted to a cubic bipartite graph, we conclude that $\Gamma - E(\Lambda)$ admits a nowhere-zero 3-flow. It follows that Γ admits a nowhere-zero 3-flow. -

References

- [1] M. Ahanjideh and A. Iranmanesh, 'The validity of Tutte's 3-flow conjecture for some Cayley graphs', *Ars Math. Contemp.* 16 (2019), 203–213.
- [2] J. A. Bondy and R. Murty, *Graph Theory* (Springer, New York, 2008).
- [3] F. Jaeger, 'Flows and generalized coloring theorems in graphs', *J. Combin. Theory Ser. B* 26 (1979), 205–216.
- [4] M. Kochol, 'An equivalent version of the 3-flow conjecture', *J. Combin. Theory Ser. B* 83 (2001), 258–261.
- [5] L. Li and X. Li, 'Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group', *Front. Math. China* 10 (2015), 293–302.
- [6] L. M. Lovász, C. Thomassen, Y. Wu and C.-Q. Zhang, 'Nowhere-zero 3-flows and modulo *k*-orientations', *J. Combin. Theory Ser. B* 103 (2013), 587–598.
- [7] M. Nánásiová and M. Škoviera, 'Nowhere-zero flows in Cayley graphs and Sylow 2-subgroups', *J. Algebraic Combin.* 30 (2009), 103–110.
- [8] P. Potočnik, M. Škoviera and R. Škrekovski, 'Nowhere-zero 3-flows in abelian Cayley graphs', *Discrete Math.* 297 (2005), 119–127.

[11] Nowhere-zero 3-flows 11

- [9] D. J. S. Robinson, *A Course in the Theory of Groups*, Graduate Texts in Mathematics, 80 (Springer-Verlag, New York, 1995).
- [10] C. Thomassen, 'The weak 3-flow conjecture and the weak circular flow conjecture', *J. Combin. Theory Ser. B* 102 (2012), 521–529.
- [11] W. T. Tutte, 'On the imbedding of linear graphs in surfaces', *Proc. Lond. Math. Soc. (2)* 51(1) (1949), 474–483.
- [12] W. T. Tutte, 'A contribution to the theory of chromatic polynomials', *Canad. J. Math.* 6 (1954), 80–91.
- [13] F. Yang and X. Li, 'Nowhere-zero 3-flows in dihedral Cayley graphs', *Inform. Process. Lett.* 111 (2011), 416–419.
- [14] J. Zhang and Z. Zhang, 'Nowhere-zero 3-flows in Cayley graphs of order *pq*2', *Discrete Math.* 346(2) (2023), Article no. 113226.
- [15] J. Zhang and S. Zhou, 'Nowhere-zero 3-flows in Cayley graphs on supersolvable groups', Preprint, 2022, [arXiv:2203.02971.](https://arxiv.org/abs/2203.02971)

JUNYANG ZHANG, School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, PR China e-mail: jyzhang@cqnu.edu.cn

HANG ZHOU, School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, PR China e-mail: zhouuuhang@163.com