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Abstract

It is proved that Tutte’s 3-flow conjecture is true for Cayley graphs on groups of order 8p where p is an
odd prime.
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1. Introduction

All graphs considered in this paper are undirected finite graphs with no loops,
possibly with multiple edges. Let Γ be a graph with vertex set V(Γ) and edge set
E(Γ). An orientation D of Γ is an assignment of a direction to each edge of Γ.
Given an orientation, D+(v) (respectively D−(v)) denotes the set of all edges with
tail (respectively head) at v for every v ∈ V(Γ). Let ϕ be an integer-valued function
on E(Γ) and k a positive integer. We call the ordered pair (D,ϕ) a k-flow of Γ if
∑

e∈D+(v) ϕ(e) =
∑

e∈D−(v) ϕ(e) and |ϕ(e)| < k for all v ∈ V(Γ). If in addition ϕ(e) � 0 for
every edge e ∈ E(Γ), then (D,ϕ) is called a nowhere-zero k-flow.

In the middle of the last century, Tutte [11, 12] initiated the study of nowhere-zero
integer flows in graphs. He observed that every nowhere-zero k-flow on a planar
graph gives rise to a k-face-colouring of this graph, and vice versa. This implies
that every planar graph admits a nowhere-zero 4-flow if and only if the four colour
conjecture holds. He also proposed three conjectures, namely the 5-flow, 4-flow and
3-flow conjectures. This paper focus on Tutte’s 3-flow conjecture which is stated now.

CONJECTURE 1.1. Every 4-edge-connected graph admits a nowhere-zero 3-flow.

Despite a great deal of research on this conjecture, it remains open. Jaeger [3]
proposed the following so-called weak 3-flow conjecture: there is a positive integer
k such that every k-edge-connected graph admits a nowhere-zero 3-flow. Kochol [4]
proved that Conjecture 1.1 is equivalent to the conjecture that every 5-edge-connected
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graph admits a nowhere-zero 3-flow. Jaeger’s conjecture was confirmed by Thomassen
[10] who proved that the statement is true when k = 8. This breakthrough was further
improved by Lovász et al. [6] who proved that every 6-edge-connected graph admits a
nowhere-zero 3-flow.

In the past two decades, nowhere-zero 3-flows in Cayley graphs have received
considerable attention. Potočnik et al. [8] proved that every Cayley graph of valency
at least four on an abelian group admits a nowhere-zero 3-flow. This was improved
by Nánásiová and Škoviera [7] who proved that Conjecture 1.1 is true for Cayley
graphs on groups whose Sylow 2-subgroup is a direct factor of the group. In particular,
it is true for Cayley graphs on nilpotent groups. Subsequently, Conjecture 1.1 was
proved to be true for Cayley graphs on more classes of groups, including dihedral
groups [13], generalised dihedral groups [5], generalised quaternion groups [5],
generalised dicyclic groups [1], groups of order pq2 where p and q are two primes [14],
supersolvable groups with a noncyclic Sylow 2-subgroup and groups with square-free
order derived subgroup [15].

At present, it seems impossible to verify Conjecture 1.1 for all Cayley graphs. As an
attempt, it is reasonable to consider Cayley graphs on groups of order a product of a
few primes. This has been done for groups of order pq2 by the first author and Zhang
[14]. In this paper, we deal with a further step by proving that Conjecture 1.1 is true for
Cayley graphs on groups of order 8p where p is an odd prime.

THEOREM 1.2. Let p be an odd prime. Then every Cayley graph of valency at least
four on a group of order 8p admits a nowhere-zero 3-flow.

The paper is structured as follows. After this introductory section, we introduce
some preparatory results in Section 2. In Section 3, we give the proof of Theorem 1.2.

2. Preliminaries

Groups considered in this paper are finite groups with identity element denoted
by 1. For a set S, we use |S| to denote the number of elements contained in S. Let G
be a group. Then |G| is the order of G. If S is a subset of G, then we use 〈S〉 to denote
the subgroup of G generated by S. Let H be a subgroup of G. Then NG(H) and CG(H)
denote the normaliser and centraliser of H in G, respectively. It is well known that |H|
is a divisor of |G| and |G : H| := |G|/|H| is called the index of H in G. An element of
G is called an involution if it is of order 2. An involution c of G is called a central
involution if cg = gc for all g ∈ G. Let P be a subgroup of G and p a prime divisor
of |G|. If |P| is a power of p and |G : H| is not divisible by p, then P is called a Sylow
p-subgroup of G. The derived subgroup of G, denoted by G′, is the subgroup generated
by all commutators [x, y] := x−1y−1xy of G for x, y ∈ G.

Let X be a subset of G satisfying 1 � X and X−1 = X. The Cayley graph Cay(G, X)
on G with connection set X is the graph with vertex set G in which two vertices g and
h are adjacent if and only if g−1h ∈ X. If X is a multiset with elements in G \ {1} such
that X = X−1 and the multiplicity of x is equal to that of x−1 for every x ∈ X, then the
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Cayley multigraph Cay(G, X) is defined to be the multigraph with vertex set G such
that the number of edges joining g and h is equal to the multiplicity of g−1h ∈ X. It is
obvious that the valency of the Cayley graph (multigraph) Cay(G, X) is equal to the
cardinality of X, and Cay(G, X) is connected if and only if G = 〈X〉.

Let Cay(G, X) be a Cayley graph (multigraph) on G and N a normal subgroup
of G such that every element of N is of multiplicity 0 in X. Then the Cayley graph
(multigraph) Cay(G/N, X/N) is called the quotient graph of Cay(G, X) induced by N.
Note that Cay(G/N, X/N) may be a multigraph even if Cay(G, X) is not.

LEMMA 2.1 [7, Proposition 4.1]. Let G be a group having a normal subgroup N. Let
Cay(G, X) be a Cayley graph on G such that N ∩ X = ∅. If Cay(G/N, X/N) admits a
nowhere-zero k-flow, then so does Cay(G, X).

A graph is said to be even if each of its vertices is of even valency. It is well known
that a graph admits a nowhere-zero 2-flow if and only if it is even [2, Theorem 21.4].
Therefore, every even graph admits a nowhere-zero k-flow for any k ≥ 2. It is also
well known (see [2, Theorem 21.5]) that a 2-edge-connected cubic graph admits a
nowhere-zero 3-flow if and only if it is bipartite. Combining these two results gives
the following lemma.

LEMMA 2.2. Let Γ be a regular graph of odd valency. If Γ has a cubic bipartite
spanning subgraph, then Γ admits a nowhere-zero 3-flow.

A group G is said to be supersolvable if it has a normal series {1} = G0 ≤ G1 ≤
· · · ≤ Gn = G such that the quotient group Gi/Gi−1 is cyclic for 1 ≤ i ≤ n. It is obvious
that a group of order 8p is supersolvable provided it has a normal Sylow p-subgroup.
The following lemma is a direct corollary of the main results in [15].

LEMMA 2.3. Let G be a group of order 8p where p is an odd prime and let Γ =
Cay(G, X) be a Cayley graph of valency at least 4. If G has a normal Sylow p-subgroup,
then Γ admits a nowhere-zero 3-flow.

PROOF. Assume that G has a normal Sylow p-subgroup P. Then G is supersolvable.
Let Q be a Sylow 2-subgroup of G. Then G/P � Q. By [8, Theorem 1.1], Γ admits
a nowhere-zero 3-flow if G is abelian. Now we assume that G is nonabelian. Then
G′ = P provided Q is cyclic. Therefore, either Q is noncyclic or G′ is of square-free
order. By [15, Theorems 1.2 and 1.3], Γ admits a nowhere-zero 3-flow. �

3. Proof of Theorem 1.2

Let G be a group of order 8p where p is an odd prime and let Γ = Cay(G, X) be
a Cayley graph of valency at least 4. Since every even graph admits a nowhere-zero
3-flow, we may assume that Γ is of odd valency at least 5. Moreover, since every
6-edge-connected graph admits a nowhere-zero 3-flow [6] and the edge connectivity
of a Cayley graph is equal to its valency, it suffices to deal with the case that Γ is of
valency 5. If Γ is disconnected, then 〈X〉 is a proper subgroup of G. Therefore, the order
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of 〈X〉 is a proper divisor of 8p and it follows that Cay(〈X〉, X) admits a nowhere-zero
3-flow. Since every connected component of Γ is isomorphic to Cay(〈X〉, X), we
conclude that Γ admits a nowhere-zero 3-flow.

From now on, we assume that Γ is a connected graph of valency 5. Then G = 〈X〉
and |X| = 5.

Let np be the number of Sylow p-subgroups of G. By Sylow’s theorem (see
[9, 4.12]), we have np = |G : NG(P)| ≡ 1 (mod p), where P is an arbitrary Sylow
p-subgroup of G. In particular, np | 8. If np = 1, then the unique Sylow p-subgroup
of G is normal in G. By Lemma 2.3, Γ admits a nowhere-zero 3-flow. In what follows,
we assume np � 1. Then np = 4 or 8. Furthermore, every minimal normal subgroup of
G is an elementary abelian group of order 2, 4 or 8. Based on this, we divide the rest
of the proof into three lemmas.

LEMMA 3.1. If there is a minimal normal subgroup N of G of order 2, then Γ admits a
nowhere-zero 3-flow.

PROOF. Since |N | = 2 and |G| = 8p, the quotient group G/N is of order 4p. Set
N = 〈c〉. Then c is a central involution of G. Since a Cayley graph of valency 5 admits
a nowhere-zero 3-flow provided its connection set contains a central involution [7,
Theorem 3.3], Γ admits a nowhere-zero 3-flow if c ∈ X.

Now we assume that X contains no central involutions, so that c � X. Then N
induces a quotient graph ΓN := Cay(G/N, X/N) of Γ. Since every simple Cayley graph
of order 4p and valency 5 admits a nowhere-zero 3-flow [14, Theorem 1.2], it follows
from Lemma 2.1 that Γ admits a nowhere-zero 3-flow if ΓN is simple. In what follows,
we assume that ΓN is a multigraph. Then there exists an element x ∈ X such that xc ∈ X.
We proceed with the proof in the following three cases.

Case 1: x (or xc) is an involution. Since c is a central involution of G, both x and xc are
involutions. Since X is of cardinality 5 and inverse closed, there exists an involution
a ∈ X \ {x, xc}. Then the Cayley graph Cay(〈{x, c, a}〉, {x, xc, a}) is a bipartite graph with
the bipartition {〈xa, c〉, x〈xa, c〉}. It follows that the Cayley graph Cay(G, {x, xc, a}) is
a cubic bipartite spanning subgraph of Γ. By Lemma 2.2, Γ admits a nowhere-zero
3-flow.

Case 2: x and xc are both of even order greater than 2. In this case, the Cayley graph
Cay(〈x, c〉, {x, x−1, xc, cx−1}) is a bipartite graph with the bipartition {〈x2, c〉, x〈x2, c〉}. It
follows that Cay(G, {x, x−1, xc, cx−1}) is a bipartite spanning subgraph of Γ. Let Γ′ be a
graph obtained from Cay(G, {x, x−1, xc, cx−1}) by removing a perfect matching. Then Γ′

is a cubic bipartite spanning subgraph of Γ. By Lemma 2.2, Γ admits a nowhere-zero
3-flow.

Case 3: x or xc is of odd order. Without loss of generality, we assume that x is of odd
order. Since G is of order 8p, it follows that x is of order p. Then xc is of order 2p. In
particular, 〈x〉 is a Sylow p-subgroup of G and a normal subgroup of the cyclic group
〈xc〉. Thus, |G : NG(〈x〉)| ≤ 4. Recall that np ≡ 1 (mod p) and np = |G : NG(P)| � 1 for
any Sylow p-subgroup P of G. It follows that np = 4 and p = 3. Therefore, G is of order
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FIGURE 1. Cay(G, {a, x, x−1}) and some of its subgraphs.

24 and NG(P) is of order 6. In particular, NG(〈x〉) = 〈xc〉 = CG(〈x〉). By Burnside’s
normal complement theorem [9, Theorem 7.50], 〈x〉 has a normal complement Q in G.
Indeed, Q is the unique Sylow 2-subgroup of G.

Set X = {x, x−1, cx, cx−1, a}, where a is an involution. Since c � X, then c � a. Set
x−1ax = b and x−1bx = d. Since x is of order 3, we get x−1dx = a. Note that a, b, c, d ∈ Q
and |Q| = 8. Since c is a central involution, a, b, c, d, ac, bc, dc are pairwise distinct
involutions. It follows that Q is an elementary abelian group. Since x−1(ac)x = bc,
x−1(bc)x = dc and x−1(dc)x = ac, we see that c is the unique involution in Q such that
x−1cx = c. Since x−1(abd)x = bda = abd, we have abd = c or 1.

If abd = c, then it is straightforward to check that 〈ac, bc〉 is normal in G and
therefore Γ has a cubic bipartite spanning subgraph Cay(G, {cx, cx−1, a}) with the
bipartition {〈ac, bc〉〈x〉, 〈ac, bc〉〈x〉a}. By Lemma 2.2, Γ admits a nowhere-zero 3-flow.

Now we assume that abd = 1. Then d = ab and therefore 〈a, b〉 is normal in G.
Moreover, it is straightforward to check that 〈a, b〉〈x〉 � A4 and G = 〈a, b〉〈x〉 × 〈c〉. In
particular, the Cayley graph Cay(G, {a, x, x−1}) has two connected components which
are the first two graphs depicted in Figure 1. Let Σ be the graph obtained from
Cay(G, {a, x, x−1}) by removing the four edges {1, a}, {b, ab}, {c, ca} and {cb, cab}. Then
Σ has two connected components which are the third and fourth graphs depicted in
Figure 1. Let Λ be the graph obtained from Γ by removing all the edges of Σ. Then Λ
is a graph with two connected components depicted in Figure 2. It is obvious that both
Σ and Λ admit a nowhere-zero 3-flow. Since Γ is the edge-disjoint union of Σ and Λ, it
follows that Γ admits a nowhere-zero 3-flow. �

LEMMA 3.2. If there is a minimal normal subgroup N of G of order 4, then Γ admits
a nowhere-zero 3-flow.
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PROOF. By Lemma 3.1, we can assume that G has no minimal normal subgroups of
order 2. Let P be a Sylow p-subgroup of G. Then NP is a subgroup of G of order 4p.
Moreover, NP is normal in G as it is of index 2 in G. Since P is not normal in G, it
follows that P is not a characteristic subgroup of NP and therefore not normal in NP.
By Sylow’s theorem, |G : NG(P)| ≡ |NP : NNP(P)| ≡ 1 (mod p). It follows that p = 3
and |G : NG(P)| = |NP : NNP(P)| = 4. In particular, |NG(P)| = 6 and |G| = 24. Since G
has no minimal normal subgroups of order 2, NG(P) is core-free in G. Therefore, G is
isomorphic to S4. Since N is of order 4, |N ∩ X| ≤ 3. We proceed with the proof in four
cases.

Case 1: |N ∩ X| = 3. In this case, it can be proved that all elements in X are involutions.
Otherwise, X = (N \ {1}) ∪ {y, y−1} and 〈X〉 = N〈y〉, where y is of order greater than
2. Since G � S4, y is of order 4 or 3. Therefore, 〈X〉 is of order 8 or 12, which is a
contradiction since G = 〈X〉.

Take z ∈ X \ N. Then 〈(N \ {1}) ∪ {z}〉 = N〈z〉. Since z is an involution, N〈z〉 is of
order 8 and therefore a Sylow 2-subgroup of G. In particular, N〈z〉 is a dihedral group,
which contains exactly one central involution. Let Z be the subset of X obtained from
(N \ {1}) ∪ {z} by removing the unique central involution of N〈z〉. Then |Z| = 3, 〈Z〉 =
N〈z〉 and all elements in Z are involutions outside the index 2 cyclic subgroup A of
〈Z〉. Therefore, the Cayley graph Cay(〈Z〉, Z) is a bipartite graph with the bipartition
{A, Az}. Thus, Cay(G, Z) is a cubic bipartite spanning subgraph of Γ. By Lemma 2.2,
Γ admits a nowhere-zero 3-flow.

Case 2: N ∩ X = ∅. In this case, N induces a quotient graph ΓN := Cay(G/N, X/N) of
Γ. Note that G/N is a dihedral group. By [13, Theorems 1.3 and 4.1], ΓN admits a
nowhere-zero 3-flow. By Lemma 2.1, Γ admits a nowhere-zero 3-flow.

Case 3: |N ∩ X| = 1 or 2 and X contains no elements of order 3. Set Y = X \ N. Then
all elements in Y are of even order and Y ∩ NP = ∅. Therefore, the Cayley graph
Cay(G, Y) is a bipartite graph with the bipartition {NP, G \ NP}. Since |N ∩ X| = 1 or 2,
we conclude that Cay(G, Y) is of valency 4 or 3. Therefore, Cay(G, Y) has a cubic
bipartite spanning subgraph which is also a spanning subgraph of Γ. By Lemma 2.2,
Γ admits a nowhere-zero 3-flow.

Case 4: |N ∩ X| = 1 or 2 and X contains an element x of order 3. Note that N〈x〉 is a
subgroup of G of index 2. In particular, N〈x〉 � A4. Let a be an involution in N ∩ X.
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Since G = 〈X〉, there exists c ∈ X such that c � N〈x〉 but c2 ∈ N〈x〉. In particular, c is of
order 2 or 4. Set x−1ax = b. Then x−1bx = ab and the Cayley graph Cay(G, {a, x, x−1})
has two connected components which are the first two graphs depicted in Figure 1.
The remainder of the proof is divided into three subcases.

Subcase 4.1: X = {a, c, z, x, x−1} where z ∈ N. In this subcase, both c and z are involu-
tions. Note that N〈c〉 is a Sylow 2-subgroup of G which is a dihedral group of order
8. Therefore, either ac � ca or zc � cz. Without loss of generality, assume zc � cz. Set
y = cz. Then y is of order 4. If a � y2, then the Cayley graph Cay(〈a, c, z〉, {a, c, z}) is a
bipartite graph with the bipartition {〈y〉, 〈y〉c}. Thus, Cay(G, {a, c, z}) is a cubic bipartite
spanning subgraph of Γ. By Lemma 2.2, Γ admits a nowhere-zero 3-flow. If a = y2,
then Cay(G, {a, c, z}) is the disconnected graph depicted in Figure 3. It is obvious
that the graph Σ obtained from Cay(G, {a, c, z}) by removing the three edges {yc, yca},
{x, xa}, {x2, x2a} admits a nowhere-zero 3-flow. Moreover, the last graph depicted in
Figure 1 is a connected component of Γ − E(Σ) and the other connected components
of Γ − E(Σ) are triangles. Therefore, Γ − E(Σ) admits a nowhere-zero 3-flow. It follows
that Γ admits a nowhere-zero 3-flow.

Subcase 4.2: X = {a, c, z, x, x−1} where z � N and Nc � Nz. We first prove that both c
and z are involutions. Otherwise, c = z−1 and z is of order 3 or 4. If z is of order 3,
then c, z ∈ N〈x〉, which is a contradiction since G = 〈X〉. If z is of order 4, then z2 ∈ N,
which contradicts Nc � Nz.

Since c and z are involutions outside N, we have c, z � N〈x〉. Recall that N〈x〉 is of
index 2 in G. Therefore, cz ∈ N〈x〉. Set y = cz. Since Nc � Nz, we have y ∈ N〈x〉 \ N
and hence y is of order 3.

Let Σ be the graph obtained from the Cayley graph Cay(G, {a, x, x−1}) by removing
the four edges {1, a}, {b, ab}, {c, ca} and {cb, cab}. Then Σ has two connected compo-
nents which are the third and fourth graphs depicted in Figure 1. It is obvious that Σ
admits a nowhere-zero 3-flow.

Set Θ = Γ − E(Σ). If ac = ca, then Θ has two connected components which are
the first two graphs depicted in Figure 4. If ac � ca, then c−1ac = b or ab. Without
loss of generality, assume c−1ac = b. Then Θ is the third graph depicted in Figure 4.
Therefore, Θ admits a nowhere-zero 3-flow for either ac = ca or ac � ca.
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FIGURE 4. The graph Θ.

FIGURE 5. Cay(G/N, Y/N) and one of its subgraphs.

Now we have proved that both Σ and Θ admit a nowhere-zero 3-flow. Since Γ is the
edge-disjoint union of Σ and Θ, we see that Γ admits a nowhere-zero 3-flow.

Subcase 4.3: X = {a, c, z, x, x−1} where z � N and Nc = Nz. Since G = 〈X〉 and Nc =
Nz, neither c nor z is of order 3. Set Y = {c, z, x, x−1}. Then N ∩ Y = ∅. It is straight-
forward to check that the quotient graph Cay(G/N, Y/N) of Cay(G, Y) induced by N
is isomorphic to the first graph depicted in Figure 5. Note that Cay(G/N, Y/N) has a
cubic bipartite spanning subgraph which is isomorphic to the second graph depicted in
Figure 5. Therefore, Cay(G, Y) has a cubic bipartite spanning subgraph which is also
a cubic bipartite spanning subgraph of Γ. By Lemma 2.2, Γ admits a nowhere-zero
3-flow. �

LEMMA 3.3. If there is a minimal normal subgroup N of G of order 8, then Γ admits
a nowhere-zero 3-flow.

PROOF. Assume that G has a minimal normal subgroup N of order 8. Then N is an
elementary abelian 2-group. Moreover, N is a Sylow 2-subgroup of G and a maximal
group of G. Since N is normal in G, every involution of G is contained in N. Since
Γ = Cay(G, X) is of valency 5, X contains an odd number of involutions. Let a be
an involution contained in X, then a ∈ N. Since G = 〈X〉, there exists x ∈ X \ N. It is
obvious that G = 〈N, x〉 = N〈x〉. Thus, N ∩ 〈x〉 is normal in G. Since N is a minimal
normal subgroup of G, we have N ∩ 〈x〉 = {1}. Therefore, x is of order p. Moreover,
the orbit of every nonidentity element under the conjugate action of 〈x〉 on N is of
length p and generates N. Since N contains exactly 7 nonidentity elements, p = 7. It
is straightforward to check that N = 〈a〉 × 〈x−1ax〉 × 〈x−2ax2〉 and x−3ax3 = ax−2ax2 or
x−3ax3 = ax−1ax. If x−3ax3 = ax−1ax, then x3ax−3 = ax2ax−2. Therefore, without loss
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FIGURE 6. The graph Σ1.

of generality, we assume x−3ax3 = ax−2ax2 (as we can replace x by x−1). Set x−1ax = b
and x−1bx = c. Then N = 〈a〉 × 〈b〉 × 〈c〉 and x−1cx = ac.

Case 1: X contains three involutions. Set Y = X \ {x, x−1}. Then Y consists of the three
involutions of X. In particular, Y is a subset of N. If N = 〈Y〉, then every connected
component of the Cayley graph Cay(G, Y) is isomorphic to the cube. Therefore,
Cay(G, Y) is a cubic bipartite spanning subgraph of Γ. By Lemma 2.2, Γ admits a
nowhere-zero 3-flow.

In what follows, we assume N � 〈Y〉 so that 〈Y〉 is of order 4.
If x−1Yx ∩ Y � ∅, then there exists y ∈ Y such that x−1yx ∈ Y . Since 〈Y〉 is of order

4, Y = {y, x−1yx, yx−1yx}. Without loss of generality, let y = a. Then Y = {a, b, ab}. Let
Σ1 be the subgraph of the Cayley graph Cay(G, {a, x, x−1}) depicted in Figure 6. Then
Σ1 can be contracted to a cubic bipartite graph and therefore admits a nowhere-zero
3-flow. It is straightforward to check that every connected component of Γ − E(Σ1) is
either a 4-cycle or a graph obtained from the complete graph of order 4 by removing
an edge. Therefore, Γ − E(Σ1) admits a nowhere-zero 3-flow and so does Γ.

If x−1Yx ∩ Y = ∅, then x−2Yx2 ∩ Y � ∅. Therefore, there exists y ∈ Y such that Y =
{y, x−2yx2, yx−2yx2}. Without loss of generality, let y = a. Then Y = {a, c, ac}. Note that
the subgraph Σ2 of Cay(G, {a, x, x−1}) depicted in Figure 7 can be contracted to a cubic
bipartite graph. Note also that every connected component of Γ − E(Σ1) is either a
4-cycle or a graph obtained from the complete graph of order 4 by removing an edge.
Therefore, Γ admits a nowhere-zero 3-flow.

Case 2: X contains a unique involution. Set X = {a, x, x−1, y, y−1} where y is not an
involution. As for x, we see that y is of order 7 and G = 〈a, y〉. Since G =

⋃6
i=0 Nxi and

N ∩ Ny = ∅, either (Nx ∪ Nx2 ∪ Nx3) ∩ Ny � ∅ or (Nx4 ∪ Nx5 ∪ Nx6) ∩ Ny � ∅. With-
out loss of generality, assume (Nx ∪ Nx2 ∪ Nx3) ∩ Ny � ∅. Then Ny = Nx, Nx2 or Nx3.
Since Nx−1 = Ny2 if Ny = Nx3, the case Ny = Nx3 reduces to the case Ny = Nx2 by
replacing the pair of elements (x−1, y) by (y, x). Therefore, it suffices to consider the
two cases Ny = Nx and Ny = Nx2. Now assume Ny = Nx or Nx2. Let Λ be the graph
obtained from the Cayley graph Cay(G, {x, x−1, y, y−1) by removing all the edges in
{{h, hx} : h ∈ N ∪ Nx2 ∪ Nx4 ∪ Nx6}. Then the quotient graph ΛN of Λ induced by N is
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FIGURE 7. The graph Σ2.

a

1

x6

x6a

b

ab

abc

bc

x6ab

x6b

c

ac

xc xac

xaxx6bc

x6abc

xbc xabc

x6c

x6ac

xabxb

FIGURE 8. ΛN and one connected component of Γ − E(Λ).

isomorphic to the first or second graph in Figure 8 according as Ny = Nx or Ny = Nx2.
Since ΛN can be contracted to a cubic bipartite graph, so can Λ. Therefore, Λ admits a
nowhere-zero 3-flow. It is straightforward to check that every component of Γ − E(Λ) is
either the third graph depicted in Figure 8 or an 8-cycle. Since the third graph depicted
in Figure 8 can be contracted to a cubic bipartite graph, we conclude that Γ − E(Λ)
admits a nowhere-zero 3-flow. It follows that Γ admits a nowhere-zero 3-flow. �
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