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Abstract
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions
K/Q with Galois group isomorphic to A4, S4, A5, and dihedral groups of order 2pn for certain prime powers pn. In
particular, when K/Q is a Galois extension with Galois group G isomorphic to A4, S4 or A5, we give necessary and
sufficient conditions for the ring of integers OK to be free over its associated order in the rational group algebra
Q[G].

1. Introduction

Let K/F be a finite Galois extension of number fields or p-adic fields and let G = Gal(K/F). The clas-
sical normal basis theorem says that K is free of rank 1 as a module over the group algebra F[G]. A
much more difficult problem is that of determining whether the ring of integers OK is free of rank 1
over an appropriate OF-order in F[G]. The natural choice of such an order is the so-called associated
order

AK/F := {λ ∈ F[G] : λOK ⊆OK},

since this is the only OF-order in F[G] over which OK can possibly be free.
It is clear that the group ring OF[G] is contained in AK/F. In fact, AK/F =OF[G] if and only if K/F

is at most tamely ramified. It is in this setting that by far the most progress has been made and we
say that K/F has a normal integral basis if OK is free over OF[G]. The celebrated Hilbert-Speiser
theorem says that if K/Q is a tamely ramified finite abelian extension, then it has a normal integral
basis. Leopoldt removed the assumption on ramification to obtain the following generalisation of this
result.

Theorem 1.1. [27] Let K/Q be a finite abelian extension. Then, OK is free over AK/Q.

Leopoldt also specified a generator and the associated order; Lettl [28] gave a simplified and more
explicit proof of the same result. We also have the following result of Bergé.

Theorem 1.2. [2] Let p be a prime and let K/Q be a dihedral extension of degree 2p. Then, OK is free
over AK/Q.

Now let K/Q be a Galois extension with Gal(K/Q) ∼= Q8, the quaternion group of order 8. Suppose
that K/Q is tamely ramified. Martinet [31] gave three examples of such extensions, one with and two
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without normal integral bases. Moreover, Fröhlich [14] showed that both possibilities occur infinitely
often. By contrast, in the case that K/Q is wildly ramified, we have the following result of Martinet.

Theorem 1.3. [32] Let K/Q be a wildly ramified Galois extension with Gal(K/Q) ∼= Q8. Then, OK is
free over AK/Q.

In the present article, we prove other Leopoldt-type theorems for non-abelian extensions of Q. An
important notion is that of local freeness, which we now review.

For the rest of the introduction, let K/Q be a finite Galois extension and let G = Gal(K/Q). We
recall that OK is said to be locally free over AK/Q at a rational prime p if OK,p := Zp ⊗Z OK is free as
an AK/Q,p := Zp ⊗Z AK/Q-module. We say that OK is locally free over AK/Q if this holds for all rational
primes p. Of course, this condition is necessary for OK to be free over AK/Q.

If K/Q is tamely ramified, then OK is locally free over AK/Q =Z[G] (see Theorem 3.14). By contrast,
if K/Q is wildly ramified then Z[G] is strictly contained in AK/Q and OK is not necessarily locally free
over AK/Q. For instance, Bergé [4] gave examples of wildly ramified dihedral extensions of Q without
the local freeness property (see Theorem 3.18 for a complete classification).

Now let N/M be a finite Galois extension of p-adic fields. One can consider the analogous problem
of whether ON is free over AN/M. Indeed, this is the case when N/M is unramified, tamely ramified
or weakly ramified, or M =Qp and N/Qp is abelian or dihedral of order 2� for some prime � (see
Section 3.1 for a detailed overview of such results). However, freeness in this situation does not relate
to the aforementioned notion of local freeness in the way one might expect.

Definition 1.4. A rational prime p is said to be a decomposition obstruction for K if OKP
is free over

AKP/Qp for one (indeed, every) prime P of K above p, but OK,p is not free over AK/Q,p (here KP denotes
the completion of K at P).

Note that decomposition obstructions do exist. This is an important obstacle that can arise when the
decomposition group is a proper non-trivial subgroup of the Galois group, and it needs to be overcome
in the proofs of the main results of the present article. In Sections 6 and 7, we will present a detailed
algebraic interpretation of such a property: we will start from the results of Bergé [4] on the induction
of associated orders and then prove new results that will be crucial for our purpose.

We now return to the problem of whether OK is free over AK/Q. If K/Q is (at most) tamely ramified,
then the problem of determining whether it has a normal integral basis is well understood, thanks to
Taylor’s proof of Fröhlich’s conjecture [39]: he determined the class of OK in the so-called locally free
class group Cl(Z[G]) (see Definition 2.4) in terms of Artin root numbers of the irreducible symplectic
characters of G (see [15, I] for an overview). In particular, if G has no irreducible symplectic characters
(this is the case, for instance, if G is abelian, dihedral or of odd order), then K/Q has a normal integral
basis.

In the present article, we consider the question of whether OK is free over AK/Q in certain cases where
the locally free class group Cl(Z[G]) is trivial. In this situation, it is also the case that Cl(AK/Q) is trivial
and the question reduces to whether OK is locally free over AK/Q. A result of Endô and Hironaka [12]
shows that if G is non-abelian and non-dihedral then Cl(Z[G]) is trivial if and only if G is isomorphic
to A4, S4 or A5.

In the case that G is dihedral of order 2pn for a prime number p and a positive integer n, Keating
[26] gave sufficient conditions for Cl(Z[G]) to be trivial and Bergé [4] gave necessary and sufficient
conditions for OK to be locally free over AK/Q. Despite being a straightforward application of these
existing results, the following result does not appear to have been known until now.

Theorem 1.5. Let n be a positive integer and let p ≥ 5 be a regular prime number such that the class
number of Q(ζpn )+ is 1. Let K/Q be a dihedral extension of degree 2pn. Then, OK is free over AK/Q if
and only if the ramification index of p in K/Q either is coprime to p or is a power of p.
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Here Q(ζpn )+ denotes the maximal totally real subfield Q(ζpn ). Using the class number computations
of Miller [33], we obtain the following corollary.

Corollary 1.6. Let K/Q be a dihedral extension of degree 2pn where (p, n) is (5, 2), (5, 3), (7, 2) or
(11, 2). Then, OK is free over AK/Q if and only if the ramification index of p in K/Q either is coprime to
p or is a power of p.

Similar but more complicated results hold when p = 2 or 3 (see Theorem 5.2 for the full statement
and proof).

The main results of the present article will be necessary and sufficient conditions for OK to be free
over AK/Q when G is isomorphic to A4, S4 or A5. The discussion above shows that the main work is in
determining when OK is locally free over AK/Q. A key ingredient is the notion of hybrid p-adic group
rings, introduced by Johnston and Nickel [21]; using this tool, it is straightforward to show that OK is
locally free over AK/Q at p = 3 when G is isomorphic to A4 or S4.

The statements of the following theorems will depend on certain primes of K having given decompo-
sition or inertia subgroups up to conjugation. We remark that such properties will not depend on which
prime of K we choose above a given rational prime. For example, saying that a prime p is tamely rami-
fied will mean that some, and hence every, prime of K above p is (at most) tamely ramified in K/Q. We
shall henceforth abbreviate ‘at most tamely ramified’ to ‘tamely ramified’. We will say that a rational
prime p has full decomposition group if there is only one prime in K above p, with decomposition group
equal to Gal(K/Q).

The following result is Theorem 8.1.

Theorem 1.7. Let K/Q be a Galois extension with Gal(K/Q) ∼= A4. Then, OK is free over AK/Q if and
only if 2 is tamely ramified or has full decomposition group.

The proof of the ‘if’ direction of this result involves the aforementioned tools. To prove the converse,
we show that if 2 is wildly ramified and has decomposition group of order 2 or 4 then OK is not locally
free over AK/Q at p = 2. This reduces to showing that the lattice IndG

DAKP/Q2 := Z2[G] ⊗Z2[D] AKP/Q2 is
not free over AK/Q,2, where P is a fixed prime above 2 and D is its decomposition group. The main
theorem used here is Hattori’s result [17] that commutative orders are ‘clean’ (see Section 6.2).

The following two results are Theorem 8.3 and Theorem 8.6, respectively.

Theorem 1.8. Let K/Q be a Galois extension with G := Gal(K/Q) ∼= S4. Then, OK is free over AK/Q if
and only if one of the following conditions on K/Q holds:

(i) 2 is tamely ramified;
(ii) 2 has decomposition group equal to the unique subgroup of G of order 12;
(iii) 2 is wildly and weakly ramified and has full decomposition group; or
(iv) 2 is wildly and weakly ramified, has decomposition group of order 8 in G, and has inertia

subgroup equal to the unique normal subgroup of order 4 in G.

Theorem 1.9. Let K/Q be a Galois extension with Gal(K/Q) ∼= A5. Then, OK is free over AK/Q if and
only if all three of the following conditions on K/Q hold:

(i) 2 is tamely ramified;
(ii) 3 is tamely ramified or is weakly ramified with ramification index 6; and
(iii) 5 is tamely ramified or is weakly ramified with ramification index 10.

In contrast to the proof of Theorem 1.7, the proofs of Theorems 1.8 and 1.9 use the (updated) imple-
mentations in Magma [1] of the algorithms developed by Bley and Johnston [5] and by Hofmann and
Johnston [18].
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Notation and conventions. All rings are assumed to have an identity element, and all modules are
assumed to be left modules unless otherwise stated. We denote certain finite groups as follows:

• D2n is the dihedral group of order 2n;
• Q8 is the quaternion group of order 8;
• An is the alternating group on n letters;
• Sn is the symmetric group on n letters.

Let K be a number field. By a prime of K, we mean a non-zero prime ideal of OK . If P be a prime
of K, we let KP denote the completion of K at P. We say that a prime is tamely ramified if it is at most
tamely ramified.

Let H be a subgroup of a finite group G. We denote by nclG(H) the normal closure of H in G, defined
as the smallest normal subgroup of G containing H or, equivalently, the subgroup generated by all the
conjugates of H in G.

For a positive integer n, we let ζn denote a primitive nth root of unity.

2. Associated orders and local freeness
2.1. Lattices and orders

For further background, we refer the reader to [35] or [9]. Let R be a Dedekind domain with field
of fractions F. An R-lattice M is a finitely generated torsion-free R-module, or equivalently, a finitely
generated projective R-module. Note that any R-submodule of an R-lattice is again an R-lattice. For any
finite-dimensional F-vector space V , an R-lattice in V is a finitely generated R-submodule M in V . We
define a F-vector subspace of V by

FM := {α1m1 + α2m2 + · · · + αrmr | r ∈Z≥0, αi ∈ F, mi ∈ M}
and say that M is a full R-lattice in V if FM = V . We may identify FM with F ⊗R M.

Let A be a finite-dimensional F-algebra. An R-order in A is a subring � of A (so in particular has the
same unity element as A) such that � is a full R-lattice in A. A �-lattice is a �-module which is also an
R-lattice. For �-lattices M and N, a homomorphism of �-modules f : M → N is called a homomorphism
of �-lattices.

The following well-known lemma follows from [9, Exercise 23.2].

Lemma 2.1. Let � ⊆ � be two R-orders in A. Let M and N be �-lattices and let f : M → N be a
homomorphism of �-lattices. Then, f is a homomorphism of �-lattices.

2.2. Associated orders

Let � be an R-order in a finite-dimensional F-algebra A. Let M be a full R-lattice in a free A-module of
rank 1 (thus FM ∼= A as A-modules). The associated order of M is defined to be

A(A, M) = {λ ∈ A : λM ⊆ M}.
Note that A(A, M) is an R-order (see [35, §8]). In particular, it is the largest order � over which M has a
structure of �-module. The following well-known result says that A(A, M) is the only R-order in A over
which M can possibly be free.

Proposition 2.2. Let � be an R-order in A and let M be a free �-lattice of rank 1. Then, FM is a free
A-module of rank 1 and � =A(A, M).
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Proof. By hypothesis there exists α ∈ M such that M = �α is a free �-module. Thus, FM = Aα

is free over A. Let x ∈A(A, M). Then, xα ∈ M = �α, so xα = yα for some y ∈ �. Since FM is freely
generated by α, we must have x = y. Hence, A(A, M) ⊆ �. The reverse inclusion is trivial and therefore
� =A(A, M).

Remark 2.3. Suppose � is an R-order in A. Then, clearly � ⊆A(A, �). Moreover, A(A, �)1A ⊆ � and
so A(A, �) ⊆ �. Therefore, A(A, �) = �.

2.3. Completion and local freeness

Let p be any maximal ideal of R. Let Fp denote the completion of F with respect to a valuation defined
by p and let Rp be the corresponding valuation ring. For any R-module M we write Mp for Rp ⊗R M and
Vp = Fp ⊗F V for any F-vector space V . These two notations are consistent as the map λ ⊗OF v 	→ λ ⊗F v
(v ∈ V , λ ∈OFp) is an isomorphism (see [16, p. 93]).

Let � be an R-order and let M be a �-lattice in some A-module V . Then, �p is an Rp-order in Ap and
Mp is a �p-lattice in Vp. We say that M is locally free over � if Mp is free over �p for every p.

Let G be a finite group and let M be a full R[G]-lattice in a free A-module of rank 1. Then, R[G] ⊆
A(F[G], M) and Rp[G] ⊆A(Fp[G], Mp) ∼=A(F[G], M)p. Moreover, M is locally free over A(F[G], M) if
Mp is free over A(Fp[G], Mp) for every p.

2.4. Associated orders of rings of integers and decomposition obstructions

Let K/F be a finite Galois extension of number fields and let G = Gal(K/F). We consider the behaviour
of the associated order AK/F := A(F[G], OK) with respect to localisation and induction.

Let p be a maximal ideal of OF. Then, we have decompositions

Kp := Fp ⊗F K ∼=
∏
P

′ |p

K
P

′ and OK,p := OFp ⊗OF OK
∼=
∏
P

′ |p

OK
P

′ ,

where {P′ | p} consists of the primes of OK above p (see [16, p. 109]). Fix a prime P above p and let D
be its decomposition group in G. Then, as G acts transitively on {P′ | p} we have

Kp
∼=
∏

s∈G/D

sKP and OK,p
∼=
∏

s∈G/D

sOKP
,

where the products run over a system of representatives of the left cosets G/D. Hence,
OK,p

∼= IndG
DOKP

:= OFp[G] ⊗OFp [D] OKP
,

and
AK/F,p =A(F[G], OK)p ∼=A(Fp[G], IndG

DOKP
),

where the last isomorphism follows from [9, Exercise 24.2], for instance. Thus, OK is locally free over
AK/F at p if and only if IndG

DOKP
is free over A(Fp[G], IndG

DOKP
).

We recall from the introduction that it may be the case that we encounter a prime p that is a decom-
position obstruction for K, i.e. such that OKP

is free over AKP/Fp but OK is not locally free over AK/F at p
(indeed, Definition 1.4 can be easily generalised to base fields other than Q). In Section 6, we will con-
sider the relationship between A(Fp[G], IndG

DOKP
) and IndG

DAKP/Fp , as well as conditions under which
the implication ‘if OKP

is free over AKP/Fp then OK is locally free over AK/F at p’ holds.

Notation. We henceforth consider the isomorphism AK/F,p
∼=A(Fp[G], OK,p) as an identification. In

particular, we consider AK/F,p as an OF,p-order in Fp[G].
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2.5. Reduction to the study of local freeness

We define locally free class groups. Background material on locally free class groups, including a
discussion of equivalent definitions, can be found in [10, §49].

Definition 2.4. Let F be a number field with ring of integers OF and let � be an OF-order in a finite-
dimensional semisimple F-algebra A. Let P(�) be the free abelian group generated by symbols [X], one
for each isomorphism class of locally free �-lattices X, modulo relations [X] = [X1] + [X2] whenever
X ∼= X1 ⊕ X2. We define the locally free class group Cl(�) of � to be the subgroup of P(�) consisting of
all expressions [X] − [Y], with X, Y locally free and FX ∼= FY . If X is a �-lattice such that FX ∼= A, we
will refer to [X] − [�] as the class of X in Cl(�).

Remark 2.5. By [9, Corollary (31.7)], each element of Cl(�) can be written in the form [M] − [�]
for some locally free �-lattice M of rank 1. As a consequence, the Jordan-Zassenhaus Theorem [9,
Theorem (24.1)] implies that the locally free class group Cl(�) is always finite.

The following proposition underpins the proofs of all the new theorems stated in the introduction.

Proposition 2.6. Let G be a finite group such that Cl(Z[G]) is trivial and let K/Q be a Galois extension
with Gal(K/Q) ∼= G. Then, OK is free over AK/Q if and only if OK is locally free over AK/Q.

Proof. One implication is trivial. By [10, Theorem (49.25)], the inclusion Z[G] ⊆AK/Q induces a sur-
jection Cl(Z[G]) �Cl(AK/Q), and so Cl(AK/Q) is also trivial. Moreover, by [12] the triviality of Cl(Z[G])
implies that G must be abelian, dihedral, or isomorphic to A4, S4 or A5 (see also [10, Theorem (50.29)]).
In each of these cases, Q[G] is isomorphic to a finite direct product of matrix rings over number fields.
Hence by [10, Proposition (51.2)] Q[G] satisfies the Eichler condition (see [10, Definitions (45.4) or
§51A]). Thus the Jacobinski cancellation theorem [19] (see also [10, Theorem (51.24)]) implies that
AK/Q has the locally free cancellation property. The non-trivial implication now follows easily.

Corollary 2.7. Let K/Q be a Galois extension with Gal(K/Q) ∼= A4, S4 or A5. Then, OK is free overAK/Q

if and only if OK is locally free over AK/Q.

Proof. Let G = Gal(K/Q). In each case Cl(Z[G]) is trivial, as shown in [37].

3. Review of results relating to local freeness in field extensions
3.1. Freeness results for Galois extensions of p-adic fields

Many of the results and definitions of this subsection also hold for local fields of positive characteristic,
but for simplicity we restrict to the case of p-adic fields. We fix a prime number p.

Theorem 3.1. Let K/F be a tamely ramified finite Galois extension of p-adic fields and let G =
Gal(K/F). Then, OK is free over AK/F =OF[G].

Remark 3.2. Theorem 3.1 is usually attributed to Emmy Noether [34]. In fact, as noted in [8], she only
stated and proved the result in the case that p � |G|. Complete proofs can be found in [15], [25] and [8].

Theorem 3.3. [29] Let K/F be an extension of p-adic fields such that K/Qp is a finite abelian extension.
Then, OK is free over AK/F.

Theorem 3.4. [2] Let K/Qp be a Galois extension with Gal(K/Qp) ∼= D2�, where � is a prime number.
Then, OK is free over AK/Qp .
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Theorem 3.5. [32] Let K/Qp be a Galois extension with Gal(K/Qp) ∼= Q8. Then, OK is free over
AK/Qp .

Remark 3.6. Theorem 3.5 is not explicitly stated in [32]. However, the proof of Theorem 1.3 given in
loc. cit. also works essentially unchanged in the setting of Theorem 3.5.

Theorem 3.7. [20] Let p, n and r be positive integers such that p is an odd prime, n divides p − 1 and r
is a primitive nth root modulo p. Let G be the metacyclic group with the following structure:

G = 〈x, y : xp = 1, yn = 1, yxy−1 = xr〉 ∼= Cp � Cn. (3.1)

Let K/Qp be a Galois extension with Gal(K/Qp) ∼= G. Then, OK is free over AK/Qp .

Remark 3.8. In the special case n = 2, the group G of (3.1) is dihedral of order 2p.

Let K/F be a Galois extension of p-adic fields and let G = Gal(K/F). We recall that for an integer
t ≥ −1 the tth ramification group is defined to be

Gt := {σ ∈ G : vK(σ (x) − x) ≥ t + 1 ∀x ∈OK},
where vK is the normalised valuation on K (i.e. with image Z). When it is not obvious which extension
we are referring to we will use the notation ‘Gt(K/F)’ or similar. Thus, K/F is unramified if and only
if G0 is trivial and is tamely ramified if and only if G1 is trivial. We say that the extension is weakly
ramified if G2 is trivial.

Theorem 3.9. [23] Let K/F be a weakly ramified finite Galois extension of p-adic fields and let G =
Gal(K/F). Then, OK is free over AK/F. Moreover, if K/F is both wildly and weakly ramified then AK/F =
OF[G][π−1

F TrG0 ] (i.e. the OF[G]-algebra generated by π−1
F TrG0 , which is an OF-order), where πF is a

uniformiser of OF and TrG0 =∑
γ∈G0

γ is the sum of the elements of the inertia group G0.

For a subgroup H of G define TrH =∑
h∈H h ∈ F[G] and eH = 1

|H|TrH ∈ F[G]. Note that eH is an idem-
potent. We say that K/F is almost-maximally ramified if eH ∈AK/F for every subgroup H of G such that
Gt+1 ⊆ H ⊆ Gt for some t ≥ 1.

Theorem 3.10 ([4, Proposition 7]). Let K/F be a finite dihedral extension of p-adic fields such that
F/Qp is unramified. Let G = Gal(K/F). Then, OK is projective over AK/F if and only if OK is free over
AK/F if and only if either

(i) K/F is almost-maximally ramified, in which case AK/F =OF[G][{eGt}t≥1], or
(ii) K/F is not almost-maximally ramified, and the inertia subgroup G0 is dihedral of order 2p, in

which case AK/F =OF[G][2eG0 ].

Remark 3.11. Throughout the article, and in particular in Theorem 3.10, the group C2 × C2 is
considered to be dihedral of order 2 · 2.

Remark 3.12. Let H be a subgroup of G and let r be a positive integer. We now show how to determine
whether 1

r
TrH ∈AK/F. For example, when r = |H| this can be used to check for almost-maximal ramifi-

cation. Let M be the subfield of K fixed by H. We denote by DK/M the different of the extension K/M (see
[38, III§3]) and by vp(x) the p-adic valuation of an integer x (thus, vp is the restriction of vQp to Z).
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1

r
TrH ∈AK/F ⇐⇒ 1

r
TrK/M(OK) ⊆OM

⇐⇒ TrK/M(OK) ⊆ rOM

⇐⇒OK ⊆ rOMD
−1
K/M by [Ser79, III Proposition 7]

⇐⇒DK/M ⊆ rOK

⇐⇒ vK(DK/M) ≥ e(K/Qp)vp(r)

⇐⇒
∞∑

i=0

(|Gi(K/M)| − 1) ≥ e(K/Qp)vp(r) by [Ser79, IV Proposition 4].

Remark 3.13. From Theorem 3.4, Theorem 3.10, and Remark 3.12 (also see [3, Corollaire to
Proposition 3]), we deduce that a dihedral extension K/Qp of degree 2p either is almost-maximally
ramified or is weakly and totally ramified.

3.2. Local freeness results for Galois extensions of number fields

Let K/F be a finite Galois extension of number fields. If OK is free over AF/K , then it is clear that
OK is locally free over AF/K . In particular, the analogues of Theorems 1.1, 1.2 and 1.3 all hold, with
‘locally free’ in place of ‘free’. Theorems 3.15 and 3.17 below are generalisations of the first two of
these analogues.

Theorem 3.14. Let K/F be a finite Galois extension of number fields. Let G = Gal(K/F) and let p be a
prime of F that is tamely ramified in K/F. Then, OK,p is free over AK/F,p =OFp[G].

Theorem 3.15. [29] Let K/F be an extension of number fields such that K/Q is a finite abelian
extension. Then, OK is locally free over AK/F.

Remark 3.16. Theorems 3.14 and 3.15 are well-known consequences of Theorems 3.1 and 3.3,
respectively. For a proof see Remark 6.3 and Corollary 6.6, for instance.

Theorem 3.17. [20] Let K/Q be a Galois extension such that Gal(K/Q) is metacyclic of type (3.1).
Then, OK is locally free over AK/Q.

Theorem 3.18 ([4, Théorème]). Let K/Q be a finite dihedral extension and let G = Gal(K/Q). Let p be
an odd prime number that is wildly ramified in K/Q and let N be the unique cyclic subgroup of G of
index 2. Then, OK,p is projective over AK/Q,p if and only if OK,p is free over AK/Q,p if and only if one of the
following conditions holds:

(i) p is almost-maximally ramified in K/Q, in which case

AK/Q,p =Zp[G][{eGt}t≥1], or

(ii) p is not almost-maximally ramified, |G0| = 2p and [G : G0] | 2, in which case

AK/Q,p =Zp[G][eG0 ].

Remark 3.19. In fact, Theorem 3.18 is [4, Théorème] specialised to the case that p is odd and the base
field is Q; the more general statement is somewhat more complicated.
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4. Hybrid group rings and applications to local freeness
4.1. Hybrid group rings

Let R be a discrete valuation ring with fraction field F and let G be a finite group. Let M be a full
R[G]-lattice in F[G]. Note that R[G] ⊆A(F[G], M).

For a normal subgroup N of G define eN = 1
|N|
∑

n∈N n ∈ F[G] to be the central idempotent associated
with N.

Proposition 4.1. If N is a normal subgroup of G such that |N| ∈ R×, then

(i) R[G] = eNR[G] × (1 − eN)R[G] ∼= R[G/N] × (1 − eN)R[G],
(ii) eNM has the structure of a eNR[G] ∼= R[G/N]-lattice, and
(iii) eNA(F[G], M) =A(F[G], M) ∩ eNF[G] =A(eNF[G], eNM) ∼=A(F[G/N], eNM).

Proof. Since |N| ∈ R× we have eN ∈ R[G]. Moreover, it is straightforward to show that eNR[G] ∼=
R[G/N]. Thus, we have established (i) and (ii), and it remains to prove (iii).

The last isomorphism of (iii) is immediate from (ii). We now prove the first equality,
that is, eNA(F[G], M) =A(F[G], M) ∩ eNF[G]. Since eN ∈ R[G] ⊆A(F[G], M), we easily have that
eNA(F[G], M) ⊆A(F[G], M) ∩ eNF[G]. The other containment follows from the fact that e2

N = eN ;
hence, any element in A(F[G], M) ∩ eNF[G], with the harmless multiplication by eN , can be written
as an element in eNA(F[G], M).

We now prove that A(F[G], M) ∩ eNF[G] =A(eNF[G], eNM). Consider eNx ∈A(F[G], M) ∩ eNF[G]
for a certain x ∈ F[G]; we have to prove that eNx preserves eNM. Since eNM ⊆ M and eNx ∈A(F[G], M),
we have that eNxeNM ⊆ M. Hence, eNxeNM = eNeNxeNM ⊆ eNM. Conversely, let us consider an element
eNx ∈A(eNF[G], eNM), thus such that eNxeNM ⊆ eNM. We must prove that eNx ∈A(F[G], M), which is
automatic since eNxM = eNeNxM = eNxeNM ⊆ eNM ⊆ M.

We now recall the notion of hybrid group ring introduced in [21, §2] and further developed in
[22, §2].

Definition 4.2. Let N be a normal subgroup of G. We say that R[G] is N-hybrid if |N| ∈ R× and (1 −
eN)R[G] is a maximal R-order in (1 − eN)F[G].

Remark 4.3. The group ring R[G] is a maximal R-order if and only if |G| ∈ R× if and only if R[G] is
G-hybrid, where the first equivalence is given by [9, Proposition (27.1)]. In this situation, A(F[G], M) =
R[G], and thus, M is free over A(F[G], M) by [35, Theorem (18.10)].

Example 4.4. Let G = A4 or S4 and let N be its unique normal subgroup of order 4. Then, Z3[G] is
N-hybrid as shown in [21, Examples 2.16 and 2.18]. Indeed, we have

Z3[A4] ∼=Z3[C3] × M3×3(Z3) and Z3[S4] ∼=Z3[S3] × M3×3(Z3) × M3×3(Z3),

where M3×3(Zp) is a maximal Zp-order by [35, Theorem (8.7)].

Example 4.5. Let n be an odd positive integer and let Nn be the unique subgroup of index 2 in D2n. Then,
Z2[D2n] is Nn-hybrid as shown in [21, Example 2.14].

Proposition 4.6. Suppose R[G] is N-hybrid. Then,

A(F[G], M) = eNA(F[G], M) × (1 − eN)R[G] ∼=A(F[G/N], eNM) × (1 − eN)R[G].

Moreover, M is free over A(F[G], M) if and only if eNM is free over A(F[G/N], eNM).
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Proof. The first claim follows from Proposition 4.1, Definition 4.2, and the fact that R[G] ⊆
A(F[G], M). Since (1 − eN)R[G] is a maximal R-order, (1 − eN)M is free over (1 − eN)R[G] by [35,
Theorem (18.10)]. The second claim now follows from the decomposition M ∼= eNM ⊕ (1 − eN)M.

4.2. Applications to local freeness for extensions of number fields

Proposition 4.7. Let K/F be a finite Galois extension of number fields and let G = Gal(K/F). Let p be
a rational prime and let p be a prime of F above p. Let N be a normal subgroup of G such that p � |N|
and let M be the subfield of K fixed by N. Then, we have an identification eNOK,p =OM,p. Moreover, via
this identification, the structure of eNOK,p as an eNOFp[G]-module coincides with the structure of OM,p

as an OFp[G/N]-module under the canonical identification G/N ∼= Gal(M/F). In particular,

eNA(Fp[G], OK,p) =A(Fp[G], OK,p) ∩ eNF[G] ∼=A(Fp[G/N], OM,p).

Now further suppose that OFp[G] is N-hybrid. Then,

AK/F,p
∼=AM/F,p × (1 − eN)OFp[G],

and OK,p is free over AK/F,p if and only if OM,p is free over AM/F,p.

Proof. The claims regarding the identifications are clear. The remaining claims are then specialisa-
tions of Propositions 4.1 and 4.6.

Corollary 4.8. Let K/Q be a finite Galois extension and let G = Gal(K/Q). Let N be a normal subgroup
of G and such that G/N is abelian or metacyclic of type (3.1). Let p be a rational prime. If Zp[G] is
N-hybrid, then OK,p is free over AK/Q,p.

Proof. Let M be the subfield of K fixed by N. Then, OM,p is free over AM/Q,p by Theorem 1.1 or
Theorem 3.17. The result now follows from Proposition 4.7.

Remark 4.9. Jaulent [20] developed similar arguments to Corollary 4.8, but restricted to the case that
G is metacyclic of type (3.1).

4.3. Preliminary results on A4 and S4-extensions of Q

Proposition 4.10. Let K/Q be a Galois extension with Gal(K/Q) ∼= A4 or S4. Then, OK is free over AK/Q

if and only if OK,2 is free over AK/Q,2.

Proof. By Corollary 2.7, it suffices to show that OK,p is free over AK/Q,p for each rational prime p ≥ 3.
For p ≥ 5, this follows from Theorem 3.14. Let G = Gal(K/Q) and let N be its unique normal subgroup
of order 4. By Example 4.4, the group ring Z3[G] is N-hybrid. Moreover, G/N ∼= C3 or S3 (note that
S3

∼= D6 is metacyclic of type (3.1)). Thus by Corollary 4.8, we have that OK,3 is free over AK/Q,3.

Lemma 4.11. There is a unique Galois extension L/Q2 with Gal(L/Q2) ∼= A4. Moreover, this extension
is wildly and weakly ramified, and the inertia subgroup is equal to the unique (normal) subgroup of
order 4.

Proof. This can easily be checked by, for instance, using the database of p-adic fields [24] (which is
now accessible via the database [30]). Indeed, L is the Galois closure of the extension of Q2 generated
by the polynomial x4 + 2x3 + 2x2 + 2.
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Proposition 4.12. Let K/Q be a Galois extension with Gal(K/Q) ∼= A4. If 2 either is tamely ramified in
K/Q or has full decomposition group in Gal(K/Q), then OK is free over AK/Q.

Proof. By Proposition 4.10, it suffices to show that OK,2 is free over AK/Q,2. If 2 is tamely ramified
in K/Q, then this follows from Theorem 3.14. Now suppose that 2 has full decomposition group in
G := Gal(K/Q). Then, 2 is weakly ramified in K/Q by Lemma 4.11. Let P be the unique prime of K
above 2. Then,

OK,2
∼= IndG

GOKP
=OKP

and AK/Q,2
∼=AKP/Q2 ,

so the result now follows from Theorem 3.9.

5. Leopoldt-type theorems for certain dihedral extensions of Q

We first recall the following theorem of Bergé stated in the introduction.

Theorem 5.1. [2] Let p be a prime number and let K/Q be a dihedral extension of degree 2p. Then, OK

is free over AK/Q.

In the following theorem and corollaries, we consider other dihedral extensions of Q. For a positive
integer m, let Q(ζm)+ denote the maximal totally real subfield of the mth cyclotomic field Q(ζm). If m
is odd, then Q(ζ2m) =Q(ζm) and so Q(ζ2m)+ =Q(ζm)+. We recall that we abbreviate ‘at most tamely
ramified’ to ‘tamely ramified’.

Theorem 5.2. Let p be a prime and let n ≥ 2 be an integer. Let K/Q be a dihedral extension of degree
2pn. Suppose that p is a regular prime such that the class number of Q(ζ2pn )+ is 1. Consider the following
assertions:

(i) OK is free over AK/Q;
(ii) OK is locally free over AK/Q at p;
(iii) p tamely ramified or is almost-maximally ramified in the extension K/Q;
(iv) the ramification index of p in K/Q either is coprime to p or is a power of p.

Then, we have the following conclusions:

(i) (i) and (ii) are equivalent;
(ii) if p is odd, then (i), (ii) and (iii) are equivalent;
(iii) if p is odd, then (iv) implies (i), (ii) and (iii);
(iv) if p ≥ 5, then (i), (ii), (iii) and (iv) are equivalent.

Proof. Let G = Gal(K/Q). By [40, Theorem 10.1] the condition on the class number of Q(ζ2pn )+

implies that the class number of Q(ζ2pd )+ is 1 for every d ≤ n. This together with the regularity of p
implies that the locally free class group Cl(Z[G]) is trivial: if p is odd this follows from a special case of
the main result of [26, Theorem 1] (also see [10, (50.28)]), if p = 2 this follows from the results of [13]
(also see [10, Theorem (50.31)] and [9, Example (7.39)]). Therefore, OK is free over AK/Q if and only
if OK is locally free over AK/Q by Proposition 2.6. Note that OK is locally free over AK/Q at � for every
rational prime � �= 2, p by Theorem 3.14. Moreover, if p is odd then Example 4.5 implies that Z2[G] is
N-hybrid where N is the unique subgroup of G of index 2, and so OK is locally free over AK/Q at � = 2
by Corollary 4.8. Thus we have proven claim (a).

Claim (b) now follows from Theorems 3.14 and 3.18 (note that case (ii) of Theorem 3.18 cannot occur
when p is odd and n ≥ 2). Finally, claims (c) and (d) follow from the definition of tame ramification and

https://doi.org/10.1017/S0017089523000460 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000460


12 Fabio Ferri

the characterisation of almost-maximal ramification in dihedral extensions given in [4, Corollaire to
Proposition 6].

Remark 5.3. Let p be a prime and let n be a positive integer. It is well known that p is regular if p < 37.
Moreover, by the results of [33] the class number of Q(ζ2pn )+ is 1 whenever (p, n) is (2, 6), (3, 4), (5, 3),
(7, 2), (11, 2), or the same pairs with a smaller choice of n ≥ 2. Hence, the hypotheses of Theorem 5.2
hold for these values. In particular, we obtain the following corollaries.

Corollary 5.4. Let K/Q be a dihedral extension of degree 2 · 3n where n = 2, 3 or 4. If the ramification
index of 3 in K/Q either is coprime to 3 or is a power of 3 then OK is free over AK/Q.

Corollary 5.5. Let K/Q be a dihedral extension of degree 2pn where (p, n) is (5, 2), (5, 3), (7, 2) or
(11, 2). Then, OK is free over AK/Q if and only if the ramification index of p in K/Q either is coprime to
p or is a power of p.

Remark 5.6. In the proof of Theorem 5.2, we could have used [4, Théorème] to establish local freeness
at � = 2 instead of Example 4.5 and Corollary 4.8.

6. Review of results on induction of lattices and associated orders

In this section, we shall give an exposition of Bergé’s results contained in [4, §I]. We include some of
the proofs for the convenience of the reader. The motivation for this section comes from Section 2.4.

6.1. Associated orders and induction

Let R be a Dedekind domain with field of fractions F. Let H be a subgroup of a finite group G and let
M be an R[H]-lattice such that FM is free of rank 1 over F[H].

We recall that IndG
HM is the induced module R[G] ⊗R[H] M ∼=⊕

s∈G/H sM, where on the right-hand side
we choose a system of representatives in G of the left cosets G/H and the left R[G]-module structure
is given by the relation gs = th for some coset representative t and h ∈ H. We wish to understand the
relationship between A(F[G], IndG

HM) and IndG
HA(F[H], M). Note that these both contain the group ring

R[G].

Proposition 6.1 ([4, §1.3]). We have

A(F[G], IndG
HM) =

⋂
g∈G

gIndG
HA(F[H], M)g−1.

Corollary 6.2. IndG
HA(F[H], M) is a ring if and only if it is equal to A(F[G], IndG

HM).

Proof. If IndG
HA(F[H], M) is a ring, then gIndG

HA(F[H], M)g−1 = IndG
HA(F[H], M) for all g ∈ G

and thus IndG
HA(F[H], M) =A(F[G], IndG

HM) by Proposition 6.1. Conversely, if IndG
HA(F[H], M) =

A(F[G], IndG
HM) then the left-hand side is a ring since the right-hand side is an associated order and

thus a ring.

Remark 6.3. In general, IndG
HA(F[H], M) need not be a ring. However, it is straightforward to deduce

from the above that IndG
HA(F[H], M) is a ring in the following cases:
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(i) there exists a subgroup K ≤ G such that G ∼= H × K,
(ii) H is contained in the centre of G, or
(iii) A(F[H], N) = R[H].

Remark 6.4. Proposition 6.1 implies that A(F[G], IndG
HM) ⊆ IndG

HA(F[H], M). Hence IndG
HA(F[H], M)

is an A(F[G], IndG
HM)-lattice.

Proposition 6.5. If M is free over A(F[H], M), then IndG
HM ∼= IndG

HA(F[H], M) as A(F[G], IndG
HM)-

lattices.

Proof. Since R[H] ⊆A(F[H], M) and M is free (necessarily of rank 1) over A(F[H], M), we
see that M and A(F[H], M) are isomorphic as R[H]-lattices. Extension of scalars gives an isomor-
phism IndG

HM ∼= IndG
HA(F[H], M) of R[G]-lattices. By Lemma 2.1, this is also an isomorphism of

A(F[G], IndG
HM)-lattices.

Corollary 6.6. Suppose that M is free over A(F[H], M). If

(i) IndG
HA(F[H], M) is free over A(F[G], IndG

HM),
(ii) IndG

HA(F[H], M) =A(F[G], IndG
HM), or

(iii) IndG
HA(F[H], M) is a ring,

then IndG
HM is free over A(F[G], IndG

HM).

Proof. In case (i) this follows immediately from Proposition 6.5. Clearly, (ii) ⇒ (i). Moreover, (ii) ⇔
(iii) by Corollary 6.2.

Remark 6.7. In the proofs of the main theorems of the present article, Corollary 6.6 will be used to
show that certain primes are not decomposition obstructions (see Definition 1.4).

The following is a partial converse to Corollary 6.6(i).

Proposition 6.8 ([4, Proposition 2]). If IndG
HM is a projective A(F[G], IndG

HN)-lattice, then M is a
projective A(F[H], M)-lattice.

If H is normal in G, then we define A∗(M) =⋂
g∈G gA(F[H], M)g−1.

Proposition 6.9 ([4, Proposition 3]). Suppose that H is normal in G. Then,

(i) A∗(M) is an R-order in F[H],
(ii) A(F[G], IndG

HM) = IndG
HA

∗(M), and
(iii) IndG

HM is a projective A(F[G], IndG
HM)-lattice if and only if M is a projective A∗(M)-lattice.

6.2. Clean orders and induction

Let R be a discrete valuation ring with field of fractions F of characteristic zero and suppose that the
residue field of R is finite.

Definition 6.10. Let � be an R-order in a finite-dimensional semisimple F-algebra A. Then, � is said
to be clean if it has the following property: if M is a projective �-lattice such that FM is free over A
then M is free over �.
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Theorem 6.11 (Hattori). Commutative R-orders in finite-dimensional semisimple F-algebras are
clean.

Proof. See [17] or [36, IX Corollary 1.5].

Proposition 6.12 ([4, Corollaire to Proposition 3]). Let H be a normal abelian subgroup of a finite
group G and let M be an R[H]-lattice such that FM is free of rank 1 over F[H]. Then, the following are
equivalent:

(i) IndG
HM is projective over A(F[G], IndG

HM);
(ii) IndG

HM is free over A(F[G], IndG
HM);

(iii) IndG
HA(F[H], M) is a ring and IndG

HM is free over IndG
HA(F[H], M);

(iv) M is free over A(F[H], M) and A∗(M) =A(F[H], M).

Proof. (i)⇒(iv). By Proposition 6.9(iii), M is projective overA∗(M). Moreover,A∗(M) is a clean order
by Theorem 6.11 and thus M is in fact free over A∗(M). Hence A∗(M) =A(F[H], M) by Proposition 2.2.

(iv)⇒(iii). We have IndG
HA(F[H], M) = IndG

HA
∗(M) =A(F[G], IndG

HM), where the second equality
is Proposition 6.9(ii). Thus, IndG

HA(F[H], M) is a ring by Corollary 6.2. Hence, IndG
HM is free over

IndG
HA(F[H], M) by Corollary 6.6(iii).
(iii)⇒(ii). This follows from Corollary 6.2.
(ii)⇒(i). This follows from the general fact that every free module is projective.

Remark 6.13. Let K/Q be a finite Galois extension, let P be a prime of K above the rational prime p,
let M =OKP

, let H = D(P|p) be the decomposition group and let R =Zp. If H is normal and abelian
in G and OKP

is free over AKP/Qp , Proposition 6.12 tells us that p is a decomposition obstruction for K
unless IndG

HAKP/Qp =AK/Q,p. This observation is crucial in the proofs in Section 8.

7. Induction for orders of a certain structure

Let R be a discrete valuation ring with field of fractions F of characteristic zero and suppose that the
residue field of R is finite. Let G be a finite group and let H be a subgroup of G. In Section 6, we reviewed
some general induction properties of the associated order A(F[H], M) (with weaker hypotheses on R for
some results). In this section, we prove new results concerning inductions of orders of a certain form
and then consider arithmetic applications such as the study of weakly ramified extensions.

Let π be a uniformiser of R. For a subgroup P of G, let nclG(P) denote the normal closure of P in G
and let TrP =∑

k∈P k ∈ R[G].

Theorem 7.1. Let M be an R[H]-lattice such that FM is free of rank 1 over F[H]. Suppose that there
exists a positive integer n and a subgroup P of H such that

A(F[H], M) = R[H] + π−nR[H]TrP.

Then, the following statements hold:

(i) IndG
HA(F[H], M) = R[G] + π−nR[G]TrP.

(ii) A(F[G], IndG
HM) = R[G] + π−nR[G]TrnclG(P).

(iii) IndG
HA(F[H], M) is a ring if and only if P is normal in G.

(iv) If P is normal in G and M is free over A(F[H], M), then IndG
HA(F[H], M) is free over

A(F[G], IndG
HM).

(v) If H is abelian and normal in G and IndG
HM is projective overA(F[G], IndG

HM), then P is normal
in G.
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Proof. Note that if h runs through a set of coset representatives of G/H and k runs through a set of
coset representatives of H/P, then hk runs through a set of left coset representatives of G/P. Thus, we
have

IndG
HA(F[H], M) = IndG

H

(
R[H] +

{
π−n

(∑
k∈H/P

akk

)
:ak ∈ R

}
· TrP

)

= R[G] +
{∑

h∈G/H

π−nh

(∑
k∈H/P

ah,kk

)
: ah,k ∈ R

}
· TrP

= R[G] +
{

π−n

(∑
h∈G/H

∑
k∈H/P

ah,khk

)
:ah,k ∈ R

}
· TrP

= R[G] + π−nR[G]TrP,

which proves (i). Moreover, we have

IndG
HA(F[H], M) = R[G] + π−nR[G/P]TrP

= R[G] +
{

π−n

(∑
h∈G/P

ahh

)
: ah is a representative of R/(π n)

}
· TrP

= π−n

{∑
γ∈G

aγ γ ∈ R[G] : γ −1
1 γ2 ∈ P ⇒ aγ1 ≡ aγ2 mod (π n)

}
.

Thus for every g ∈ G, we have

gIndG
HA(F[H], M)g−1 = R[G] + π−nR[G/gPg−1]TrgPg−1

= π−n

{∑
γ∈G

aγ γ ∈ R[G] : γ −1
1 γ2 ∈ gPg−1 ⇒ aγ1 ≡ aγ2 mod (π n)

}
.

We will now use the following general fact. Let G be a group, let B be any set, let A be a subset of G and
let A′ be the subgroup of G generated by A. Then from the description of the elements of A′ in terms of
products of elements of A and their inverses, we have{{aγ }γ∈G ∈∏

γ∈G B : γ −1
1 γ2 ∈ A ⇒ aγ1 = aγ2

}
= {{aγ }γ∈G ∈∏

γ∈GB : γ −1
1 γ2 ∈ A′ ⇒ aγ1 = aγ2

}
.

This said, by Proposition 6.1, we have that

A(F[G], IndG
HM) =

⋂
g∈G

gIndG
HA(F[H], M)g−1

= π−n

{∑
γ∈G

aγ γ ∈ R[G] : γ −1
1 γ2 ∈

⋃
g∈G

gPg−1 ⇒ aγ1 ≡ aγ2 mod (π n)

}

= π−n

{∑
γ∈G

aγ γ ∈ R[G] : γ −1
1 γ2 ∈ nclG(P) ⇒ aγ1 ≡ aγ2 mod (π n)

}

= R[G] + π−nR[G/nclG(P)]TrnclG(P),

= R[G] + π−nR[G]TrnclG(P),

which proves (ii).
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By Corollary 6.2, IndG
HA(F[H], M) is a ring if and only if it is equal to A(F[G], IndG

HM), which by (i)
and (ii) is true if and only if P = ncl(P). This proves (iii). Part (iv) follows from (iii) and Corollary 6.6(iii).
Part (v) follows from (iii) and Proposition 6.12(i)⇒(iii).

We have the following application to the understanding of local freeness in weakly ramified
extensions of number fields.

Corollary 7.2. Let K/F be a finite Galois extension of number fields with Galois group G and let P|p
be two primes of K/F such that KP/Fp is wildly and weakly ramified.

(i) If the inertia group G0 = G0(P|p) is normal in G, then OK,p is free over AK/F,p.
(ii) Suppose that the decomposition group D = D(P|p) is abelian and normal in G. Then, OK,p is

free over AK/F,p if and only if G0 is normal in G.

Proof. Let π be any uniformiser of OFp . Then by Theorem 3.9, we have

A(Fp[D], OKP
) =AKP/Fp =OFp[D][π−1TrG0 ] =OFp[D] + π−1OFp[D]TrG0

and OKP
is free over A(Fp[D], OKP

). Hence claim (i) follows from Theorem 7.1(iv). Claim (ii) follows
from Theorem 7.1(v) for one direction and from claim (i) for the other direction.

Remark 7.3. Note that by using Corollary 7.2(ii), databases such as [30], and a computational algebra
system such as Magma to determine whether certain subgroups are normal, we can easily read off
examples of number fields K and decomposition obstructions for K. For instance, let K be the splitting
field of x4 − x2 − 4x − 11 over Q. Then, K is an S4-extension of Q, for which the prime 2 is weakly
ramified, has normal decomposition group isomorphic to C2

2 and (non-normal) inertia group isomorphic
to C2: in other words, 2 is a decomposition obstruction for K (this case is in fact covered in the proof of
Theorem 8.3: it lies on the entry (5) of Table 1).

We now prove the following generalisation of Theorem 7.1.

Theorem 7.4. Let M be an R[H]-lattice such that FM is free of rank 1 over F[H]. Suppose that there
exist integers 0 = n0 < n1 < · · · < nr and subgroups

{e} = P0 � P1 � P2 � · · ·� Pr ⊆ H ⊆ G

such that

A(F[H], M) =
r∑

i=0

π−ni R[H]TrPi . (7.1)

Then, the following statements hold:

(i) IndG
HA(F[H], M) =∑r

i=0 π−ni R[G]TrPi .
(ii) A(F[G], IndG

HM) =∑r
i=0 π−ni R[G]TrnclG(Pi).

(iii) IndG
HA(F[H], M) is a ring if and only if Pi is normal in G for every i.

(iv) If Pi is normal in G for every i and M is free over A(F[H], M), then IndG
HA(F[H], M) is free

over A(F[G], IndG
HM).

(v) If H is abelian and normal in G and IndG
HM is projective overA(F[G], IndG

HM), then Pi is normal
in G for every i.
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Proof. The proof of part (i) is exactly as for Theorem 7.1(i).
We already know from Theorem 7.1 that (ii) holds if r = 1. So suppose that r > 1. Note that, since

each nclG(Pi) is normal in G, for each g ∈ G we have that

g−1π−ni TrnclG(Pi)g = π−ni TrnclG(Pi) = TrnclG(Pi)/Piπ
−ni TrPi ∈ IndG

HA(F[H], M),

where TrnclG(Pi)/Pi is the sum over any fixed choice of coset representatives of nclG(Pi)/Pi. Hence for
each g ∈ G we have π−niTrnclG(Pi) ∈ gIndG

HA(F[H], M)g−1. Together with Proposition 6.1, this implies
that π−niTrnclG(Pi) ∈A(F[G], IndG

HM). Therefore

A(F[G], IndG
HM) ⊇

r∑
i=0

π−ni R[G]TrnclG(Pi).

It remains to show the reverse containment. First note that

A(F[G], IndG
HM) ⊆ IndG

HA(F[H], M) =
r∑

i=0

π−ni R[G]TrPi , (7.2)

where the containment follows from Remark 6.4 and the equality is part (i). Let θ ∈A(F[G], IndG
HM).

Then, we can write θ =∑r
i=0 π−niθiTrPi , where θi ∈ R[G] for each i. For each integer j with 0 ≤ j ≤ r, we

shall prove that

θ ∈
r−j−1∑

i=0

π−ni R[G]TrPi +
r∑

i=r−j

π−ni R[G]TrnclG(Pi).

We proceed by induction on j and first consider the base case j = 0. We have that

π nr−1θ =
r∑

i=0

π nr−1−niθiTrPi ∈ R[G] + π nr−1−nr R[G]TrPr .

Also note that for each g ∈ G, we have

g−1π nr−1θg ∈ g−1π nr−1A(F[G], IndG
HM)g

= π nr−1A(F[G], IndG
HM)

⊆ π nr−1IndG
HA(F[H], M)

⊆ R[G] + π nr−1−nr R[G]TrPr .

Hence,

π nr−1θ ∈
⋂
g∈G

g
(
R[G] + π nr−1−nr R[G]TrPr

)
g−1 = R[G] + π nr−1−nr R[G]TrnclG(Pr ),

where the equality follows from the case r = 1. Thus there exists α ∈ R[G] such that

θ − π−nrαTrnclG(Pr ) ∈ π−nr−1 R[G] ∩ IndG
HA(F[H], M) =

r−1∑
i=0

π−ni R[G]TrPi ,

where the equality follows from (7.2) and the containment R[G]TrPr ⊆ R[G]TrPr−1 , which holds since
TrPr = TrPr/Pr−1TrPr−1 . This completes the base case j = 0.

We now proceed with the induction step. Suppose our claim is valid for j − 1, and let us prove it for j.
Using the inductive hypothesis and subtracting an appropriate element of

∑r
i=j+1 π−ni R[G]TrnclG(Pi), we

can and do assume without loss of generality that

θ =
r−j∑
i=0

π−niθiTrPi ∈A(F[G], IndG
HM),
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for some θi ∈ R[G]. Hence, it remains to show that

θ ∈
r−j−1∑

i=0

π−ni R[G]TrPi + π−nr−j R[G]TrnclG(Pr−j).

As in the base case, for each g ∈ G we have

g−1π nr−j−1θg ∈ π nr−j−1−nr−j R[G] ∩ π nr−j−1A(F[G], IndG
HM)

⊆ π nr−j−1−nr−j R[G] ∩ π nr−j−1IndG
HA(F[H], M)

⊆ R[G] + π nr−j−1−nr−j R[G]TrPr−j ,

so, by the result for r = 1, we have

π nr−j−1θ ∈ R[G] + π nr−j−1−nr−j R[G]TrnclG(Pr−j).

Thus, there exists α ∈ R[G] such that

θ − π−nr−jαTrnclG(Pr−j) ∈ π−nr−j−1 R[G] ∩
(

r−j∑
i=0

π−niθiTrPi

)
=

r−j−1∑
i=0

π−ni R[G]TrPi .

This concludes the induction step. Therefore, we deduce that

A(F[G], IndG
HM) =

r∑
i=0

π−ni R[G]TrnclG(Pi),

which concludes the proof of part (ii).
We easily see with the same methods that

IndG
HA(F[H], M) =A(F[G], IndG

HM)

precisely when Pi = nclG(Pi) for every i, establishing part (iii). Part (iv) follows from part (iii) and
Corollary 6.6(iii). Part (v) follows from Proposition 6.12(i)⇒(iii).

Remark 7.5. It follows from the proof of Theorem 7.4 that the subgroups Pi and the numbers ni are
uniquely determined by A(F[H], M). Moreover, Pi is normal in H (a way to see this from what we
already proved is the following: IndH

HA(F[H], M) =A(F[H], M) is a ring, so that we can apply (iii) with
G = H) and π ni divides the order of Pi for all i.

8. Leopoldt-type theorems for A4, S4 and A5-extensions of Q

In this section, we prove Theorems 1.7, 1.8 and 1.9 from the introduction. We first give an overview
of our methods. Let K/Q be a finite Galois extension, let G = Gal(K/Q), and suppose that G ∼= A4, S4

or A5. As proven in Corollary 2.7, the only property to check is local freeness. By Proposition 4.10, if
G is isomorphic to A4 or S4 then we only have to check for local freeness at 2, while freeness in the
G ∼= A5-case only happens if we have local freeness simultaneously at 2, 3 and 5.

If G ∼= A4 or S4, let p = 2. If G ∼= A5, let p ∈ {2, 3, 5}. Let P be a prime of K above p, with decompo-
sition group D = D(P|p). We will first apply the techniques of the previous sections to compute AKP/Qp

and determine whether OKP
is free over AKP/Qp .

When G ∼= A4 or S4, in some cases it will suffice to directly apply results such as Theorem 3.14,
Lemma 4.11, Proposition 4.12 or Corollary 7.2(i). We will study these cases at the beginning of each of
the proofs. In the remaining cases, the analysis will be somewhat more complicated.

It could be the case that OKP
is not even free over AKP/Qp . In general, this does not necessarily imply

that OK,p is not free over AK/Q,p. However, this will occur only when G ∼= S4 and in two specific cases:
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• D = G, which guarantees that OK,p =OKP
is not free over AK/Q,p =AKP/Qp : we will use

[5, Algorithm 3.1(6)] to verify that in four specific S4-extensions of Q2 the ring of integers
is not free over its associated order;

• D is dihedral of order 8, in which case, by Theorem 3.10, OKP
is not even projective over

AKP/Qp , which allows us to conclude that OK,p cannot be free over AK/Q,p by Proposition 6.8.

We call this method ‘the non-freeness method’.
In all the remaining cases, we have that OKP

is free over AKP/Qp . We will see that the structure
of AKP/Qp will always satisfy the hypotheses of Theorem 7.4 (in some cases its simpler version, i.e.
Theorem 7.1). We can then apply Theorem 7.4(i) and (ii) to compute IndG

DAKP/Qp and AK/Q,p. By
Proposition 6.5, we are reduced to verifying whether IndG

DAKP/Qp is free over AK/Q,p. In all cases of
G ∼= A4 with predicted non-freeness of OK over AK/Q, we can reduce to the case in which D is normal in
G and abelian, hence apply Theorem 7.4(v). We call this method ‘the theoretical freeness method’; this
can also be applied to some cases when G ∼= S4.

When the above strategy cannot be followed, the structure of AKP/Qp allows us to construct both
IndG

DAKP/Qp and AK/Q,p in Magma. Hofmann and Johnston [18, §8.5] described the implementation of
an algorithm in Magma that, given a finite group �, a rational prime p, and Z[�]-lattices X and Y con-
tained in Q[�], determines whether the localisations Xp and Yp are isomorphic over Z(p)[�]. Note that
by [9, Proposition (30.17)], this is equivalent to checking whether the p-adic completions are isomor-
phic over Zp[�]. In present situation, we are interested in understanding whether IndG

DAKP/Qp is free
over its associated order AK/Q,p. By Lemma 2.1 this condition is equivalent to IndG

DAKP/Qp being isomor-
phic to AK/Q,p as Zp[G]-lattices. Since both lattices will be of the form Zp[G] + 1

pn1
Zp[G]TrH1 + · · · +

1
pnk

Zp[G]TrHk , which is the completion of Z[G] + 1
pn1

Z[G]TrH1 + · · · + 1
pnk

Z[G]TrHk , the aforementioned
algorithm will tell us if IndG

DAKP/Qp is free over AK/Q,p. We call this method ‘the algorithmic freeness
method’.

With both freeness methods we will mostly find that IndG
DAKP/Qp is not free over AK/Q,p, that is, p is

a decomposition obstruction for K.

Notation. Let G be a finite group, let H1, . . . , Hk be subgroups of G and let n1, · · · , nk be integers. We
will denote by 〈1, 1

pn1
TrH1 , · · · , 1

pnk
TrHk〉p

G the lattice

Zp[G] + 1

pn1
Zp[G]TrH1 + · · · + 1

pnk
Zp[G]TrHk .

8.1. Galois module structure of A4-extensions of Q

In this subsection, we shall prove the following result, which is Theorem 1.7 stated in the
introduction.

Theorem 8.1. Let K/Q be a Galois extension with Gal(K/Q) ∼= A4. Then, OK is free over AK/Q if and
only if 2 is tamely ramified or has full decomposition group.

Remark 8.2. After considering computational evidence, in [5, §8] the authors raised the question of
whether it is always the case that OK is free over AK/Q for every A4-extension K/Q. Theorem 8.1 shows
that this is false. Indeed, one can use the database of number fields [30] to verify that every possible
decomposition group of 2 of even order can be realised by an A4-extension K/Q in which 2 is wildly
ramified.

Proof of Theorem 8.1. We already showed the ‘if’ direction in Proposition 4.12. Now we prove that
if 2 is wildly ramified in K/Q and does not have full decomposition group then OK is not (locally) free
(at 2) over AK/Q. Let V4 denote the unique normal subgroup of G := Gal(K/Q) ∼= A4 of order 4, which
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is isomorphic to C2 × C2. Recall that A4
∼= V4 � C3 and we have the following lattice of the subgroups

of A4 up to conjugacy (see, for instance, the GroupNames database [11]).

C1

C2

C3V4

A4

3

4

Here the subscript on the left denotes the number of conjugate subgroups and is taken to be 1 when
omitted (so that the subgroup is normal).

Let P be a prime of K above 2, let D = D(P|2) be the decomposition group and let G0 = G0(P|2) be
the inertia group of K/Q. Since 2 is wildly ramified, D has even order. Thus, since D is a proper subgroup
of G, the subgroup lattice implies that either D = V4 or D ∼= C2. More precisely, there are three possibil-
ities for the pair (D, G0) up to isomorphism: (V4, V4), (V4, C2) and (C2, C2). Since D is abelian in each
of these cases, we have that OKP

is free over AKP/Q2 by Theorem 3.3. Thus by Proposition 6.5 we have
that IndG

DAKP/Q2
∼= IndG

DOKP
∼=OK,2 as AK/Q,2-lattices. Therefore, it suffices to show that IndG

DAKP/Q2 is
not free over AK/Q,2 in each of the three cases; in other words, we will show that 2 is a decomposition
obstruction for K. We will apply the ‘theoretical freeness method’ in all cases.

First suppose that D = G0 = V4. Then from the database of p-adic fields [24], we see that there are
four possible extensions KP/Q2, each of which has 1 and 3 as (lower) ramification jumps. Let F denote
the subfield of KP fixed by G2. Then by Remark 3.12, we have eG2 ∈AKP/Q2 since

∞∑
i=0

(|Gi(KP/F)| − 1) = 1 + 1 + 1 + 1 = 4 ≥ 4 = |G0(KP/Q2)| · v2(|G2|).

Similarly, we have eV4 = eG1 ∈AKP/Q2 since
∞∑

i=0

(|Gi(KP/Q2)| − 1) = 3 + 3 + 1 + 1 = 8 ≥ 8 = |G0(KP/Q2)| · v2(|V4|).

Thus, KP/Q2 is almost-maximally ramified, and so by Theorem 3.10(i) we have that

AKP/Q2 =Z2[D][eG2 , eG1 ] = 〈1,
1

2
TrG2 ,

1

4
TrV4〉2

D.

Since G2
∼= C2 is not normal in G and D is both abelian and normal in G, Theorem 7.4(v) implies that

IndG
DAKP/Q2 is not free over AK/Q,2. Hence OK,2 is not free over AK/Q,2. As an aside, using Theorem 7.4(i)

and (ii) and the fact that nclG(G2) = V4, we note that in this case we have

IndG
DAKP/Q2 =

〈
1,

1

2
TrG2 ,

1

4
TrV4

〉2

G

⊇
〈
1,

1

4
TrV4

〉2

G

=AK/Q,2.

Now suppose that D = V4 and G0
∼= C2. Since OKP

is free over AKP/Q2 and G0 = G1 is not dihedral
of order 4, Theorem 3.10 implies that AKP/Q2 =Z2[D][eG0 ] = 〈1, 1

2
TrG0〉2

D. (Alternatively, we can use
the database of p-adic fields [24] to check for almost-maximal ramification as in the previous case; the
ramification jump turns out to be 1 or 2). Since D is both abelian and normal in G and G0 is not normal
in G, Theorem 7.1(v) implies that IndG

DAKP/Q2 is not free over AK/Q,2. Hence, OK,2 is not free over AK/Q,2.
Note that in the next paragraph, we shall use that

IndG
DAKP/Q2 =

〈
1,

1

2
TrG0

〉2

G

⊇
〈
1,

1

2
TrV4

〉2

G

=AK/Q,2,

which follows from Theorem 7.1(i) and (ii).
Finally, suppose D = G0

∼= C2. Then, AKP/Q2 is a Z2-order in Q2[D] ∼=Q2[C2] strictly containing
Z2[D]. As there is only one such order, we must have AKP/Q2 = 〈1, 1

2
TrD〉2

D. Since D is not normal in
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G, we cannot directly apply Theorem 7.1(v) as in the previous cases. Instead, Theorem 7.1(i) and (ii)
implies that

IndG
DAKP/Q2 =

〈
1,

1

2
TrD

〉2

G

⊇
〈
1,

1

2
TrV4

〉2

G

=AK/Q,2.

Once we fix a copy of C2 inside G, note that IndG
DAKP/Q2 and AK/Q,2 are exactly the same as in the

(V4, C2)-case of the previous paragraph, where we already showed that IndG
DAKP/Q2 is not free over

AK/Q,2. Therefore OK,2 is not free over AK/Q,2.

8.2. Galois module structure of S4-extensions of Q

In this subsection, we shall prove the following result, which is Theorem 1.8 stated in the
introduction.

Theorem 8.3. Let K/Q be a Galois extension with G := Gal(K/Q) ∼= S4. Then, OK is free over AK/Q if
and only if one of the following conditions on K/Q holds:

(i) 2 is tamely ramified;
(ii) 2 has decomposition group equal to the unique subgroup of G of order 12;
(iii) 2 is wildly and weakly ramified and has full decomposition group; or
(iv) 2 is wildly and weakly ramified, has decomposition group of order 8 in G, and has inertia

subgroup equal to the unique normal subgroup of order 4 in G.

Proof. By Proposition 4.10, OK is free over AK/Q if and only if OK,2 is free over AK/Q,2.
We first show that if any of conditions (i)–(iv) hold then OK,2 is free over AK/Q,2. In case (i), this

follows from Theorem 3.14. In case (ii), Lemma 4.11 shows that 2 is wildly and weakly ramified in
K/Q and has inertia group equal to the unique normal subgroup of order 4 in G (note that A4 is the
unique subgroup of S4 of order 12). Therefore in cases (ii), (iii) and (iv), 2 is wildly and weakly ramified
in K/Q and its inertia group is normal in G, and so the desired result follows from Corollary 7.2(i).

It now remains to show that if we are not in any of the cases (i)–(iv) then OK,2 is not free over AK/Q,2.
We have the following lattice of the subgroups of S4 up to conjugacy (see, for instance, the GroupNames
database [11]).

C1

C2C2

C3 V4C2
2 C4

S3 D8A4

S4

36

43 3

4 3

Here the subscript on the left denotes the number of conjugate subgroups and is taken to be 1 when
omitted (so that the subgroup is normal). In particular, the only normal subgroups are C1, V4, A4 and S4.
(Recall that V4

∼= C2 × C2.)
We fix an isomorphism G := Gal(K/Q) ∼= S4 and denote by A4, D8, S3, C2

2, V4, C4 a choice of sub-
groups of G in such a way that whenever there is a containment between choices of conjugates of two
such subgroups, one of the subgroups is in fact contained in the other.
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Suppose that K/Q does not satisfy any of the conditions (i)–(iv). Let P be a prime of K above 2 and
let D = D(P|2) be the decomposition group. In particular, 2 is wildly ramified in K/Q and so D must
be of even order. We cannot have D = A4 as this corresponds to case (ii). Moreover, we cannot have
D = S3 since the subgroups of D of order 2 are not normal, but the wild inertia subgroup G1 must be
normal in D.

We will start by applying the ‘non-freeness method’ in those cases in which OKP
is not free over

AKP/Q2 . By Theorem 3.3, we are in the case in which D is not abelian. Suppose that D = S4. Since we
are not in case (iii), this implies that 2 is wildly but not weakly ramified in K/Q. From the database of
p-adic fields [24], we see that there are four possibilities for the completed extension KP/Q2. By using
the updated Magma implementation of [5, Algorithm 3.1(6)], which is based on that of [7, §4.2], we
can verify that OKP

is not free over AKP/Q2 in any of these cases (for the details on the implementation
see Section A.1). Since the decomposition group is full, this immediately implies that OK,2 is not free
over AK/Q,2.

Now suppose that D ∼= D8; without loss of generality, we can and do assume that D = D8. Since
we are assuming OKP

is not free over AKP/Q2 , we have that OKP
is not projective over AKP/Q2 by

Theorem 3.10, and so OK,2 is not free over AK/Q,2 by Proposition 6.8. As an aside, by using the database
[24], Theorem 3.10 and Remark 3.12, it is straightforward to check that OKP

is not free over AKP/Q2 if
and only if the ramification jumps of KP/Q2 are 1, 3 and 5.

Therefore in the remaining cases, we can and do assume that OKP
is free over AKP/Q2 , since either

D is abelian (in which case we can apply Theorem 3.3) or D = D8 (in which case the situation in which
OKP

is not free over AKP/Q2 has already been considered in the previous paragraph). For these cases, we
will apply the ‘algorithmic freeness method’. As we wish to show that OK,2 is not free over AK/Q,2 (so
that 2 is a decomposition obstruction for K), by Proposition 6.5 it suffices to show that IndG

DAKP/Q2 is not
free over AK/Q,2. Our strategy will be to determine the possible ramification groups, use this to derive
the explicit structure of AKP/Q2 and then apply Theorem 7.4(i) and (ii) to obtain explicit descriptions
of IndG

DAKP/Q2 and AK/Q,2, which will be listed in Table 1 below. For instance, if D = D8 and AKP/Q2 =
〈1, 1

2
TrV2 , 1

4
TrC4 , 1

8
TrD8〉2

D8
(where V2 is the subgroup of C4 of order 2), then by Theorem 7.4(i) the same

groups will appear in IndG
DAKP/Q2 , so that IndG

DAKP/Q2 = 〈1, 1
2
TrV2 , 1

4
TrC4 , 1

8
TrD8〉2

G. The normal closure
of C4 and D8 in G is G, while the normal closure of V2 is V4; by Theorem 7.4(ii), this tells us that
AK/Q,2 = 〈1, 1

2
TrV4 , 1

8
TrG〉2

G (in fact, this will be entry (1) of Table 1).
We first consider the case D = D8. We have the following subgroup lattice.

C1

C2C2 C2

V4 C4 V4

D8

2 2

Note that D8 has a unique normal subgroup of order 2, which we denoted by V2, and, as a subgroup of
S4, this is generated by a double transposition and contained in C4. (Also note that under D8-conjugation
we have three conjugacy classes of subgroups of order 2 compared to two in the S4-lattice).

We now find AKP/Q2 using Theorem 3.10, which determines the structure of the associated order
depending upon whether KP/Q2 is almost-maximally ramified or not. We recall we are assumingOKP

is
free over AKP/Q2 . Suppose that KP/Q2 is almost-maximally ramified. Then by Theorem 3.10(i), we have
AKP/Q2 =Z2[D] +∑

t≥1
1

|Gt |Z2[D]TrGt and all quotients of two consecutive different ramification groups
are of order 2 (see the database [24], for example). We have that V2 must be among the ramification
groups since they are all normal in D8. Thus if the ramification index of KP/Q2 is 2, then V2 is the
unique ramification group. Otherwise, there is a ramification group of order 4, which must be one of V4,

https://doi.org/10.1017/S0017089523000460 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000460


Glasgow Mathematical Journal 23

Table 1. Local freeness at 2 in S4-extensions.

IndG
DAKP/Q2 AK/Q,2

(1) 〈1, 1
2
TrV2 , 1

4
TrC4 , 1

8
TrD8〉2

G 〈1, 1
2
TrV4 , 1

8
TrG〉2

G

(2) 〈1, 1
2
TrV2 , 1

4
TrV4 , 1

8
TrD8〉2

G 〈1, 1
4
TrV4 , 1

8
TrG〉2

G

(3) 〈1, 1
2
TrV2 , 1

4
TrC2

2
, 1

8
TrD8〉2

G 〈1, 1
2
TrV4 , 1

8
TrG〉2

G

(4) 〈1, 1
2
TrV2 , 1

4
TrC4〉2

G 〈1, 1
2
TrV4 , 1

4
TrG〉2

G

(5) 〈1, 1
2
TrV2 , 1

4
TrV4〉2

G 〈1, 1
4
TrV4〉2

G

(6) 〈1, 1
2
TrV2 , 1

4
TrC2

2
〉2

G 〈1, 1
2
TrV4 , 1

4
TrG〉2

G

(7) 〈1, 1
2
TrW2 , 1

4
TrC2

2
〉2

G 〈1, 1
4
TrG〉2

G

(8) 〈1, 1
2
TrC2

2
〉2

G 〈1, 1
2
TrG〉2

G

(9) 〈1, 1
2
TrV2〉2

G 〈1, 1
2
TrV4〉2

G

(10) 〈1, 1
2
TrW2〉2

G 〈1, 1
2
TrG〉2

G

C2
2 or C4. Moreover, D8 is a ramification group if and only if the ramification index of KP/Q2 is 8. This

case contributes to entries (1), (2), (3), (4), (5), (6) and (9) of Table 1.
Suppose that KP/Q2 is not almost-maximally ramified. Then by Theorem 3.10(ii), we deduce that

G0
∼= C2

2 and AKP/Q2 = 〈1, 1
2
TrG0〉2

G. Moreover, by Remark 3.12 we must have that G2 = {1} or G2
∼= C2

and G3 = {1}, but in the latter case the upper ramification jumps are not integral, which is not possible
by Hasse-Arf theorem (alternatively, just use the database [24]); hence, KP/Q2 is weakly ramified. Note
that G0 is not equal to V4; otherwise, we are in case (iv) of the statement of Theorem 8.3; hence, we can
assume G0 = C2

2. This contributes to entry (8) of Table 1.
Now suppose that D ∼= C4; without loss of generality, we can and do assume that D = C4. If the ram-

ification index of KP/Q2 is 2, then G0 = V2 and by Remark 3.12 KP/Q2 is almost-maximally ramified,
and hence AKP/Q2 = 〈1, 1

2
TrG0〉2

D (see [3, Corollaire 3 to Théorème 1], for example), which contributes
to entry (9) of Table 1. If the ramification index is 4, then there must be two ramification jumps; since
the upper ramification jumps are integral, Remark 3.12 implies that the extension is almost-maximally
ramified and so 1

2
TrV2 and 1

4
TrD belong to AKP/Q2 . Hence AKP/Q2 = 〈1, 1

2
TrV2 , 1

4
TrD〉2

D, where the con-
tainment ‘⊆’ follows from the fact that the right-hand side is the unique maximal order in Q2[D] (see
[3, Proposition 5], for example). This corresponds to entry (4) of Table 1.

Finally, in the cases D ∼= C2
2 or D ∼= C2, we already computedAKP/Q2 in the proof of Theorem 8.1. Note

that in the present proof and notation the case D ∼= C2
2 corresponds to either D = V4 (which contributes

to entry (5) of Table 1) or D = C2
2 (entries (6) and (7), where we denote by W2 a choice of a subgroup

of S4 generated by a transposition and contained in D8). The case D ∼= C2 corresponds to D = V2 (entry
(9)) or D = W2 (entry (10)).

As anticipated, all the possible values of IndG
DAKP/Q2 and AK/Q,2 are listed in Table 1.

We conclude the application of the ‘algorithmic freeness method’ by using the algorithm [18, §8.5],
as explained in the overview at the beginning of this section. We find that IndG

DAKP/Q2 is not free over
AK/Q,2 in each of the ten cases in Table 1 (for the implementation see Section A.2).

Remark 8.4. In some of the cases, we can apply the ‘theoretical freeness method’: cases (5) and (9)
from Table 1 can be tackled using Theorem 7.4(v) and cases (7) and (10) using Theorem 7.4(v) combined
with Proposition 6.8. More precisely:

• for (5) we apply Theorem 7.4(v) with H = V4 and G = S4;
• for (7) we apply Theorem 7.4(v) with H = C2

2 and G = D8 and Proposition 6.8 inducing from
D8 to Gal(K/Q) ∼= S4;

• for (9) we apply Theorem 7.4(v) with H = V4 and G = S4;
• for (10) we apply Theorem 7.4(v) with H = W2 and G = D8 and Proposition 6.8 inducing from

D8 to Gal(K/Q) ∼= S4.
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Note that here G is not necessarily the Galois group and H is not necessarily one of the decomposition
groups.

Remark 8.5. The computations in the proof of Theorem 8.3 show that each of the lattices considered
is free over its associated order if and only if the lattice is a ring if and only if the lattice is equal to its
associated order. However, with the algorithm of [18, §8.5] we found that 〈1, 1

4
TrV4 , 1

8
TrD8〉2

G is free over
〈1, 1

4
TrV4 , 1

8
TrG〉2

G (see Section A.2 for the implementation).

8.3. Galois module structure of A5-extensions of Q

In this subsection, we shall prove the following result, which is Theorem 1.9 stated in the introduction.

Theorem 8.6. Let K/Q be a Galois extension with Gal(K/Q) ∼= A5. Then, OK is free over AK/Q if and
only if all three of the following conditions on K/Q hold:

(i) 2 is tamely ramified;
(ii) 3 is tamely ramified or is weakly ramified with ramification index 6; and
(iii) 5 is tamely ramified or is weakly ramified with ramification index 10.

Proof of Theorem 8.6. By Corollary 2.7, OK is free over AK/Q if and only if OK,p is free over AK/Q,p

for every rational prime p. If p is tamely ramified in K/Q then OK,p is indeed free over AK/Q,p by
Theorem 3.14. Thus, it remains to consider the situation in which at least one of the primes p = 2, 3, 5
is wildly ramified in K/Q.

We have the following lattice of the subgroups of A5 up to conjugacy (see, for instance, the
GroupNames database [11]).

C1

C2

C3C5 C2
2

S3D10 A4

A5

15

106 5

106 5

Here the subscript on the left denotes the number of conjugate subgroups. Recall that A5 is simple and
note that the subgroup lattice shows that isomorphic subgroups must be conjugate. Moreover, since A5 is
not soluble, no prime can have full decomposition group. We fix an isomorphism G := Gal(K/Q) ∼= A5

and denote by A4, D10 etc. a choice of subgroups of G in such a way that whenever there is a containment
between choices of conjugates of two such subgroups, one of the subgroups is in fact contained in the
other.

Suppose that p = 2 is wildly ramified in K/Q. Let P be a prime of K above 2 and let D(2) be its
decomposition group. Then, D(2) must be isomorphic to A4, C2

2 or C2, since for every other subgroup
H of A5 there is no normal non-trivial 2-subgroup in H. Hence in each of these cases OKP

is free over
AKP/Q2 (if D(2) = A4, this follows from Lemma 4.11 and Theorem 3.9; otherwise, this follows from
Theorem 3.3). We will apply the ‘algorithmic freeness method’ for every such case. By Proposition 6.5,
IndG

D(2)AKP/Q2
∼= IndG

D(2)OKP
∼=OK,2 asAK/Q,2-lattices. Thus we need to analyse when IndG

D(2)AKP/Q2 is free
over AK/Q,2. Note that, by Lemma 4.11, Theorem 3.9 and Theorem 7.1(i), the structure of IndG

D(2)AKP/Q2

in the case D(2) = A4 is covered by the proof of Theorem 8.1. Hence, in each of the aforementioned
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Table 2. Local freeness at 2 in A5-extensions.

IndG
D(2)AKP/Q2 AK/Q,2

(1) 〈1, 1
2
TrC2〉2

G 〈1, 1
2
TrG〉2

G

(2) 〈1, 1
2
TrC2 , 1

4
TrC2

2
〉2

G 〈1, 1
4
TrG〉2

G

(3) 〈1, 1
2
TrC2

2
〉2

G 〈1, 1
2
TrG〉2

G

Table 3. Local freeness at 3 and 5 in
A5-extensions.

IndG
D(p)AKP/Qp AK/Q,p

(1) 〈1, 1
p
TrCp〉p

G 〈1, 1
p
TrG〉p

G

(2) 〈1, 1
p
TrD2p〉p

G 〈1, 1
p
TrG〉p

G

possibilities for D(2), we already know IndG
D(2)AKP/Q2 and AK/Q,2 from the proof of Theorem 8.1, using

Theorem 7.4(i) and (ii). The results are shown in Table 2.
We now use the Magma implementation of the algorithm described in [18, §8.5]. We can hence

verify that in none of the above cases IndG
D(2)AKP/Q2

∼=OK,2 is free over AK/Q,2 (see Section A.3 for the
implementation).

Now suppose that p = 3 or 5 and that p is wildly ramified in K/Q. Let P be a choice of a prime
of K above p and let D(p) be its decomposition group. There is no Galois extension L/Q3 such that
Gal(L/Q3) ∼= A4 (since the subgroups of A4 of order 3 are not normal). Hence, D(p) must be isomorphic
to either D2p or Cp, which implies that OKP

is free over AKP/Qp by Theorems 3.3 and 3.4. Again we
can use the ‘algorithmic freeness method’, so that our goal is to analyse when IndG

D(p)AKP/Qp is free over
AK/Q,p. If D(p) ∼= Cp (in which case we can and do assume that D(p) = Cp), then as KP/Qp is wildly
ramified this implies that AKP/Qp = 〈1, 1

p
TrD(p)〉p

D(p), which is the unique maximal order in Qp[D(p)]. If
D(p) ∼= D2p (in which case we can and do assume that D = D2p), we can use Theorem 3.10: in case of
almost-maximal ramification, AKP/Qp = 〈1, 1

p
TrCp〉p

D(p) (which gives the same structure for IndG
D(p)AKP/Qp

as when D(p) = Cp); otherwise, by Remark 3.13, KP/Qp is weakly and totally ramified and AKP/Qp =
〈1, 1

p
TrD(p)〉p

D(p). Hence there are two possibilities for IndG
D(p)AKP/Qp and AK/Q,p, shown in Table 3.

We used the Magma implementation of the algorithm from [18, §8.5] to verify that IndG
D(p)AKP/Qp is

free over AK/Q,p if and only if we are in case (2), that is, precisely when KP/Qp is weakly ramified or,
equivalently, when it is not almost-maximally ramified (see Section A.3).

Remark 8.7. Note that from the proof of Theorem 8.1, we already knew that neither 〈1, 1
2
TrC2〉2

A4

nor 〈1, 1
2
TrC2 , 1

4
TrC2

2
〉2

A4
are even projective over their associated orders; induction from A4 to S4 and

Proposition 6.8 permit us to conclude that 〈1, 1
2
TrC2〉2

G and 〈1, 1
2
TrC2 , 1

4
TrC2

2
〉2

G are not projective over
their associated orders. Thus we can treat cases (1) and (2) from Table 2 without using the algorithm.

Remark 8.8. Note that for p = 3 and p = 5 we found that 〈1, 1
p
TrD2p〉p

G is free over 〈1, 1
p
TrG〉p

G without the
two being equal. We also found with the algorithm from [18] that 〈1, 1

2
TrA4〉p

G, which does not come from
a ring of integers, is free over 〈1, 1

2
TrG〉p

G (see Section A.3).
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Appendix A: Computer calculations

A.1. Determining freeness for S4-extensions of Q2

Let K/Q be an S4-extension with full decomposition group that is wildly ramified. Here we describe
how to use the Magma implementation of [5, Algorithm 3.1(6)] to check whether or not OK is locally
free at 2 over AK/Q, or equivalently, whether OKP

is free over AKP/Q2 , where P is the unique prime
of K above 2. We used the database [30] to find six number fields, each of which has a completion
at 2 equal to one of the six wildly ramified S4-extensions of Q2 listed in the database of p-adic fields
[24]. Note that two of these extensions of Q2 are weakly ramified, and so Corollary 7.2(ii) already
shows that OKP

is free over AKP/Q2 in both cases, but we include them anyway as an additional check.
The files RelAlgKTheory.m and INB.m referred to below are available on Werner Bley’s website
https://www.mathematik.uni-muenchen.de/~bley/pub.php

We refer to the sample file sample.m from the article [5]. Note that here we use the updated file
INB.m from [6] rather than the original file ao.m.

Attach(“RelAlgKTheory.m”);
Attach(“INB.m”);
P <x> := PolynomialRing(IntegerRing());
Polynomials := [ xˆ6 + xˆ4 + xˆ2 - 1,
xˆ6 - xˆ4 + 3∗xˆ2 - 1,
xˆ6 + 3∗xˆ4 + 11∗xˆ2 + 11,
xˆ6 + 7∗xˆ4 + 15∗xˆ2 + 11,
xˆ6 - xˆ4 - 2∗xˆ3 - xˆ2 + 1,
xˆ6 - 2∗xˆ5 + 2∗xˆ4 - 4∗xˆ3 + 4∗xˆ2 - 2∗x + 2 ];
for i in [1..6] do

L := NormalClosure(NumberField(Polynomials[i]));
G, Aut, h := AutomorphismGroup(L);
h := map <Domain(h)-> Codomain(h) | g:-> h(gˆ-1)> ;
OL := MaximalOrder(L);
theta := NormalBasisElement(OL, h);
Ath := ComputeAtheta(OL, h, theta);
QG := GroupAlgebra(Rationals(), G);
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AssOrd := ModuleConductor(QG, Ath, Ath);
rho := RegularRep(QG);
M := ZGModuleInit(Ath‘hnf, rho);
isfree, w := IsLocallyFree(QG, AssOrd, M, 2);
if isfree then

print “we have local freeness at 2”;
else

print “we do not have local freeness at 2”;
end if;

end for;
we do not have local freeness at 2
we do not have local freeness at 2
we do not have local freeness at 2
we do not have local freeness at 2
we have local freeness at 2
we have local freeness at 2

A.2. Determining local freeness at 2 for S4-extensions of Q
Here we describe how to use the Magma implementation of [18, §8.5] to show that for an S4-extension
K/Q we have that OK is not locally free at 2 over AK/Q if K/Q does not satisfy any of the conditions
(i)–(iv) of Theorem 8.3 and OKP

is free over AKP/Q2 , where P is a prime of K above 2 (see Table 1).
Moreover, we also prove the freeness claim of Remark 8.5. The files Iso.m, Lattices.m and Iso.spec
referred to below are contained in Iso.zip, available in the link to [18] on Tommy Hofmann’s website
https://www.thofma.com

AttachSpec(“Iso.spec”);
G := Sym(4);
W2 := sub <G | G!(1, 3)> ;
V2 := sub <G | G!(1, 3)(2, 4)> ;
C4 := sub <G | G!(1, 2, 3, 4)> ;
V4 := sub <G | G!(1, 3)(2, 4),(1, 2)(3, 4)> ;
C22 := sub <G | G!(1, 3),(2, 4)> ;
D8 := sub <G | G!(1, 2, 3, 4),(1, 3)> ;
QG := GroupAlgebra(Rationals(), G);
trW2 := &+[ QG!h : h in W2];
trV2 :=&+[ QG!h : h in V2];
trC4 := &+[ QG!h : h in C4];
trV4 := &+[ QG!h : h in V4];
trC22 := &+[ QG!h : h in C22];
trD8 := &+[ QG!h : h in D8];
trG := &+[ QG!h : h in G];
ZG := Order(Integers(), Basis(QG));
M1 := rideal < ZG | 1, trV2/2, trC4/4,trD8/8> ;
A1 := rideal < ZG | 1, trV4/2, trG/8> ;
IsLocallyIsomorphic(QG, BasisMatrix(M1), BasisMatrix(A1), 2);
false
M2 := rideal < ZG | 1, trV2/2, trV4/4,trD8/8> ;
A2 := rideal < ZG | 1, trV4/4, trG/8> ;
IsLocallyIsomorphic(QG, BasisMatrix(M2), BasisMatrix(A2), 2);
false
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M3 := rideal < ZG | 1, trV2/2, trC22/4,trD8/8> ;
IsLocallyIsomorphic(QG, BasisMatrix(M3), BasisMatrix(A1), 2);
false
M4 := rideal < ZG | 1, trV2/2, trC4/4> ;
A4 := rideal < ZG | 1, trV4/2, trG/4> ;
IsLocallyIsomorphic(QG, BasisMatrix(M4), BasisMatrix(A4), 2);
false
M5 := rideal < ZG | 1, trV2/2, trV4/4> ;
A5 := rideal < ZG | 1, trV4/4> ;
IsLocallyIsomorphic(QG, BasisMatrix(M5), BasisMatrix(A5), 2);
false
M6 := rideal < ZG | 1, trV2/2, trC22/4> ;
IsLocallyIsomorphic(QG, BasisMatrix(M6), BasisMatrix(A4), 2);
false
M7 := rideal < ZG | 1, trW2/2, trC22/4> ;
A7 := rideal < ZG | 1, trG/4> ;
IsLocallyIsomorphic(QG, BasisMatrix(M7), BasisMatrix(A7), 2);
false
M8 := rideal < ZG | 1, trC22/2> ;
A8 := rideal < ZG | 1, trG/2> ;
IsLocallyIsomorphic(QG, BasisMatrix(M8), BasisMatrix(A8), 2);
false
M9 := rideal < ZG | 1, trV2/2> ;
A9 := rideal < ZG | 1, trV4/2> ;
IsLocallyIsomorphic(QG, BasisMatrix(M9), BasisMatrix(A9), 2);
false
M10 := rideal < ZG | 1, trW2/2> ;
IsLocallyIsomorphic(QG, BasisMatrix(M10), BasisMatrix(A8), 2);
false
M11 := rideal < ZG | 1, trV4/4, trD8/8> ;
A11 := rideal < ZG | 1, trV4/4, trG/8> ;
IsLocallyIsomorphic(QG, BasisMatrix(M11), BasisMatrix(A11), 2);
true -31/4∗Id(G) + (1, 4, 3, 2) + 5/4∗(1, 3)(2, 4) - 5∗(2, 3)
+ 5/4∗(1, 2, 4) + 1/4∗(1, 4, 3)+ (1, 3, 4, 2) + (2, 4, 3)+ (1, 4, 2, 3)
+ (1, 2, 3) + 5/4∗(2, 3, 4) + 1/4∗(1, 3, 2) + (2, 4) + 5/4∗(1, 2)(3, 4)
+ 1/4∗(1, 4)(2, 3)

A.3. Determining local freeness for A5-extensions of Q
Here we describe how to use the Magma implementation of [18, §8.5] to check local freeness in
A5-extensions of Q at the wildly ramified primes (see Tables 2 and 3). Moreover, we also prove
the second freeness claim of Remark 8.8. The files Iso.m, Lattices.m and Iso.spec referred
to below are contained in Iso.zip, available in the link to [18] on Tommy Hofmann’s website
https://www.thofma.com

When IsLocallyIsomorphic(QG, BasisMatrix(M), BasisMatrix(A), 2) is ‘true’, we sup-
press the full output, which includes an element x ∈Q[G] such that x(Z2 ⊗Z M) =Z2 ⊗Z A (whose
existence is in our case equivalent to Z2 ⊗Z M being free over Z2 ⊗Z A).

AttachSpec(“Iso.spec”);
G:=Alt(5);
C2 := sub <G | G!(1, 2)(3, 4)> ;
C22 := sub <G | G!(1, 2)(3, 4),(1, 3)(2, 4)> ;
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C3 := sub <G | G!(1, 2, 3)> ;
D6 := sub <G | G!(1, 2)(4, 5),(1, 2, 3)> ;
C5 := sub <G | G!(1, 2, 3, 4, 5)> ;
D10 := sub <G | G!(2,5)(3, 4),(1, 2, 3, 4, 5)> ;
Alt4 := sub <G | G!(1,2)(3, 4),(1, 2, 3)> ;
QG := GroupAlgebra(Rationals(), G);
trC2 := &+[ QG!h : h in C2];
trC22 := &+[ QG!h : h in C22];
trC3 := &+[ QG!h : h in C3];
trD6 := &+[ QG!h : h in D6];
trC5 := &+[ QG!h : h in C5];
trD10 := &+[ QG!h : h in D10];
trAlt4 := &+[ QG!h : h in Alt4];
trG := &+[ QG!h : h in G];
ZG := Order(Integers(), Basis(QG));
M1 := rideal < ZG | 1, trC2/2> ;
A1 := rideal < ZG | 1, trG/2> ;
IsLocallyIsomorphic(QG, BasisMatrix(M1), BasisMatrix(A1), 2);
false
M2 := rideal < ZG | 1, trC2/2, trC22/4> ;
A2 := rideal < ZG | 1, trG/4> ;
IsLocallyIsomorphic(QG, BasisMatrix(M2), BasisMatrix(A2), 2);
false
M3 := rideal < ZG | 1, trC22/2> ;
IsLocallyIsomorphic(QG, BasisMatrix(M3), BasisMatrix(A1), 2);
false
M4 := rideal < ZG | 1, trC3/3> ;
A4 := rideal < ZG | 1, trG/3> ;
IsLocallyIsomorphic(QG, BasisMatrix(M4), BasisMatrix(A4), 3);
false
M5 := rideal < ZG | 1, trD6/3> ;
IsLocallyIsomorphic(QG, BasisMatrix(M5), BasisMatrix(A4), 3);
true
M6 := rideal < ZG | 1, trC5/5> ;
A6 := rideal < ZG | 1, trG/5> ;
IsLocallyIsomorphic(QG, BasisMatrix(M6), BasisMatrix(A6), 5);
false
M7 := rideal < ZG | 1, trD10/5> ;
IsLocallyIsomorphic(QG, BasisMatrix(M7), BasisMatrix(A6), 5);
true
M8 := rideal < ZG | 1, trAlt4/2> ;
IsLocallyIsomorphic(QG, BasisMatrix(M8), BasisMatrix(A1), 2);
true
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