BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 211-218

ON AN INTEGRAL OPERATOR FOR CONVEX UNIVALENT FUNCTIONS

VINOD KUMAR AND S.L. SHUKLA

Let K(m,M) denote the class of functions $f(z) = z + \sum_{n=2}^{\infty} \alpha_n z^n$ regular and satisfying |1 + zf''(z)/f'(z) - m| < M in |z| < 1, where $|m-1| < M \le m$. Recently, R.K. Pandey and G. P. Bhargava have shown that if $f \in K(m,M)$, then the function $F(z) = \int_0^z \{f'(u)\}^{\alpha} du$ also belongs to K(m,M) provided α is a complex number satisfying the inequality $|\alpha| \le (1-b)/2$, where b = (m-1)/M. In this paper we show by a counterexample that their inequality is in general wrong, and prove a corrected version of their result. We show that $F \in K(m,M)$ provided that α is a real number satisfying $-\phi \le \alpha \le 1$, $\phi = (M-|m-1|)/(M+|m-1|)$, or a complex number satisfying $|\alpha| \le \phi$. In both cases the bounds for α are sharp.

1. Introduction

Let S denote the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which

Received 12 November 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00. 211

are regular in the unit disc $U = \{z : |z| < 1\}$. A function f of S belongs to the class S(m,M) if |zf'(z)/f(z) - m| < M for $z \in U$, where $|m-1| < M \le m$. A function f of S belongs to the class K(m,M) if |1 + zf''(z)/f'(z) - m| < M for $z \in U$. Evidently, the functions in S(m,M) and K(m,M) are starlike and convex univalent respectively. These classes were introduced by Jakubowski [1],[2].

Recently, Kumar and Shukla [4] have studied class preserving integral operators for S(m,M), and called them 'Jakubowski starlike integral operators'. It is now natural to consider a similar problem for the class K(m,M). We define:

An integral operator which maps the class K(m,M) into or onto itself is called a Jakubowski convex integral operator.

The object of this paper is to show that, for suitable choices of constant α , the integral operator

$$I(f) = \int_{0}^{2} \left\{ f'(u) \right\}^{\alpha} du$$

maps K(m,M) into itself. One of our results improves and corrects a recent result of Pandey and Bhargava [5].

2. Fundamental Lemmas.

In this section we prove two lemmas which play an important role in establishing a theorem concerning the Jakubowski convex integral operators. The first one is equivalent to Lemma 2.3 in [4] when $\beta = 1$. However we present the details of the proof since we require it in the discussion which follows.

LEMMA 2.1. Let α,m and M be real numbers such that $0 < \alpha \le 1$ and $|m-1| < M \le m$. If (2.1) $t = 1-\alpha + \alpha m$ and $T = \alpha M$, then $K(t,T) \subset K(m,M)$.

Proof. It suffices to show that

212

Then, $1-\alpha+\alpha(m+M) > m+M$, which implies m+M < 1. This is also contrary to |m-1| < M. Therefore the inequalities (2.2) hold.

LEMMA 2.2 Let α, m and M be real numbers such that

(2.3)
$$\max \left\{ -\frac{1-(m-M)}{m+M-1}, -\frac{m+M-1}{1-(m-M)} \right\} \le \alpha < 0$$

and $|m-1| < M \le m$. If (2.4) $\tilde{t} = 1-\alpha + \alpha m$ and $\tilde{T} = -\alpha M$, then $K(\tilde{t}, \tilde{T}) \subseteq K(m, M)$.

Proof. We need to show that

(2.5) $m-M \leq \tilde{t}-\tilde{T}$ and $\tilde{t}+\tilde{T} \leq m+M$.

Suppose $m-M > \tilde{t}-\tilde{T}$. Then, $m-M > 1-\alpha+\alpha(m+M)$, which implies that $\alpha < -(1-(m-M))/(m+M-1)$. Further, suppose $\tilde{t}+\tilde{T} > m+M$. Then, $1-\alpha+\alpha(m-M) > m+M$, which implies $\alpha < -(m+M-1)/(1-(m-M))$. Now if

$$\alpha < \max \{-\frac{1-(m-M)}{m+M-1}, -\frac{m+M-1}{1-(m-M)}\},\$$

then at least one of the inequalities in (2.5) does not hold. Whence the disc centred at \tilde{t} and having radius \tilde{T} is not contained in the disc centred at m and having radius M. Therefore $K(\tilde{t},\tilde{T}) \subseteq K(m,M)$ if α satisfies (2.3).

It is noticeable that the truth of $|\tilde{t}-1| < \tilde{T} \le \tilde{t}$ requires $\alpha \ge -1/m+M-1)$, which automatically holds since

$$\alpha \geq \max \left\{ -\frac{1-(m-M)}{m+M-1}, -\frac{m+M-1}{1-(m-M)} \right\}$$

$$\geq -(1-(m-M))/(m+M-1)$$

$$\geq -1/(m+M-1) .$$

NOTE. From now on t,T and \tilde{t},\tilde{T} will be as in (2.1) and (2.4) respectively.

3. Jakubowski Convex Integral Operators.

In this section we obtain the main results of this paper.

THEOREM 3.1. If $f \in K(m,M)$, then the function F, defined by

(3.1)
$$F(z) = \int_{0}^{z} \{f'(u)\}^{\alpha} du,$$

also belongs to K(m,M), provided

$$(3.2) \qquad -\phi \leq \alpha \leq 1$$

where $\phi = (M - |m-1|)/M + |m-1|)$.

The result is sharp.

Proof. From (3.1) we have

$$F'(z) = \{f'(z)\}^{\alpha}$$
.

Logarithmic differentiation yields

$$1+z \; \frac{F''(z)}{F'(z)} = \alpha \; \{1+z \; \frac{f''(z)}{f'(z)}\} \; + \; (1-\alpha) \; .$$

Therefore

(3.3)
$$1+z \frac{F''(z)}{F'(z)} - (1-\alpha+\alpha m) = \alpha \{1+z \frac{f''(z)}{f'(z)} - m\}.$$

Now consider two cases, namely $\alpha > 0$ and $\alpha < 0$. Case I. When $\alpha > 0$, it follows from (3.3) that

$$\left| 1+z \frac{F''(z)}{F'(z)} - (1-\alpha+\alpha m) \right| = \alpha \left| 1+z \frac{f''(z)}{f'(z)} - m \right|$$
< αM , since $f \in K(m, M)$

Thus $F \in K(t,T)$, and hence, by Lemma 2.1, $F \in K(m,M)$ provided (3.4) $0 < \alpha \le 1$.

Case II. When $\alpha < \theta$, from (3.3) we get

$$\left|1+z \frac{F''(z)}{F'(z)} - (1-\alpha+\alpha m)\right| = -\alpha \left|1+z \frac{f''(z)}{f'(z)} - m\right|$$

$$< -\alpha M.$$

Thus $F \in K(\tilde{t}, \tilde{T})$, and hence, by Lemma 2.2, $F \in K(m, M)$ provided

(3.5)
$$\max \left\{ -\frac{1-(m-M)}{m+M-1} , -\frac{m+M-1}{1-(m-M)} \right\} \le \alpha < 0$$
.

It is now easy to compute that

$$\max \left\{ -\frac{1-(m-M)}{m+M-1}, -\frac{m+M-1}{1-(m-M)} \right\} = \left\{ \begin{array}{ccc} -\frac{1-(m-M)}{m+M-1}, & \text{when } m > 1 \\ -1, & \text{when } m = 1 \\ -\frac{m+M-1}{1-(M-M)}, & \text{when } m < 1 \end{array} \right.$$

The expressions on the right hand side are easily seen to be equal to - ϕ .

Hence, combining (3.4), (3.5) and the trivial case $\alpha = 0$, we conclude that $F \in K(m, M)$ if α satisfies (3.2).

To establish the sharpness of the result we take

$$f(z) = \begin{cases} \int_{0}^{z} (1-bu)^{-(a+b)/b} du , \text{ when } m \neq 1 \\ \int_{0}^{z} e^{Mu} du , \text{ when } m = 1 \end{cases}$$

where

(3.6)
$$a = \frac{M^2 - m^2 + m}{M}$$
 and $b = \frac{m - 1}{M}$

It is easy to see that 1+zf''(z)/f'(z) maps U onto the disc centred at m and having radius M. It follows then from (3.3) that 1+zF''(z)/F'(z) maps U onto the disc centred at t and having radius T, when $\alpha > 0$. Now if $\alpha > 1$, none of the inequalities in (2.2) holds, and consequently the disc centred at t and having radius T is not contained in the disc centred at m and having radius M. Therefore $F \notin K(m,M)$ if $\alpha > 1$. Similarly we can show that $F \notin K(m,M)$ if $\alpha < -\phi$. Hence the result is sharp.

In the particular case when m = M and $m \to \infty$, K(m,M) is equal to the well known class K of convex functions. Hence the following result of Kim and Merkes [3] follows from Theorem 3.1.

COROLLARY 3.1. If $f \in K$, then the function F defined by (3.1) also belongs to K, provided $0 \le \alpha \le 1$. The result is sharp with the extremal function $f(z) = \int_{0}^{z} (1-u)^{-2} du$.

Very recently, Pandey and Bhargava [5] have shown that if $f \in K(m,M)$, then the function F defined by (3.1) also belongs to K(m,M) provided α is a complex number such that $|\alpha| \leq (1-b)/2$, where b is given by (3.6). We show below that their result is incorrect:

Let us consider the function

(3.7)
$$f(z) = \int_{0}^{z} (1-bu)^{-(a+b)/b} du$$

with m = .7 and M = .6, so that a = .95 and b = -.5. Evidently, $f \in K(.7,.6)$ and (1-b)/2 = .75. Now, by the abovementioned result of Pandey and Bhargava, $F \in K(.7, .6)$ provided $|\alpha| \le .75$. But, if we take $\alpha = -.75$, then from (3.1) and (3.7) we are led to

$$\left|1+z \frac{F''(z)}{F'(z)} - .7\right| = \left|-.75 \left\{\frac{1+.95z}{1+.5z}\right\} + 1.05\right|;$$

and at z = -.8 , the right hand side of this equation is equal to .75 . Thus we see that

$$1+z \frac{F''(z)}{F'(z)} - .7 > .6$$

at some point in the unit disc U. Therefore $F \notin K(.7,.6)$. Hence the result of Pandey and Bhargava [5] is incorrect.

We now proceed to improve and correct the result of Pandey and Bhargava [5] . First we prove:

THEOREM 3.2. If $f \in K(m,M)$, then the function F defined by (3.1) also belongs to K(m,M) provided α is a complex number satisfying

(3.8)
$$|\alpha| < 1$$
, $\frac{|1-\alpha|}{|1-\alpha|} \le \frac{M}{|m-1|} = \frac{1+\phi}{1-\phi}$, when $m \ne 1$

anđ

(3.9)
$$|\alpha| \le 1$$
 , when $m = 1$,

where $\phi = (M - |m - 1|)/(M + |m - 1|)$.

Proof. We have (as in Theorem 3.1)

$$1+z \; \frac{F''(z)}{F'(z)} = \alpha \; \{1+z \; \frac{f''(z)}{f'(z)} - m\} \; + \; (1-\alpha) \; .$$

Therefore, when $m \neq 1$, we obtain

$$\begin{vmatrix} 1+z \ \frac{F''(z)}{F'(z)} -m \end{vmatrix} = \begin{vmatrix} \alpha \{1+z \ \frac{f''(z)}{f'(z)} -m \} - (1-\alpha)(m-1) \end{vmatrix} \\ \leq |\alpha| \begin{vmatrix} 1+z \ \frac{f''(z)}{f'(z)} -m \end{vmatrix} + |1-\alpha||m-1| \\ < |\alpha|M+|1-\alpha||m-1| \\ \leq M , \end{vmatrix}$$

provided

$$|\alpha| < 1$$
 and $\frac{|1-\alpha|}{|1-\alpha|} \leq \frac{M}{|m-1|} = \frac{1+\phi}{1-\phi}$.

Further, when m=1, we obtain

216

$$\begin{vmatrix} 1+z \ \frac{f''(z)}{f'(z)} - 1 \end{vmatrix} = \begin{vmatrix} \alpha \{ 1+z \ \frac{f''(z)}{f'(z)} - 1 \} \end{vmatrix},$$

$$= |\alpha| \begin{vmatrix} 1+z \ \frac{f''(z)}{f'(z)} - 1 \end{vmatrix},$$

$$< |\alpha| M,$$

$$\leq M.$$

provided $|\alpha| \leq 1$. This completes the proof of the theorem.

Using the above theorem we now establish the following corollary which improves and corrects the result of Pandey and Bhargava [5]. It is worth noting that the technique employed by us is different; and the result is sharp also.

COROLLARY 3.2. If $f \in K(m,M)$, then the function F defined by (3.1) also belongs to K(m,M) provided α is a complex number satisfying (3.10) $|\alpha| \leq \phi$.

The result is sharp in the sense that the region given by (3.10) cannot be extended into any larger disc centred at the origin on the α -plane.

Proof. When m=1, the inequality (3.10) is identical with the inequality (3.9). We need therefore consider only the case when $m \neq 1$. In this case, from (3.8), we have

$$\frac{|1-\alpha|}{|1-\alpha|} \le \frac{1+\phi}{|1-\phi|}$$

This inequality is implied by

$$\frac{1+|\alpha|}{1-|\alpha|} \leq \frac{1+\phi}{1-\phi} ,$$

which is equivalent to

 $|\alpha| \leq \phi$.

Hence, by Theorem 3.2, $F \in K(m, M)$ if $|\alpha| \leq \phi$.

To show the sharpness of the inequality (3.10), let us assume that $F \in K(m,M)$ for all values of α lying in a larger disc $|\alpha| \leq \phi+s$, for some s > 0. Then, in particular, $F \in K(m,M)$ for all values of α lying in the annulus $\phi < |\alpha| \leq \phi+s$. From this it follows that when α is real and negative, then $F \in K(m,M)$ even if $-(\phi+s) \leq \alpha < \neg \phi$. But

this is contrary to the sharpness of $\alpha \ge -\phi$ in (3.2). Therefore the region given by (3.10) cannot be extended into any larger disc centred at the origin on the α -plane. Hence the result is sharp.

Remark. We could not establish the sharpness of Theorem 3.2 when $m \neq 1$. However the result is sharp for m=1 (as shown in Corollary 3.2). Therefore, it would be interesting to establish the sharpness of the inequality (3.8).

References

- Zbigniew Jerzy Jakubowski, "On the coefficients of starlike functions of some classes," Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 19 (1971), 811-815.
- [2] Zbigniew Jerzy Jakubowski, "On the coefficients of starlike functions of some classes," Ann. Polon. Math. 26 (1972), 305-313.
- [3] Y. J. Kim and E. P. Merkes, "On certain convex sets in the space of locally schlicht functions," Trans. Amer. Math. Soc. 196 (1974), 217-224.
- [4] Vinod Kumar and S. L. Shukla, "Jakubowski starlike integral operators," J. Austral. Math. Soc. (Ser. A), 37 (1984), 117-127.
- [5] R. K. Pnadey and G. P. Bhargava, "On convex and starlike univalent functions", Bull. Austral. Math. Soc. 28 (1983), 393-400.

Dr. Vinod Kumar

Department of Mathematics

Christ Church College

Kanpur-208001, India.

Dr. S. L. Shukla Department of Mathematics Janta College Bakewar-206124 Etawah, India.

218