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Summary, conclusions and outlook

23.1 General

Relativistic quantum field theory has been very successful in describing strong,
electromagnetic and weak interactions, in the region of small couplings by per-
turbation theory, within the framework of the standard model.

However, the region of strong coupling, like the hadronic spectrum and various
scattering phenomena of hadrons within QCD, is still largely unsolved.

A large variety of methods have been used to address this question, includ-
ing lattice gauge simulations, light-cone quantization, low energy effective
Lagrangians like the Skyrme model and chiral Lagrangians, large N approxima-
tion, techniques of conformal invariance, the integrable model approach, super-
symmetric models, string theory approach, QCD sum rules, etc. In spite of this
major effort the gap between the phenomenology and the basic theory has only
been partially bridged, and the problem is still open.

The goals of this book are to provide a detailed description of the tool box
of non-perturbative techniques, to apply them on simplified systems, mainly of
gauge dynamics in two dimensions, and to examine the lessons one can learn
from those systems about four-dimensional QCD and hadron physics.

The study of two-dimensional problems to improve the understanding of four-
dimensional physical systems was found to be fruitful. This follows two directions,
one is the utilization of non-perturbative methods on simpler setups and the
second is extracting the physical behavior of hadrons in one space dimension.

Obviously, physics in two dimensions is simpler than that of the real world
since the underlying manifold is simpler and since the number of degrees of
freedom of each field is smaller. There are some additional simplifying features
in two-dimensional physics. In one space dimension there is no rotation symmetry
and no angular momentum. The light-cone is disconnected and is composed of
left moving and right moving branches. Therefore, massless particles are either
on one branch or the other. These two properties are the basic building blocks
of the idea of transmutation between systems of different statistics. Also, the
ultra-violet behavior is more convergent in two dimensions, making for instance
QCD2 a superconvergent theory.

In this summary chapter we go over several notions, concepts and methods
with emphasis on the comparison between the two- and four-dimensional worlds
and what one can deduce about the latter from the former. In particular we deal
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408 Summary, conclusions and outlook

with conformal invariance, integrability, bosonization, solitons and topological
charges, confinement versus screening and finally the hadronic spectrum and
scattering.

23.2 Conformal invariance

From the outset there is a very dramatic difference between conformal invari-
ance in two and four dimensions. The former is characterized by an infinite-
dimensional algebra, the Virasoro algebra, whereas the latter is associated with
the finite-dimensional algebra of SO(4, 2). This basic difference stems from the
fact that whereas the conformal transformations in four dimensions are global,
in two dimensions the parameters of conformal transformations are holomorphic
functions (or anti-holomorphic), see Section 17.5 versus 2.1. Nevertheless there
are several features of conformal invariance which are common to the two cases.
We will now compare various aspects of conformal invariance in two and four
dimensions:

� The notion of a primary field and correspondingly a highest weight state is
used both in two-dimensional conformal field theories as well as for the four-
dimensional collinear algebra. It is expressed in the former as (17.38),

L0 [φ(0)|0>] = h[φ(0)|0>] Ln [φ(0)|0>] = 0, n > 0 (23.1)

and for the latter,

L0 [Φ(0)|0>] = j[Φ(0)|0>] L−[Φ(0)|0>] = 0. (23.2)

The difference is of course the infinite set of annihilation operators Ln

versus the single annihilation operator L− in four dimensions.
� The COPE, the conformal operator product expansion has a compact form in
two dimensional CFT (Section 2.12)

Oi(z, z̄)Oj (w, w̄) ∼
∑

k

Cijk (z − w)hk −hi −hj (z̄ − w̄)h̄k −h̄ i −h̄ jOk (w, w̄),

(23.3)
where Cijk are the product coefficients, while in four dimensions it reads,

A(x)B(0) =
∞∑

n=0

Cn

(
1
x2

)1/2(tA +tB −tn ) xn+s1 +s2 −sA −sB
−

B(jA − jB + jn , jB − jA + jn )

×
∫ 1

0
duu(jA −jB +jn −1)(1− u)(jB −jA +jn −1)Oj1 ,j2

n (ux−), (23.4)

where the definitions of the various quantities are in Chapter 17. Again there
is a striking difference between the simple formula in two dimensions and the
complicated one in four dimensions.
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23.2 Conformal invariance 409

� As an example let us compare the OPE of two currents. Recall from the dis-
cussion of Chapter 3 the expression in two dimensions reads,

Ja(z)Jb(w) =
kδab

(z − w)2 + i
fab

c Jc(w)
(z − w)

+ finite terms, (23.5)

for any non-abelian group, and in particular for the abelian case the second
term on the right-hand side is missing. For comparison the OPE of the trans-
verse components of the electromagnetic currents given in Chapter 17 takes
the form,

JT (x)JT (0) ∼∑∞
n=0 Cn

( 1
x2

)(6−tn )/2 (−ix−)n+1 Γ(2jn )
Γ(jn )Γ(jn )

∫ 1
0 du[u(1− u)]jn −1Q1,1

n (ux−).

(23.6)

� The conformal Ward identity associated with the dilatation operator in four
dimensions (17.60),

N∑
i

(lφ + γ(g∗) + xi∂i) <Tφ(x1)...φ(xN )>= 0, (23.7)

where lφ is the canonical dimension and γ(g∗) is the anomalous dimension,
seems very similar to the one in two dimensions,∑

i

(zi∂i + hi) <0|φ1(z1 , z̄1)...φn (zn , z̄n )|0>= 0. (23.8)

In both cases one has to determine the full quantum conformal dimensions of
the various operators. However, as was shown in Section 2.7, in certain CFT
models, like the unitary minimal models, there are powerful tools based on
unitarity which enable us to determine exactly the dimensions hi of all the
primary operators and hence all the operators of the model. On the other
hand, it is a non-trivial task to determine the anomalous dimensions in other
models in two dimensions, and of course four-dimensional operators. In certain
supersymmetric theories there are operators whose dimension is protected, but
generically one has to use perturbative calculations to determine the anomalous
dimensions of gauge theories to a given order in the coupling constant.

Using the Ward identity one can extract the form of the two-point function
of operators of spin s in four dimensions. It is given by,

<φ(x1)φ(x2)>= N2(g∗)(μ∗)−2γ (g∗)
[

1
(x1 − x2)2

]lφ +γ (g∗) ( (x1 − x2)+

(x1 − x2)−

)s

.

(23.9)

The corresponding two-point function in two dimensions, which depends only
on the conformal dimension of the operator h, reads,

G2(z1 , z̄1 , z2 , z̄2) ≡<0|φ1(z1 , z̄1)φ1(z2 , z̄2)|0> =
c2

(z1 − z2)2h1 (z̄1 − z̄2)2h̄1
.

(23.10)
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410 Summary, conclusions and outlook

� As for higher point functions, we have seen in Section 2.9 that one can use the
local Ward identities together with Virasoro null vectors to write down partial
differential equations. The result for a four-point function (2.63) was later used
to determine the four-point function of the Ising model (2.94). Two dimensional
conformal field theories are further invariant under affine Lie algebra transfor-
mations, and as we have shown in Section 3.6 those can be combined with
null vectors to derive the so-called Knizhnik–Zamolodchikov equations (3.69),
which were later used to solve for the four-point function of the SU(N) WZW
model in Section 4.4. These types of differential equations that fully determine
correlation functions are obviously absent in four-dimensional interacting con-
formal field theories.

23.3 Integrability

Integrability was discussed in Chapter 5 in the context of two-dimensional mod-
els and in Chapter 18 in four-dimensional gauge theories. For systems with a
finite number of degrees of freedom, like spin chain models, there is a finite num-
ber of conserved charges, equal of course to the number of degrees of freedom.
For integrable field theories there is an infinite countable number of conserved
charges. Furthermore, the scattering processes of those models always involve a
conservation of the number of particles.

In two dimensions we have encountered continuous integrable models like the
sine-Gordon model as well as discretized ones like the XXX spin chain model.
The integrable sectors of gauge dynamical systems discussed in Chapter 18 are
based on identifying an exact map between certain properties of the systems and
a spin chain structure. In two dimensions the spin chain models follow from a
discretization of the space coordinate, by placing a spin variable on each site
that can take several values and imposing periodicity. In the four-dimensional
N = 4 super YM theory discussed in Section 18.1 the spin chain corresponds to
a trace of field operators and in the process of high-energy scattering of Section
18.2 it is a “chain” of reggeized gluons exchanged in the t-channel of a scattering
process. A summary of the comparison among the basic two-dimensional spin
chain, the “spin chains” associated with the planar N = 4 SYM, and the high-
energy scattering in QCD, is given in Table 23.1. A powerful method to solve
all these spin chain models is the use of the algebraic Bethe ansatz. This was
discussed in detail for the the XXX1/2 model in Section 5.14. The solutions of
the energy eigenvalues needed for the high-energy scattering process was based
on generalizing this method to the case of spin s Heisenberg model (see Section
18.2) and for the N = 4 to the case of an SO(6) invariance.

There is one conceptual difference between the spin chains of the two-
dimensional models and those associated with the N = 4 SYM in four dimen-
sions. In the former the models are non conformal, involving a scale, and hence
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23.4 Bosonization 411

Table 23.1. Spin chain structure of the two-dimensional model and the
four-dimensional gauge systems of N = 4 SYM and of high-energy behavior

of scattering amplitudes in QCD.

Spin chain Planar High energy
N = 4 SYM scattering in QCD

Cyclic spin chain Single trace operator Reggeized guons in t-channel
Spin at a site Field operator SL(2) spin
Number of sites Number of operators Number of gluons
Hamiltonian Anomalous dilatation HBFKL

operator

Energy eigenvalue Anomalous dimension ∼ 1
λ

log A
log s

g−2δD
Evolution time Global time The total rapidity log s

Zero momentum U = 1 Cyclicity constraint

also with particles and an S-matrix. The integrable sectors of four-dimensional
gauge theories, however, are conformal invariant.

The study of integrable models in two dimensions is quite mature, whereas the
application of integrability to four-dimensional systems is at an infant stage. The
concepts of multi-local charges described in Section 5.11 and of quantum groups
discussed in Section 5.13 have been applied only slightly to gauge dynamical
systems in four dimensions.

23.4 Bosonization

Bosonization is the formulation of fermionic systems in terms of bosonic variables
and fermionization is just the opposite process. The study of bosonized physical
systems offers several advantages:

(1) It is usually easier to deal with commuting fields rather than anti-commuting
ones.

(2) In certain examples, like the Thirring model, the fermionic strong coupling
regime turns into the weak coupling one in its bosonic version, the sine-
Gordon model (see Section 6.2).

(3) The non-abelian bosonization, especially in the product scheme (see Section
6.3.4), offers a separation between colored and flavored degrees of freedom,
which is very convenient for analyzing low lying spectrum.

(4) Baryons composed of NC quarks are a many-body problem in the fermion
language, while simple solitons are in the boson language.

(5) One loop fermionic computations involving the currents turn into tree level
consideration in the bosonized version. The best-known example of the latter
are the chiral (or axial) anomalies (see Section 9.1).
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In four dimensions, spin is obviously non-trivial and one cannot constitute
generically a bosonization equivalence. However, in certain circumstances a four-
dimensional system can be described approximately by fields that depend only on
the time and on one space direction. In those cases one can apply the bosonization
technique. Examples of such scenarios are monopole induced proton decay, and
fractional charges induced on monopoles by light fermions. In these cases the
relevant degrees of freedom are in an s-wave and hence taken to depend only
on the time and the radial direction. This enables one to use the corresponding
bosonized field. There is a slight difference with two dimensions, as the radial
coordinate goes from zero to infinity, so “half” a line. Appropriate boundary
conditions enable us to use a reflection, so as to extend to a full line.

23.5 Topological field configurations
� The topological charges in any dimensions are conserved regardless of the equa-
tions of motion of the corresponding systems. In two dimensions it is very easy
to write down a current which is conserved without the use of the equations of
motion. This is referred to as a topological conservation. Consider a scalar field
φ or its non-abelian analog φa that transforms in the adjoint representation
of a group, then the following currents are abelian and non-abelian conserved
currents,

Jμ = εμν ∂ν φ Ja
μ = εμν ∂ν φa . (23.11)

Recall that for a system that admits, for instance an abelian case, also a current
Jμ = ∂μφ that is conserved upon the use of the equations of motion, one can
then replace the two currents with left and right conserved currents J± = ∂±φ

or J = ∂φ and J̄ = ∂̄φ, as was discussed in Chapter 1. The charge associated
with the topological conserved current is given by,

Qtop =
∫

dxφ′ = [φ(t,+∞)− φ(t,−∞)] ≡ φ+ − φ−, (23.12)

where the space dimension is taken to be R. For a compactified space dimen-
sion, namely an S1 this charge vanishes, except for cases where the field is
actually an angle variable, in which case the charge is 2π. The latter appears
in the case of U(1) gauge theory in two dimensions, where there is a winding
number.

� Obviously one cannot have such topologically conserved currents and charges in
four dimensions. However, for theories that are invariant under a non-abelian
group, one can construct also in four dimensions a topological current and
charge, as for the cases of Skyrmions, magnetic monopoles and instantons. For
the Skyrmions the topological current is given by,

Jμ
skyre =

iεμνρσ

24π2 Tr [Lν LρLσ ]. (23.13)

https://doi.org/10.1017/9781009401654.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.024


23.5 Topological field configurations 413

Table 23.2. Topological classical field configurations in two and four dimensions

classical field dim. map topological current

soliton two 1 εμν ∂ν φ

baryon two S1 → S1 εμν T r[g−1∂ν g]

Skyrmion four S3 → S3 iεμ ν ρ σ

24π 2 T r[Lν LρLσ ]

monopole four S2
spa ce → S2

G/H
1

8π
εμν ρσ εabc ∂ν Φ̂a ∂ρ Φ̂b ∂σ Φ̂c

instanton four S3
s → S3

g
iεμ ν ρ σ

16π 2 T r[Aν ∂ρAσ + 2
3 Aν AρAσ ]

� The topological charges, for compact spaces, are the winding numbers of the
corresponding topological configurations. For a compact one space dimension,
we have the map of S1 → S1 related to the homotopy group π1(S1). In two
space dimensions, the windings are associated with the map S2 → S

G/H
2 , as

for the magnetic monopoles. For three space dimensions, it is S3 → S3 for
the Skyrmions at Nf = 2, and the non-abelian instantons for the gauge group
SU(2). The topological data of the various models is summarized in Table 23.2.

� According to Derrick’s theorem (see Section 5.3), for a theory of a scalar field
with an ordinary kinetic term with two derivatives, and any local potential at
D ≥ 2, the only non singular time-independent solutions of finite energy are the
vacua. However, as we have seen in Chapters 20, 21 and 22, there are solitons
in the form of Skyrmions and monopoles and instantons. Those configurations
bypass Derrick’s theorem by introducing higher derivative terms or including
non-abelian gauge fields.

� As was emphasised in Chapter 20, the extraction of the baryonic properties in
the Skyrme model is very similar to the one for the baryons in the bosonized
theory in two dimensions. Unlike the latter which is exact in the strong cou-
pling limit, one cannot derive the former starting from the underlying theory.
Another major difference between the two models is of course the existence of
angular momentum only in the four-dimensional case.

� A non-trivial task associated with topological configurations is the construc-
tion of configurations that carry multipole topological charge, for instance a
multi-baryon state both of the bosonized QCD2 as well as of the Skyrme
model, a multi-monopole solution and a multi-instanton solution. For the
two-dimensional baryons (as discussed in Section 13.6) the construction is a
straightforward generalization of the configuration of baryon number one. For
the multi-monopole solutions we presented Nahm’s construction, and for the
multi-instantons the ADHM construction. These constructions, which are in
fact related, are much more complicated than that for the two-dimensional
muti-baryons.

1 Depends on the type of the soliton. See Section 5.3.
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� A very important phenomenon that occurs in both two and four dimensions
is the strong-weak duality, and the duality between a soliton and an elemen-
tary field. In two dimensions we have encountered this duality in the relation
between the Thirring model and the sine-Gordon model, where the coupling
of the latter β is related to that of the former g as (6.27),

β2

4π
=

1
1 + g

π

. (23.14)

This also relates the elementary fermion field of the Thirring model with the
soliton of the sine-Gordon model. In particular for g = 0 corresponding to
β2 = 4π, the Thirring model describes a free Dirac fermion, while the soliton
of the corresponding sine-Gordon theory is the same fermion in its bosonization
disguise. An analog in four dimensions is the Olive–Montonen duality discussed
in Section 21.8, which relates the electric charge e with the magnetic one
eM = 4π

e , where the former is carried by the elementary states W± and the
latter by the magnetic monopoles.

23.6 Confinement versus screening

Naive intuition tells us that dynamical quarks in the fundamental representa-
tion can screen external sources in the fundamental representation, dynamical
adjoint quarks can screen adjoint sources, but that dynamical adjoint cannot
screen fundamentals. The picture that emerged from our two dimensional calcu-
lations (Chapter 14) showed that this was not the case. We found that massless
adjoint quarks could screen an external source in the fundamental representa-
tion. Moreover we have seen that any massless dynamical field will necessarily
be in the screening phase. The argument for that was that in all cases we have
considered we have found that the string tension is proportional to the mass of
the dynamical quarks,

σ ∼ mg, (23.15)

where m is the mass of the quark and g is the gauge coupling, and hence for the
massless case it vanishes. This was shown in Chapter 14 based on performing a
chiral rotation that enabled us to eliminate the external sources and computing
the string tension as the difference between the Hamiltonian of the system with
the external sources and the one without them namely (14.12),

σ =<H> − <H0> . (23.16)

It seems as though the situation in two dimensions is very different from that in
four dimensions. From the onset there is a dramatic difference between two and
four dimensions relating to the concept of confining theory. In two dimensions
both the Coulomb abelian potential and the non-abelian one are linear with
the separation distance L, whereas obviously in four dimensions the Coulomb
potential between two particles behaves as 1/L. The confining potential is linear
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23.6 Confinement versus screening 415

with L in both two and four dimensions. However, that does not explain the
difference between two and four dimensions, it merely means that in two dimen-
sions the coulomb and confining potentials behave in the same manner.2 The
determination of the string tension in two dimensions cannot be repeated in four
dimensions. The reason is that in the latter case the anomaly is not linear in the
gauge field and thus one cannot use the chiral rotation to eliminate the external
quark anti-quark pair. That does not imply that the situation in four dimensions
differs from the two-dimensional one, it just means that one has to use different
methods to compute the string tension in four dimensions.

What are the four-dimensional systems that might resemble the two-
dimensional case of dynamical adjoint matter and external fundamental quarks?
A system with external quarks in the fundamental representation in the context
of pure YM theory seems a possible analog since the dynamical fields, the gluons,
are in the adjoint representation, though they are vector fields and not fermions.
An alternative is the N = 1 SYM where in addition to the gluons there are also
gluinos which are Majorana fermions in the adjoint representation. Both these
cases should correspond to the massless adjoint case in two dimensions. The lat-
ter admits a screening behavior where as the four-dimensional models seem to be
in the confining phase. This statement is supported by several different types of
calculations in particular for the non supersymmetric case this behavior is found
in lattice simulations.

At this point we cannot provide a satisfactory intuitive explanation why the
behavior in two and four dimensions is so different. There is also no simple
picture of how the massless adjoint dynamical quarks in two dimensions are able
to screen external charges in the fundamental representation.

It is worth mentioning that there is ample evidence that four-dimensional
hadronic physics is well described by a string theory. This is based for instance
on realizing that mesons and baryons in nature admit Regge trajectory behavior
which is an indication of a stringy nature. Any string theory is by definition a
two-dimensional theory and hence a very basic relation between four-dimensional
hadron physics and two-dimensional physics.

In addition to the ordinary string tension which relates to the potential
between a quark and anti-quark in the fundamental representation, one defines
the k string that connects a set of k quarks with a set of k anti-quarks. This
object has been examined in four-dimensional YM as well as four-dimensional
N = 1 SYM. These two cases seem to be the analog of the two-dimensional QCD
theory with adjoint quarks and with external quarks in a representation that is
characterized by k boxes in the Young tableau description. In Chapter 14 we have
derived an expression for the string tension as a function of the representation
of the external and dynamical quarks and in particular for dynamical adjoint

2 Note that the linear potential in two dimensions is already there at lowest order, while
obviously in four dimensions it is a highly non-perturbative effect.
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fermions and external quarks in the k representation. If there is any correspon-
dence between the four-dimensional adjoint matter field and the two-dimensional
adjoint quarks it must be with massive adjoint quarks since for the massless case,
as was mentioned above, the two-dimensional string tension vanishes whereas the
four-dimensional one does not. Thus one may consider a correspondence for a
softly broken N = 1 case where the gluinos are massive.

In two dimensions for the pure YM case we found that the string tension
behaves like σ ∼ g2k2

ext whereas a Wilson line calculation yields σ ∼ g2C2(R)
where C2(R) is the second Casimir operator in the R representation of the
external quarks. For the QCD2 case of general k external charges and adjoint
dynamical quarks, one can derive from (14.49) that,

σ2d
k ∼ sin2

(
πk

Nc

)
, (23.17)

whereas in four dimensions it is believed that for general k, the string tension
either follows a Casimir law or a sinusoidal rule as follows,

σcas
k ∼ k(Nc − k)

Nc
σsin

k ∼ sin
(

πk

Nc

)
. (23.18)

It is an open problem which of these holds.
As expected all these expressions are invariant under k → N − k which cor-

responds for antisymmetric representations to replacing a quark with an anti-
quark.

23.7 Hadronic phenomenology of two dimensions versus
four dimensions

QCD2 was addressed first in the fermionic formulation. In his seminal work ’t
Hooft deduced the mesonic spectrum in the large NC limit as is described in
Chapter 10. We further presented three additional approaches to the hadronic
spectra in two dimensions, the currentization method for massless quarks for the
entire plane of NC and Nf , the DLCQ approach to extract the mesonic spectrum
for the case of fundamental as well as adjoint quarks and finally the bosonized
formulation in the strong coupling limit to determine the baryonic spectrum. As
for the four-dimensional hadronic spectrum we described the use of the large NC

planar limit and the analysis of the baryonic world using the Skyrme model. It
is worth mentioning again that whereas in the four-dimensional case the Skyrme
approach is only an approximated model derived by an “educational guess”, in
two dimensions the action in the strong coupling regime is exact.

23.7.1 Mesons

As was just mentioned the two-dimensional mesonic spectrum was extracted
using the large NC approximation in the fermionic formulation for Nf = 1
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(’t Hooft model), the currentization for massless quarks and the DLCQ approach
for both cases of quarks in the fundamental and the adjoint representation. For
the particular region of NC >> Nf and m = 0 the fermionic large Nc and the
currentization treatments yielded identical results. In fact this result is achieved
also using the DLCQ method for adjoint fermions upon a truncation to a single
parton and replacing g2 with 2g2 (see (12.42)). For massive fundamental quarks
the DLCQ results match very nicely those of lattice simulations and the large
Nc calculations as can be seen from Figs (12.1) and (12.2).

In all these methods the corresponding equations do not admit exact ana-
lytic solutions for the whole range of parameters and thus one has to resort to
numerical solutions. However, in certain domains one can determine the analytic
behavior of the wavefunctions and masses.

The spectrum of mesons in two dimensions is characterized by the dependence
of the meson masses Mmes on the gauge coupling g, the number of colors Nc ,
the number of flavors Nf , the quark mass mq and the excitation number n. In
four-dimensional QCD the meson spectra depend on the same parameters apart
from the fact that ΛQC D , the QCD scale, is replacing the two-dimensional gauge
coupling and of course some additional quantum numbers. The following lines
summarize the properties of the spectrum

� The highly excited states n� 1, are characterized by,

M 2
mes ∼ πg2Ncn. (23.19)

This seems to fit the behaviors of mesons in nature. This behavior is referred
to as a Regge trajectory and it follows easily from a bosonic string model of
the mesons. Following this analogy, the role of the string tension in a two-
dimensional model is played by g2Nc . This seems to be in contradiction with
the statement that the string tension is proportional to mqg, as seen in the
discussion of screening versus confinement.

It is very difficult to derive the Regge trajectory behavior from direct cal-
culations in four-dimensional QCD.

� The opposite limit of low-lying states and in particular the ground state can
be deduced in the limit of large quark masses mq � g and small quark masses
g � mq . For the ground state in the former limit we find,

M 0
mes
∼= mq1 + mq2 , (23.20)

where mqi
are the masses of the quark and anti-quark. In the opposite limit of

mq � g

(M 0
mes)

2 ∼=
π

3

√
g2Nc

π
(m1 + m2). (23.21)

For the special case of massless quarks we find a massless meson. This is very
reminiscent of the four-dimensional picture for the massless pions. For small
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masses this is similar to the pseudo-Goldstone boson relation where,

m2
π ∼

<ψ̄ψ>

f 2
π

(m1 + m2). (23.22)

Note that in two dimensions the massless mesons decouple.
� The ’t Hooft model cannot be used to explore the dependence on Nf the number
of flavors. This can be done from the ’t Hooft-like equations derived in Chapter
11. It was found that for the first massive state there is a linear dependence of
the meson mass squared on Nf

M 2
mes ∼ Nf . (23.23)

We are not aware of a similar behavior of the mesons in four dimensions.
� The ’t Hooft model (Chapter 10) provides the solution of the meson spectrum
in the planar limit in two dimensions. The planar, namely large Nc limit, in
four dimensions is too complicated to be similarly solved. As we have seen in
Chapter 19 one can extract the scaling in Nc dependence of certain hadronic
properties like the mass the size and scattering amplitude but the full determi-
nation of the hadronic spectrum and scattering is still an unresolved mystery.

� Tremendous progress has been made in the understanding of the supersym-
metric theory of N = 4 partly by demonstrating that certain sectors of it can
be described by integrable spin chain models (Section 18.1).

� As was demonstrated in Chapter 12 the DLCQ method has been found very
effective to address the spectrum of mesons of two-dimensional QCD. This
raises the question of whether one can use the DLCQ method to handle the
spectrum of four-dimensional QCD. This task is clearly much more difficult.
On route to the extraction of the hadronic spectrum of QCD4 an easier system
has been analyzed. It is that of the collinear QCD (see Chapter 17) where in the
Hamiltonian of the system one drops off all interaction terms that depend on
the transverse momenta. In this effective two-dimensional setup the transverse
degrees of freedom of the gluon are retained in the form of two scalar fields.
This system which was not described in the book has been solved in [14] where
a complete bound and continuum spectrum was extracted as well as the Fock
space wavefunctions.

23.7.2 Baryons

In Chapter 13 we have described the spectrum of baryons in multiflavor two-
dimensional QCD in the strong coupling limit mq

ec
→ 0. The four-dimensional

baryonic spectrum was discussed in the large Nc limit in Chapter 19 and using
the Skyrme model approach in Chapter 20. We would like now to compare these
spectra and to investigate the possibility of predicting four-dimensional baryonic
properties from the simpler two-dimensional model. In the former case the mass
is a function of the QCD scale ΛQC D , the number of colors Nc and the number
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Table 23.3. Scaling of baryon masses with Nc in two and four
dimensions

two dimensions four dimensions

Classical baryon mass Nc Nc

Quantum correction N 0
c N−1

c

of flavors Nf and in the latter it is a function of ec ,Nc and Nf . Thus it seems
that the dimensionful gauge coupling in two dimensions is the analog of ΛQC D

in four dimensions.

� In two dimensions the mass of the baryon was found to be,

E = 4m

√
2Nc

π
+ m
√

2

√(
π

Nc

)3 [
C2 −N 2

c
(Nf − 1)

2Nf

]
, (23.24)

where the classical mass m is given by

m =

[
Nccmq

(
ec

√
Nf√

2π

)ΔC
] 1

1 + Δ C

, (23.25)

with Δc = N 2
c −1

N c (N c +N f )
. Due to the fact that in two dimensions there is no spin,

the structure of the spectrum with respect to the flavor group is obviously
different in two and four dimensions. For instance the lowest allowed state for
Nc = Nf = 3 is in two dimensions the totally symmetric representation 10,
whereas it is the mixed representation 8 in four dimensions.

� Let us discuss now the scaling with Nc in the large Nc limit. The classical
term behaves like Nc , while the quantum correction like 1. This classical result
is in accordance with four dimensions, derived when the large N expansion is
applied to the baryonic system (see Chapter 19), that the baryon mass is linear
in Nc and with the Skyrmion result (see Chapter 20). However, whereas in two
dimensions the quantum correction behaves like N 0

c , namely suppressed by a
factor of 1

Nc
compared to the classical term, in four dimensions it behaves like

1
Nc

namely a suppression of 1
N 2

c
. This is summarized in Table 23.3.

� In terms of the dependence on the number of flavors, it is interesting to note
that both in two dimensions and in four dimensions, the contribution to the
mass due to the quantum fluctuations has a term proportional to the second
Casimir operator associated with the representation of the baryonic state under
the SU(Nf ) flavor group (compare (23.24) with (20.68)).

� Another property of the baryonic spectrum that can be compared between the
two- and four-dimensional cases is the flavor content of the various states. In
Chapter 13 we have computed the ūu, d̄d and s̄s content for the Δ+ and Δ++

states. Recall that in the two-dimensional model for Nc = Nf = 3 we do not
have a state in the 8 representation but only in the 10 so strictly speaking there
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Table 23.4. Flavor content of two-dimensional and four-dimensional baryons

two dimensions four dimensions
state value state value

〈ūu〉 Δ+ 1
2 p 2

5〈
d̄d
〉

Δ+ 1
3 p 11

30

〈s̄s〉 Δ+ 1
6 p 7

30

〈s̄s〉 Δ++ 1
6 Δ 7

24

〈s̄s〉 Ω− 5
24

is no exact analog of the proton. Instead we take the charge = +1Δ+ as the
two-dimensional analog of the proton. In the Skyrme model one can compute
in a similar manner the flavor content of the four-dimensional baryons. The
two- and four-dimensional states compare as is summarized in Table 23.4.

23.8 Outlook

We can imagine future developments associated with the topics covered in the
book in three different directions: Further progress in the application of the
methods discussed in the book to unravel the mysteries of gauge dynamics in
nature; applications of the methods in other domains of physics not related to
four-dimensional gauge theories; and improving our understanding of the strong
interaction and hadron physics due to other non-perturbative techniques that
are not discussed in the book. Let us now briefly fantasize on hypothetical devel-
opments in those three avenues.

23.8.1 Further progress in the application of the methods

discussed in the book

� A lesson that follows from the book is that the exploration of physical systems
on one space dimension is both simpler to handle and sheds light on the real
world so there are plenty of other unresolved questions that could be explored
first in two dimensions. This includes exploration of the full standard model
and the physics beyond the standard model including supersymmetry and its
dynamical breaking, large extra dimensions, compositeness etc.

� There has been tremendous development in recent years in applying meth-
ods of integrable models and in particular of spin chains, like the thermal
Bethe ansatz, to N = 4 SYM theory, namely, in the context of supersymmetric
conformal gauge theory. We have no doubt that there will be further develop-
ment in computing the anomalous dimensions of gauge invariant operators and
correlators.
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� Moreover, one can identify in a similar manner to N = 4 SYM theory spin
chain structures in gauge theories which are confining and with less or even
no supersymmetries. In that case the spin chain Hamiltonian would not corre-
spond to the dilatation operator but rather be associated with the excitation
energies of hadrons.

� It is plausible that the full role of magnetic monopoles and of instantons has
not yet been revealed. They have already had several reincarnations and there
may be more. For instance there was recently a proposal to describe baryons
as instantons which are solitons of a five-dimensional flavor gauge theory in
curved five dimensions.

23.8.2 Applications to other domains

� A very important application of two-dimensional conformal symmetry has been
to superstring theories. A great part of the developments in superstring theories
is attributed to the infinite-dimensional conformal symmetry algebra. In fact
it went in both directions and certain progress in understanding the structure
of conformal invariance has emerged from the research of string theories. A
similar symbiotic evolution took place with regard to the affine Lie algebras.

� String theories and in particular the string theory on AdS5 × S5 have recently
been analyzed using the tools of integrable models like mapping to spin chains,
using the Bethe ansatz equations, identifying a set of infinitely many conserved
charges and using structure of Yangian symmetry.

� Spin chain models have been suggested to describe systems of “real” spins in
condensed matter physics. As was discussed in this book the application of
the corresponding tools to field theory systems has been quite fruitful. The
opposite direction will presumably also take place and the use of properties
of integrability that were understood in field theories will shed new light on
certain condensed matter systems.

� The application of conformal invariance to condensed matter systems at crit-
icality has a long history. There has been recently an intensive effort to fur-
ther develop the understanding of systems like various superconductors, the
fractional Hall effect and other systems using modern conformal symmetry
techniques.

23.8.3 Developments in gauge dynamics due to other methods

� An extremely important framework for analyzing gauge theories has been
supersymmetry. Regardless if it is realized in nature or not, it is evident that
there are more tools to handle supersymmetric gauge theories and hence they
are much better understood than non supersymmetric ones. One can gain
novel insight about non supersymmetric theories by introducing supersymme-
try breaking terms to well understood supersymmetric models. For instance

https://doi.org/10.1017/9781009401654.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.024


422 Summary, conclusions and outlook

one can start with the Seiberg Witten solution of N = 2 [192] where the struc-
ture of vacua is known and extract confinement behavior in N = 1 and non
supersymmetric theories.

� A breakthrough in the understanding of gauge theories in the strong coupling
regime took place with the discovery by Maldacena of the AdS/CFT holo-
graphic duality [158]. The strongly coupled N = 4 in the large N and large
’t Hooft parameter λ is mapped into a weakly curved supergravity background.
Thousands of research papers that followed develop this map in many different
directions and in particular also in relation to the pure YM theory and QCD
in four dimensions. There is very little doubt that further exploration of the
duality will shed new light on QCD and on hadron physics.

� String theory has been born as a possible theory of hadron physics. It then
underwent a phase transition into a candidate for the theory of quantum grav-
ity and even a unifying theory for everything. In recent years, mainly due to
the AdS/CFT duality there is a renaissance of the idea that hadrons at low
energies should be described as strings. This presumably combined with the
duality seems to be a useful tool that will improve our understanding of gauge
dynamics.

� The computations of scattering amplitudes in gauge theories has been boosted
in recent years due to various developments including the use of techniques
based on twistors, on a novel T-duality in the context of the Ads/CFT duality
and on a conjectured duality between Wilson lines and scattering amplitudes.
One does not need a wild imagination to foresee further progress in the industry
of computing scattering amplitudes.

To summarize, non-perturbative methods have always been very important tools
in exploring the physical world. We have no doubt that they will continue to be a
very essential ingredient in future developments of science in general and physics
in particular.
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