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The Dirichlet Problem for the Slab with
Entire Data and a Difference Equation for
Harmonic Functions

Dmitry Khavinson, Erik Lundberg, andHermann Render

Abstract. It is shown that the Dirichlet problem for the slab (a, b) ×Rd with entire boundary data
has an entire solution. _e proof is based on a generalized Schwarz re�ection principle. Moreover,
it is shown that for a given entire harmonic function g, the inhomogeneous diòerence equation
h(t + 1, y) − h(t, y) = g(t, y) has an entire harmonic solution h.

1 Introduction

It is well known that the Dirichlet problem for unbounded domains diòers in many
respects from the case of bounded domains due to the non-uniqueness of solutions.
An excellent discussion of the Dirichlet problem for general unbounded domains can
be found in [10].

Maybe the simplest example of this kind is the Dirichlet problem for the strip
(a, b) × R that was considered by Widder in [24]; see also [6]. A discussion of the
Dirichlet problem for half-spaces can be found in [9,22], and for a cylinder in [20].

In this paper we are concerned with the harmonic extendibility of the solution of
the Dirichlet problem for entire data on the slab (see [5])

Sa ,b ∶= (a, b) ×Rd .
We say that a function f ∶Rd → C is entire if there exists an analytic function

F∶Cd → C such that F(x) = f (x) for all x ∈ Rd . _us, an entire function f ∶Rd → C
is real analytic, and it possesses an everywhere convergent power series expansion. It
is well known that every harmonic function h∶Rd → C is entire.

Our ûrst main result in this paper is the following theorem.

_eorem 1.1 Let h be a solution of the Dirichlet problem for the slab Sa ,b for entire
data f0, f1∶Rd → C; i.e., h is harmonic on Sa ,b and limt→a h(t, y) = f0(y) and
limt→b h(t, y) = f1(y). _en h extends to all of Rd+1 as a harmonic function.

A similar result holds for the Dirichlet problem for the ellipsoid: H. S. Shapiro
and the ûrst author established in [18] that for each entire data function there exists a
solution of the Dirichlet problem that extends to a harmonic function deûned onRd ;
see also [2] for further extensions. For the case of a cylinder with ellipsoidal base it

Received by the editors February 4, 2016; revised February 29, 2016.
Published electronically April 19, 2016.
AMS subject classiûcation: 31B20, 31B05.
Keywords: re�ection principle, entire harmonic function, analytic continuation.

https://doi.org/10.4153/CMB-2016-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-018-x


_e Dirichlet Problem for the Slab 147

is not yet known whether for any entire data function there exists an entire harmonic
solution; see [11,19] forpartial results. We refer the reader to a discussion in [7,14,17,21]
regarding the question of which domains Ω allow entire extensions for entire data.
From _eorem 1.1 we will derive our secondmain result. (_e related problem of

studying entire extensions of solutions to the Cauchy problem is discussed in [16,23].

_eorem 1.2 If g∶R ×Rd → C is harmonic, then the diòerence equation

h(t + 1, y) − h(t, y) = g(t, y)
has a harmonic solution h∶R ×Rd → C.

Let us recall some notations and deûnitions. A function f ∶Ω → C deûned on a
domain Ω in the Euclidean space Rd is called harmonic if f is twice continuously
diòerentiable and ∆ f (x) = 0 for all x ∈ Ω, where

∆ = ∂2

∂x2
1
+ ⋅ ⋅ ⋅ + ∂2

∂x2
d

is the Laplace operator. We also write ∆x instead of ∆ to indicate the variables for
diòerentiation. We say that a function g∶R ×Rd → C is even (resp. odd) at t0 if

g(t0 + t, y) = g(t0 − t, y),
and g(t0 + t, y) = −g(t0 − t, y), respectively, for all t ∈ R and y ∈ Rd .

2 The Dirichlet Problem on the Slab with Entire Data

Suppose h∶ [a, b]×Rd → C is continuous and harmonic in the open slab (a, b)×Rd
such that h(a, y) = h(b, y) = 0 for all y ∈ Rd . _en it is awell known consequence of
the Schwarz re�ection principle that h extends to a harmonic function on Rd+1 that
is periodic in the variable t with period 2(b − a), i.e.,

h( t + 2(b − a), y) = h(t, y).
In order to obtain a similar resultwith arbitrary entire boundary data,we need the

following extension of the Schwarz re�ection principle.

_eorem 2.1 Suppose that Ω is a domain in Rd+1 such that for each x =
(x1 , . . . , xd+1) ∈ Ω the vector x̃ = (−x1 , x2 , . . . , xd+1) ∈ Ω, and let Ω+ ,Ω0 ,Ω− de-
note the sets of points x ∈ Ω for which x1 is positive, zero, and negative (respectively).
Suppose that y ↦ F(y) for y = (x2 , . . . , xd+1) ∈ Rd is an entire function, and assume
that h is harmonic on Ω− such that for all y ∈ Ω0 we have h(x)→ F(y) as x → y ∈ Ω0 .
_en h has a harmonic extension to Ω.

Proof First, we recall that the Cauchy problem for Laplace’s equation with entire
data posed on a hyperplane has a unique entire solution. As stated in [15, p. 80, Ex-
ample 11.2], this fact can be proved using the Bony–Schapira theorem or the Cauchy–
Kovalevskaya theorem with estimates [15, _m. 2.1] (cf. [12, Ch. IX]). We now pro-
vide some details regarding the latter approach. Using the notation in [15,_m. 2.1],
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the coeõcients of the diòerential operator and the data are all analytic in a polydisk
D(0, R) of radius R for every R. Given 0 < t < 1, [15,_m. 2.1] states that the solution
is holomorphic in a polydisk of radius tR in each coordinate except the last,which has
radius δtR, and δ > 0 depends on the size of the modulus of each coeõcient in the
polydisk D(0, R) but not on the size of the data. Since each coeõcient is constant, the
supremum of themodulus of each coeõcient over the polydisk D(0, R) is a constant
independent of R, and this implies that δ is independent of R. Hence, letting R tend
to inûnity we obtain the desired result.
Applying this fact, we have in particular that there is a unique entire harmonic

function H such that H(0, y) = F(y) and ∂
∂x H(0, y) = 0 for all y ∈ Rd . Moreover,

from the uniqueness part of the Cauchy–Kovalevskaya _eorem, it follows that H is
even at t0 = 0, since H(−t, y) solves the same Cauchy problem as H(t, y). Consider
the function

f (t, y) ∶= h(t, y) −H(t, y)
for (t, y) ∈ Ω− . _en for each y ∈ Rd , we have f (t, y) → 0 as t → 0, and by the
Schwarz re�ection principle (see [3, p. 8]) f extends to a harmonic function f̃ on Ω
by the formula f̃ (t, y) = − f (−t, y) for all (t, y) ∈ Ω+ . _en

h̃(t, y) ∶= f̃ (t, y) +H(t, y)
is a harmonic extension of h from Ω− to Ω, and for t > 0 we have

(2.1) h̃(t, y) = f̃ (t, y)+H(t, y) = − f (−t, y)+H(t, y) = −h(−t, y)+ 2H(t, y).

Our ûrst main result stated in the introduction is a consequence of the next theo-
rem.

_eorem 2.2 Assume that h ∈ C([a, b]×Rd) is harmonic in the slab (a, b)×Rd such
that y ↦ h(a, y) and y ↦ h(b, y) are entire. _en there exists a harmonic extension
h̃∶Rd+1 → C.

Proof _e following provides an inductive step.

Claim. _ere is an extension h̃ ∈ C([a, 2b − a] × Rd) of h which is harmonic in
(a, 2b − a) ×Rd such that y ↦ h̃(2b − a, y) is entire.

Using the claim and induction, one obtains a harmonic extension on

( a, b + n(b − a)) ×Rd

for each natural number n such that y ↦ h̃(a + n(b − a), y) is entire. Similarly, there
is a harmonic extension on (a−n(b− a), b)×Rd for each natural number n, and the
proof is complete.

In order to establish the claim, we assume that a < b = 0. _eorem 2.1 provides an
extension h̃(t, y) of h(t, y) to [a,−a] × Rd . Moreover, from the proof of _eorem
2.1, h̃(t, y) is given by equation (2.1)

h̃(t, y) = −h(−t, y) + 2H(t, y),
where H is an entire harmonic function. _is implies that the restriction h̃(−a, y) is
entire, since h(a, y) is assumed entire, and the result then follows.

https://doi.org/10.4153/CMB-2016-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-018-x


_e Dirichlet Problem for the Slab 149

Corollary 2.3 Given entire functions f0 , f1∶Rd → C, there exists a harmonic function
h∶R ×Rd → C such that h(a, y) = f0(y) and h(b, y) = f1(y) for all y ∈ Rd .

Proof It is known that the Dirichlet problem for the slab with continuous data has
a solution h; see e.g., [10]. By_eorem 2.2 the function h has an entire extension.

3 The Difference Equation for Harmonic Functions

We recall from complex analysis [4, p. 407] that the inhomogeneous diòerence equa-
tion

(3.1) f (z + 1) − f (z) = G(z)

for a given entire functionG(z) has an entire solution f (z). _is is a classical fact, and
the solution given in [4, p. 407] uses Bernoulli polynomials, an idea that goes back to
the work of Guichard, Appel, andHurwitz more than a century ago (see [1, 13]).

Taking the real part of both sides and recalling that any harmonic function g(t, y)
in the plane is the real part Re {G(t + iy)} of some entire function G(z), it follows
that the diòerence equation

(3.2) h(t + 1, y) − h(t, y) = g(t, y)

for a given harmonic function g on R2 has a harmonic solution h deûned on R2 .
In this section, we will generalize this result to all dimensions of the variable y ∈

Rd . Our approach is based on solving the Dirichlet problem for the slab [0, 1/2]×Rd ,
and thuswe do not need special functions as in the above-mentioned classical studies.

It is a remarkable fact that equation (3.1) can be solved for meromorphic functions
aswell. Itwould be interesting to extend our results to include the diòerence equation
(3.2) for g with singularities (say of a controlled type).
As an intermediate step toward solving the diòerence equation (3.2), we provide a

solution in the case when g(t, y) is even.

_eorem 3.1 Let g∶R ×Rd → C be harmonic and even. _en there exists an entire
harmonic solution of the diòerence equation

h(t + 1, y) − h(t, y) = g(t, y).

Namely, any solution h(t, y) of the Dirichlet problem for the slab [0, 1/2]×Rd with data

h(0, y) = − 1
2
g(0, y) and h( 1

2
, y) = 0

for all y ∈ Rd induces such an entire harmonic solution of the diòerence equation.

Proof By Corollary 2.3 there exists an entire harmonic function h(t, y) such that
h(0, y) = − 1

2 g(0, y) and h( 1
2 , y) = 0. _e second of these two equations implies, by

the Schwarz re�ection principle, that

(3.3) h( 1
2
+ t, y) = −h( 1

2
− t, y) .
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Inserting t = 1
2 in equation (3.3) gives h(1, y) = −h(0, y) = 1

2 g(0, y). Now we con-
sider the harmonic function

F(t, y) = h(t, y) − 1
2
g(t − 1, y).

_en F(1, y) = 0, and by Schwarz’s re�ection principle, F(1 + t, y) = −F(1 − t, y) for
y ∈ Rd . _en

h(1 + t, y) = F(1 + t, y) + 1
2
g(t, y) = −F(1 − t, y) + 1

2
g(t, y)

= −h(1 − t, y) + 1
2
g(−t, y) + 1

2
g(t, y)

Since g is even, we have 1
2 g(−t, y) +

1
2 g(t, y) = g(t, y) and

h(1 − t, y) = h( 1
2
+ 1

2
− t, y) = −h( 1

2
− ( 1

2
− t) , y) = −h(t, y).

It follows that h(1 + t, y) = h(t, y) + g(t, y).

_e next result is surely a part ofmathematical folklore; we include an elementary
proof for the reader’s convenience.

Lemma 3.2 Let g(t, y) be an entire harmonic function. _en there exists an entire
harmonic function u(t, y) such that

∂
∂t

u(t, y) = g(t, y).

If g(t, y) is odd, then u(t, y) can be chosen to be even.

Proof Deûne h(t, y) ∶= ∫
t
0 g(τ, y)dτ. _en ∂

∂t h(t, y) = g(t, y) and

∆y
∂
∂t

h(t, y) = ∆y g(t, y) = −
∂2

∂t2
g(t, y).

We conclude that ∂
∂t (∆yh(t, y) + ∂

∂t g(t, y)) = 0, and it follows that

f (y) ∶= ∆yh(t, y) +
∂
∂t

g(t, y)

only depends on y and not on t. Obviously, for any entire function f (y), there exists
an entire function G(y) such that ∆yG(y) = f (y). _en

u(t, y) ∶= h(t, y) −G(y)
is a solution of the equation ∂

∂tu(t, y) = g(t, y), and u(t, y) is harmonic, since we
have

∆t ,yu(t, y) =
∂2

∂t2
h(t, y) + ∆yh(t, y) − ∆yG(y)

= ∂2

∂t2
h(t, y) + ∆yh(t, y) − ∆yh(t, y) −

∂
∂t

g(t, y) = 0.

If g(t, y) is odd, then h(t, y) and hence u(t, y) are both even.

Now we are able to prove our secondmain result.
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_eorem 3.3 If g∶R×Rd → C is harmonic, then the diòerence equation h(t+ 1, y)−
h(t, y) = g(t, y) has a harmonic solution h∶R ×Rd → C.

Proof Write the harmonic function g as a sum g0 + ge , where g0 is odd and ge is
even. For the right-hand side ge , there exists a solution he(t, y) by _eorem 3.1, and
so it suõces to solve the diòerence equation with right-hand side g0. By Lemma 3.2
there exists an even harmonic function u(t, y) such that

∂
∂t

u(t, y) = g0(t, y).

By _eorem 3.1, there exists a harmonic entire function H(t, y) such that

H(t + 1, y) −H(t, y) = u(t, y).
Diòerentiating H(t, y) with respect to t, we thus ûnd the solution of the diòerence
equation with right-hand side g0(t, y).

Finally, although the solution to the diòerence equation is far from unique, we are
able to prove the following result.

_eorem 3.4 Let g∶R×Rd → C be a harmonic function and let h j ∶R×Rd → C for
j = 1, 2 be harmonic solutions of the diòerence equation

(3.4) h j(t + 1, y) − h j(t, y) = g(t, y).
Assume that we have the estimate

(3.5) ∣h1(t, y) − h2(t, y)∣ = o(∣y∣(1−d)/2e2π∣y∣),
as ∣y∣→∞ (uniformly in t). _en there exists a harmonic function r∶Rd → C such that

h1(t, y) = h2(t, y) + r(y)
for all y ∈ Rd and t ∈ R.

Proof Deûne h(t, y) ∶= h1(t, y) − h2(t, y). _en h is periodic in t with period 1,
since h1 and h2 each solve the diòerence equation (3.4). Let us also deûne H(t, y) ∶=
Hy(t) ∶= h(t/(2π), y/(2π)) for y ∈ Rd , t ∈ R. _en Hy is a 2π-periodic function
in t, so it has a Fourier series∑∞k=−∞ ak(y)e ik t . Applying the Laplace operator to the
Fourier coeõcients

(3.6) ak(y) =
1
2π ∫

2π

0
Hy(t)e ik tdt,

we have
∆yak(y) =

1
2π ∫

2π

0
∆yH(t, y)e ik tdt.

Since H(t, y) is harmonic, we know that

∆yH(t, y) = − ∂2

∂t2
H(t, y).

Integration by parts then shows that

∆yak(y) = −
1
2π ∫

2π

0

∂2H
∂t2

(t, y) ⋅ e ik tdt = k2ak(y).

https://doi.org/10.4153/CMB-2016-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-018-x


152 D. Khavinson, E. Lundberg, andH. Render

Hence, ak(y) is a solution of the Helmholtz equation ∆yak = k2ak . In view of (3.6),
the estimate (3.5) carries over to ak(y). Since k2 > 0, a classical result [8, p. 228],
going back to work of I. Vekua and F. Rellich in the 1940’s, yields that ak = 0 for all
k /= 0.
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