
Glasgow Math. J. 55 (2013) 431–448. C© Glasgow Mathematical Journal Trust 2013.
doi:10.1017/S0017089512000663.

REGULARITY AND FRACTAL DIMENSION OF PULLBACK
ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR

DEGENERATE PARABOLIC EQUATION

CUNG THE ANH
Department of Mathematics, Hanoi National University of Education,

136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
e-mail: anhctmath@hnue.edu.vn

TANG QUOC BAO
Faculty of Applied Mathematics and Informatics, Hanoi University of Science and Technology,

1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
e-mail: mathizonewww@gmail.com

and LE THI THUY
Department of Mathematics, Hanoi Electric Power University,

235 Hoang Quoc Viet, Tu Liem, Hanoi, Vietnam
e-mail: thuylephuong@gmail.com

(Received 28 November 2011; accepted 25 July 2012; first published online 25 February 2013)

Abstract. Considered here is the pullback attractor of the process associated with
the first initial boundary value problem for the non-autonomous semilinear degenerate
parabolic equation

ut − div(σ (x)∇u) + f (u) = g(x, t)

in a bounded domain � in �N(N ≥ 2). We prove the regularity in the space L2p−2(�) ∩
D2

0(�, σ ), and estimate the fractal dimension of the pullback attractor in L2(�).

2010 Mathematics Subject Classification. 37L30, 35B41, 35K65, 35D30.

1. Introduction. This paper is a continuation of the paper [2] in which we studied
the long-time behaviour of solutions to the following non-autonomous degenerate
parabolic equation:

⎧⎪⎨
⎪⎩

ut − div(σ (x)∇u) + f (u) = g(x, t), x ∈ �, t > τ,

u|∂� = 0,

u|t=τ = uτ ∈ L2(�),

(1.1)

where � is a bounded domain in �N(N ≥ 2) with smooth boundary ∂�, the diffusion
coefficient σ , the nonlinearity f and the external force g satisfying the following
conditions:

(H1) σ is a non-negative measurable function such that σ ∈ L1
loc(�) and for some

α ∈ (0, 2), lim inf
x→z

|x − z|−ασ (x) > 0 for every z ∈ �;
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(H2) The function f ∈ C1(�, �) satisfies

f (u)u ≥ C1|u|p − C2, p ≥ 2, (1.2)

|f ′(u)| ≤ C3|u|p−2, (1.3)

f ′(u) ≥ −�, (1.4)

where �, Ci, i = 1, 2, 3 are positive constants. Relations (1.2) and (1.3) implies
that

α1|u|p − α2 ≤ F(u) ≤ α3|u|p + α4, (1.5)

where F(u) = ∫ u
0 f (s)ds, and αi, i = 1, 2, 3, 4, are positive constants;

(H3) g ∈ W 1,2
loc (�; L2(�)) satisfies

∫ 0

−∞
eλ1s

(
‖g(s)‖2

L2(�) + ‖g′(s)‖2
L2(�)

)
ds < +∞, (1.6)

where λ1 > 0 is the first eigenvalue of the operator −div(σ (x)∇·) in � with the
homogeneous Dirichlet boundary condition (see Section 2).

Problem (1.1) can be derived as a simple model for neutron diffusion (feedback
control of nuclear reactor) (see [5]). In this case u and σ stand for the neutron flux and
neutron diffusion respectively. As mentioned in [2], the degeneracy of problem (1.1) is
considered in the sense that the measurable, non-negative diffusion coefficient σ (·) is
allowed to have at most a finite number of (essential) zeroes at some points. For the
physical motivation of assumption (H1), we refer the reader to [3, 6, 7].

Let us give some comments about assumptions (H2)–(H3). The nonlinearity f is
assumed to satisfy a polynomial-type growth and a standard dissipative condition. It is
noted that we make assumption (1.3) for the sake of brevity in the proofs only. In fact,
one can assume that f satisfies |f ′(u)| ≤ C3|u|p−2 + C4, where C3 and C4 are positive
constants. Typical examples of functions satisfying condition (H2) are polynomials
with odd degrees and positive leading coefficients. The conditions in (H3) hold if
g ∈ W 1,2

loc (�; L2(�)) and there exist γ ∈ (0, λ1), τ ∈ � (without loss of generality, we
can assume τ < 0) and Mτ > 0 such that ‖g(t)‖2

L2(�) + ‖g′(t)‖2
L2(�) ≤ Mτ e−γ t for all

t ≤ τ . In particular, condition (H3) holds if ‖g(t)‖2
L2(�) + ‖g′(t)‖2

L2(�) ≤ Meγ |t| for all
t ∈ �. In the paper [2], under certain conditions which are similar to (H1)–(H3), the
authors proved the existence of a pullback attractor in the space D1

0(�, σ ) ∩ Lp(�) for
the process U(t, τ ) associated to problem (1.1). Here and what follows, for definitions
of the function spaces related to problem (1.1), we refer reader to Section 2.1.

In this paper, under some additional conditions of the external force g, namely,

(H4)
∫ 0
−∞ eλ1s‖g′(s)‖m′

k
Lmk (�)ds < +∞, where mk = 2βk+2

2βk+2+1−2βk+1 , m′
k = 2βk+1, with

β = N
N−2+α

> 1, k ∈ �, 0 ≤ k ≤ logβ(p − 1) + 1,

we will show that the pullback attractor obtained in [2] is in fact inD2
0(�, σ ) ∩ L2p−2�),

that is, it is more regular. To do this, we first establish the existence of a family
of pullback absorbing sets in L2p−2(�) ∩ D2

0(�, σ ) and then prove the pullback
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asymptotic compactness of the process U(t, τ ) in L2p−2(�) ∩ D2
0(�, σ ). The proof of

the first one is quite standard, but the proof of the second one is more involved. Indeed,
as we know, if the external force g(t) is only in L2(�), then solutions u(t) of problem
(1.1) are at most in L2p−2(�) ∩ D2

0(�, σ ) and have no higher regularity. Therefore,
there is no compact embedding result held for this case. To overcome the difficulty
caused by the lack of compactness of embeddings, we exploit the asymptotic a priori
estimate method introduced in [14] for autonomous equations. The asymptotic a priori
estimates in L2p−2(�) are deduced by using some estimates on ut that are based on
assumption (H4) of the external force g (see Lemma 3.3), and the pullback asymptotic
compactness in D2

0(�, σ ) is proved by verifying the (PDC) condition introduced in [9].
As a result, we obtain the existence of pullback attractors in the spaces L2p−2(�) and
D2

0(�, σ ). These pullback attractors and the pullback attractor obtained in [2] are of
course the same object. The obtained result seems to be optimal, and, in particular,
we obtain the D2

0(�, σ ) ∩ L2p−2(�)-boundedness of the pullback attractor. Using this
boundedness, we show that the pullback attractor has a finite fractal dimension in
L2(�). It is worth noticing that when σ = 1, we extend and improve the recent results on
pullback attractors for the non-autonomous reaction–diffusion equations in bounded
domains (see, e.g. [1, 9, 10, 12, 13]). Moreover, (H3) and (H4) are obviously satisfied
if g = g(x) ∈ L2(�) does not depend on time t, and then the pullback attractor turns
to be the usual global attractor; therefore, we also recover some results in [14] when
σ = 1.

The paper is organized as follows. In Section 2, for convenience of the reader, we
recall some concepts and results on function spaces and pullback attractors which we
will use. In Section 3, we prove the existence of pullback attractors in various spaces
by using the asymptotic a priori estimate method. In Section 4, we estimate the fractal
dimension of the pullback attractor in L2(�). Some further remarks are given in the
last section.

2. Preliminaries.

2.1. Function spaces and operators. To study problem (1.1), we use the energy
space D1

0(�, σ ), defined as the closure of C∞
0 (�) with respect to the norm

‖u‖D1
0(�,σ ) :=

(∫
�

σ (x)|∇u|2dx
) 1

2

.

This is a Hilbert space with the scalar product

(u, v) :=
∫

�

σ (x)∇u∇vdx.

The following lemma comes from [3, Propositions 3.3–3.5].

LEMMA 2.1. Assume that � is a bounded domain in �N(N ≥ 2), and σ satisfies
(H1). Then the following embeddings hold:

(i) D1
0(�, σ ) ↪→ L2∗

α (�) continuously;
(ii) D1

0(�, σ ) ↪→ Lp(�) compactly if p ∈ [1, 2∗
α),

where 2∗
α = 2N

N−2+α
.
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We also use the space D2
0(�, σ ) defined as the closure of C∞

0 (�) with the norm

‖u‖D2
0(�,σ ) =

(∫
�

|div(σ (x)∇u)|2dx
)1/2

.

The following result follows from the definitions of D1
0(�, σ ) and D2

0(�, σ ).

LEMMA 2.2. If σ satisfies (H1), then D2
0(�, σ ) ⊂ D1

0(�, σ ) continuously.

Proof. For any function u ∈ C∞
0 (�), we have

‖u‖2
D1

0(�) =
∫

�

σ |∇u|2dx = −
∫

�

div(σ∇u)udx

≤
(∫

�

|div(σ∇u)|2dx
)1/2 (∫

�

|u|2dx
)1/2

= ‖u‖D2
0(�)‖u‖L2(�).

Noticing that ‖u‖L2(�) ≤ C‖u‖D1
0(�), where C is independent of u, we get the desired

result from the fact that C∞
0 (�) is dense in D2

0(�, σ ). �
It is known (see e.g. [2]) that the operator Au := −div(σ (x)∇u) with the

homogeneous Dirichlet boundary condition in � has a family {en}∞n=1 of eigenvectors,
which forms an orthonormal basis of L2(�), and a sequence of eigenvalues {λn}n≥1 such
that 0 < λ1 ≤ . . . ≤ λn ≤ . . . and λn → +∞ as n → +∞. In the sequel, we frequently
use the following inequality:

‖u‖2
D1

0(�,σ ) ≥ λ1‖u‖2
L2(�), for all u ∈ D1

0(�, σ ).

2.2. Pullback attractors. Let X be a Banach space with the norm ‖ · ‖, and let
B(X) denote all bounded sets of X . The Hausdorff semi-distance between two bounded
subsets A and B of X is defined by

dist(A, B) = sup
x∈A

inf
y∈B

‖x − y‖.

Let {U(t, τ ) : t ≥ τ, τ ∈ �} be a process in X , i.e. U(t, τ ) : X → X such that U(τ, τ ) =
Id and U(t, s)U(s, τ ) = U(t, τ ) for all t ≥ s ≥ τ, τ ∈ �. The process {U(t, τ )} is said
to be norm-to-weak continuous if U(t, τ )xn ⇀ U(t, τ )x, as xn → x in X , for all t ≥
τ, τ ∈ �. The following result is useful for proving the norm-to-weak continuity of a
process.

PROPOSITION 2.3 [14]. Let X, Y be two Banach spaces, X∗, Y∗ be respectively their
dual spaces. Suppose that X is dense in Y, the injection i : X → Y is continuous and its
adjoint i∗ : Y∗ → X∗ is dense, and {U(t, τ )} is a continuous or weak continuous process
on Y. Then {U(t, τ )} is norm-to-weak continuous on X if and only if for t ≥ τ , τ ∈ �,
U(t, τ ) maps compact sets of X to be bounded sets of X.

DEFINITION 2.1. The process {U(t, τ )} is said to be pullback asymptotically
compact if for any t ∈ �, any D ∈ B(X), any sequence τn → −∞ and any sequence
{xn} ⊂ D, the sequence {U(t, τn)xn} is relatively compact in X .
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DEFINITION 2.2. A family of bounded sets B = {B(t) : t ∈ �} ⊂ X is called a family
of pullback absorbing sets for the process {U(t, τ )} if for any t ∈ �, any D ∈ B(X), there
exists τ0 = τ0(D, t) ≤ t such that ⋃

τ≤τ0

U(t, τ )D ⊂ B(t).

DEFINITION 2.3. A family A = {A(t) : t ∈ �} ⊂ B(X) is said to be a pullback
attractor for the process {U(t, τ )} if

(1) A(t) is compact for all t ∈ �,
(2) A is invariant, i.e.

U(t, τ )A(τ ) = A(t), for all t ≥ τ,

(3) A is pullback attracting, i.e.

lim
τ→−∞ dist(U(t, τ )D, A(t)) = 0, for all D ∈ B(X), and all t ∈ �,

(4) if {C(t) : t ∈ �} is another family of closed pullback attracting sets, then A(t) ⊂
C(t) for all t ∈ �.

THEOREM 2.4 [9]. Let {U(t, τ )} be a norm-to-weak continuous process which is
pullback asymptotically compact. If there exists a family of pullback absorbing sets
B = {B(t) : t ∈ �}, then {U(t, τ )} has a unique pullback attractor A = {A(t) : t ∈ �} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ )B(τ ).

2.3. Fractal dimension of pullback attractors. Given a compact K ⊂ L2(�), and
ε > 0, we denote by Nε(K) the minimum number of open balls in L2(�) with radii ε

that are necessary to cover K .

DEFINITION 2.4. For any non-empty compact K ⊂ L2(�), the fractal dimension
of K is the number

dF (K) = lim sup
ε↓0

log Nε(K)
log(1/ε)

.

Firstly, we recall the definition of a uniform pullback absorbing set.

DEFINITION 2.5 [8]. A bounded subset B0 of L2(�) is called a uniform pullback
absorbing set for the process {U(t, τ )} if for every B ∈ B(L2(�)) there exists a number
τ0 ≥ 0 such that

U(t, t − τ )B ⊂ B0, for all τ ≥ τ0,

where τ0 does not depend on the choice of t.

Next, we describe the method to estimate the fractal dimension of a pullback
attractor.
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THEOREM 2.5 [8]. Let B0 be a uniform pullback absorbing set, A = {A(t) : t ∈ �} be
a pullback attractor for {U(t, τ )}. Assume that there exists a finite dimensional projection
P in the space L2(�) such that

‖P(U(t, t − T0)u1) − U(t, t − T0)u2)‖L2(�) ≤ l(T0)‖u1 − u2‖L2(�) (2.1)

for all u1, u2 ∈ B0 and some T0, l(T0), and

‖(I − P)(U(t, t − T0)u1) − U(t, t − T0)u2)‖L2(�) ≤ δ‖u1 − u2‖L2(�) (2.2)

for all u1, u2 ∈ B0, where δ < 1, and T0, l(T0) are independent of the choice of t. Then
the pullback attractor A possesses a finite fractal dimension in L2(�), specifically

dimF (A(t)) ≤ dim P log
(

1 + 8l(T0)
1 − δ

) [
log

2
1 + δ

]−1

, ∀t ∈ �. (2.3)

In the rest of the paper, for brevity, we denote by | · |2, (., .) the norm and inner
product in L2(�). For a Banach space E, we denote by ‖ · ‖E the norm of E. A generic
constant is denoted by C.

3. Existence of pullback attractors in L2p−2(�) and D2
0(�, σ ). Under conditions

(H1)–(H3), by using arguments in [2, 10], it can be proved that one can define a process
{U(t, τ )}t≥τ associated to problem (1.1) as follows:

U(t, τ ) : L2(�) → D1
0(�, σ ) ∩ Lp(�), ∀t ≥ τ,

where U(t, τ )uτ is the unique weak solution of (1.1) with initial datum uτ at time
τ ; moreover, the process {U(t, τ )}t≥τ is continuous in L2(�) and is norm-to-weak
continuous in Lp(�) and D1

0(�, σ ), and has a pullback attractor A0 = {A0(t) : t ∈ �}
in D1

0(�, σ ) ∩ Lp(�).
In this section, under the additional condition (H4) of the external force g, we will

show that the pullback attractor is in fact in D2
0(�, σ ) ∩ L2p−2(�).

LEMMA 3.1. Assume that (H1)–(H3) hold. Then for any t ∈ �, any bounded set D
of L2(�), there exists τ0 ≤ t − 1 such that

|ut(t)|22 ≤ C
(

1 + e−λ1t
∫ t

−∞
eλ1s (|g(s)|22 + |g′(s)|22

)
ds

)
, (3.1)

for any τ ≤ τ0 and any uτ ∈ D, where ut(s) = d
dt (U(t, τ )uτ ) |t=s.

Proof. Let uτ ∈ D, and denote u(t) = U(t, τ )uτ . Multiplying (1.1) by u in L2(�),
we get

1
2

d
dt

|u|22 + ‖u‖2
D1

0(�,σ ) +
∫

�

f (u)udx =
∫

�

g(t)udx ≤ 1
λ1

|g(t)|22 + λ1

4
|u|22. (3.2)

From (H2) we have∫
�

f (u)udx ≥ C1

∫
�

|u|pdx − C2|�| ≥ C
(

2
∫

�

F(u)dx − 1
)

. (3.3)
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Using the inequality ‖u‖2
D1

0(�,σ )
≥ λ1|u|22 and (3.3), we get from (3.2),

d
dt

|u|22 + λ1|u|22 + C
(

‖u‖2
D1

0(�,σ ) + 2
∫

�

F(u)dx
)

≤ C
(
1 + |g(t)|22

)
, (3.4)

thus

d
dt

(
eλ1t|u(t)|22

) + Ceλ1t
(

‖u(t)‖2
D1

0(�) + 2
∫

�

F(u(t))dx
)

≤ C
(
eλ1t + eλ1t|g(t)|22

)
. (3.5)

Integrating (3.5) from τ to s, τ ≤ s ≤ t − 1 in particular, we have

eλ1s|u(s)|22 ≤ eλ1τ |uτ |22 + C
(

eλ1s +
∫ s

τ

eλ1r|g(r)|22dr
)

. (3.6)

On the other hand, integrating (3.5) from s to s + 1 and applying (3.6), we get

∫ s+1

s
eλ1r

(
‖u(r)‖2

D1
0(�,σ ) + 2

∫
�

F(u(r))dx
)

dr

≤ Ceλ1s|u(s)|22 + C
∫ s+1

s

(
eλ1r + eλ1r|g(r)|22

)
dr

≤ C
(

eλ1τ |uτ |22 + eλ1t +
∫ t

τ

eλ1r|g(r)|22dr
)

. (3.7)

Multiplying (1.1) by ut in L2(�), we see that

|ut|22 + 1
2

d
dt

(
‖u‖2

D1
0(�,σ ) + 2

∫
�

F(u)dx
)

= (g(t), ut) ≤ 1
2
|g(t)|22 + 1

2
|ut|22. (3.8)

Hence,

eλ1t|ut(t)|22 + d
dt

[
eλ1t

(
‖u(t)‖2

D1
0(�,σ ) + 2

∫
�

F(u(t))dx
)]

≤ λ1eλ1t
(

‖u(t)‖2
D1

0(�,σ ) + 2
∫

�

F(u(t))dx
)

+ eλ1t|g(t)|22. (3.9)

Combining (3.7) and (3.9) and applying the uniform Gronwall inequality, we get

eλ1t
(

‖u(t)‖2
D1

0(�,σ ) + 2
∫

�

F(u(t))dx
)

≤ C
(

eλ1τ |uτ |22 + eλ1t +
∫ t

τ

eλ1r|g(r)|22dr
)

.

(3.10)
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Integrating (3.9) from r to r + 1, r ∈ [τ, t − 1] and using (3.7) and (3.10) in particular,
we find that∫ r+1

r
eλ1s|v|22ds

≤ eλ1r
(

‖u(r)‖2
D1

0(�,σ ) + 2
∫

�

F(u(r))dx
)

+λ1

∫ r+1

r
eλ1s

(
‖u(s)‖2

D1
0(�,σ ) + 2

∫
�

F(u(s))dx
)

ds +
∫ r+1

r
eλ1s|g(s)|22ds

≤ C
(

eλ1τ |uτ |22 + eλ1t +
∫ t

−∞
eλ1s|g(s)|22ds

)
. (3.11)

On the other hand, differentiating equation (1.1) and denoting v = ut, we have

vt − div(σ∇v) + f ′(u)v = g′(t). (3.12)

Taking the inner product of (3.12) with v in L2(�), we get

1
2

d
dt

|v|22 + ‖v‖2
D1

0(�,σ ) + (f ′(u)v, v) = (g′(t), v). (3.13)

Using (1.4) and Young’s inequality, after some computations we see that

d
dt

(
eλ1t|v|22

) + 2eλ1t‖v‖2
D1

0(�,σ ) ≤ Ceλ1t|v|22 + Ceλ1t|g′(t)|22. (3.14)

Combining (3.14) and (3.11), and using the uniform Gronwall inequality, we obtain

eλ1t|v(t)|22 ≤ C
(

eλ1τ |uτ |22 + eλ1t +
∫ t

−∞
eλ1s(|g(s)|22 + |g′(s)|22)ds

)
. (3.15)

This completes the proof because eλ1τ |uτ |22 → 0 as τ → −∞. �
LEMMA 3.2. The process {U(t, τ )} associated to problem (1.1) has a family of pullback

absorbing sets in L2p−2(�) ∩ D2
0(�, σ ).

Proof. Multiplying the first equation in (1.1) by |u|p−2u and integrating over �, we
get∫

�

ut|u|p−2udx + (p − 1)
∫

�

σ (x)|∇u|2|u|p−2dx +
∫

�

f (u)|u|p−2udx =
∫

�

g(t)|u|p−2udx.

(3.16)
Using (1.2) and Young’s inequality, we have∫

�

f (u)|u|p−2udx ≥
∫

�

(C1|u|p − C2) |u|p−2dx ≥ C1‖u‖2p−2
L2p−2(�) − C2‖u‖p

Lp(�) − C3.

(3.17)
By the Cauchy inequality, we see that

−
∫

�

ut|u|p−2udx ≤ C1

4
‖u‖2p−2

L2p−2(�) + 1
C1

|ut|22, (3.18)
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and ∫
�

g(t)|u|p−2udx ≤ C1

4
‖u‖2p−2

L2p−2(�) + 1
4
|g(t)|22. (3.19)

It follows from (3.16)–(3.19) that

‖u‖2p−2
L2p−2(�) ≤ C

(
1 + |ut|22 + ‖u‖p

Lp(�) + |g(t)|22
)

. (3.20)

To obtain estimates in D2
0(�, σ ), we multiply equation (1.1) by −div(σ (x)∇u) and use

the fact that f (0) = 0 to obtain

‖u‖2
D2

0(�,σ ) =
∫

�

utdiv(σ (x)∇u)dx −
∫

�

f ′(u)σ (x)|∇u|2dx −
∫

�

g(t)div(σ (x)∇u)dx.

(3.21)
Using the hypothesis f ′(u) ≥ −� and the Cauchy inequality, from (3.21) we have

‖u‖2
D2

0(�,σ ) ≤ 2
(
|ut|22 + �‖u‖2

D1
0(�,σ ) + |g(t)|22

)
. (3.22)

Taking into account (3.10) and (3.1), the relations (3.20) and (3.22) complete the
proof. �

REMARK 3.1. By Proposition 2.3, from Lemma 3.2 we can deduce that the process
U(t, τ ) associated to problem (1.1) is norm-to-weak continuous in L2p−2(�) and
D2

0(�, σ ).

We now derive some estimates for the time derivatives of u by the well-known
bootstrap technique. These estimates are useful for establishing pullback asymptotic a
priori estimates in L2p−2(�).

LEMMA 3.3. For any t ∈ �, any 2 ≤ r < ∞ and any bounded set B ⊂ L2(�), there
exists τ0 such that ∫

�

|ut(t)|rdx ≤ M, for all τ ≤ τ0, uτ ∈ B, (3.23)

where M depends on t and r, but not on uτ and τ , and ut(s) = d
dt

(U(t, τ )uτ ) |t=s.

Proof. We will prove the lemma by an induction.
Putting β = N

N−2+α
> 1. We will prove that for k = 0, 1, 2, . . ., there exist τk and

Mk(t) such that

eλ1t
∫

�

|v(t)|2βk
dx ≤ Mk(t) for any uτ ∈ B, τ ≤ τk, (Pk)

and

∫ t+1

t

(
eλ1r

∫
�

|v(r)|2βk+1
dx

) 1
β

dr ≤ Mk(t) for any uτ ∈ B, τ ≤ τk, (Qk)

where τk depends on k and B; Mk(t) depends only on k.
For k = 0, (P0) follows from (3.15). Integrating (3.14) from t to t + 1 and using

the facts that 1
β

< 1 and D1
0(�, σ ) ↪→ L2β(�) continuously, we get (Q0).
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Assuming that (Pk) and (Qk) hold, we prove that (Pk+1) and (Qk+1) also hold.
Multiplying (3.12) by |v|2βk+1−2v and integrating over �, we obtain

C
d
dt

∫
�

|v|2βk+1
dx + C

∫
�

σ (x)
∣∣∣∇ (

vβk+1
)∣∣∣2

dx ≤ �

∫
�

|v|2βk+1
dx + (g′(t), |v|2βk+1−2v).

(3.24)
Using the imbedding D1

0(�, σ ) ↪→ L2β (�) once again, we get

∫
�

σ (x)
∣∣∣∇ (

vβk+1
)∣∣∣2

dx ≥ ‖vβk+1‖2
L2β (�) =

(∫
�

|v|2βk+2
dx

) 1
β

. (3.25)

Combining Hölder’s and Young’s inequalities, we see that

∫
�

g′(t)|v|2βk+1−2vdx ≤
(∫

�

|g′(t)|mdx
)1/m (∫

�

|v|(2βk+1−1)ndx
)1/n

≤
(∫

�
|g′(t)|mdx

)m′/m

m′ +
(∫

�
|v|(2βk+1−1)ndx

)n′/n

n′ ,

(3.26)

where 1
m + 1

n = 1
m′ + 1

n′ = 1. Choose n, n′ such that

(2βk+1 − 1)n = 2βk+2 and
n′

n
= 1

β
,

that is,

n = 2βk+2

2βk+1 − 1
and n′ = 2βk+1

2βk+1 − 1
.

Hence,

m = n
n − 1

= 2βk+2

2βk+2 − 2βk+1 + 1
and m′ = 2βk+1. (3.27)

Then from (3.26), we infer that

∫
�

g′(t)|v|2βk+1−2vdx ≤ 1
m′ ‖g′(t)‖m′

Lm(�) + 1
n′

(∫
�

|v|2βk+2
dx

) 1
β

. (3.28)

Applying (3.25) and (3.28) in (3.24), we find that

d
dt

(
eλ1t

∫
�

|v|2βk+1
dx

)
+ Ceλ1t

(∫
�

|v|2βk+2
dx

) 1
β

≤ Ceλ1t
∫

�

|v|2βk+1
dx + Ceλ1t‖g′(t)‖m′

Lm(�).

(3.29)

Combining (Qk) and (3.29), using the uniform Gronwall inequality and taking into
account assumption (H4), we get (Pk+1). On the other hand, integrating (3.29) from

t to t + 1 we find (Qk+1). Now, since β > 1, taking k ≥ logβ

r
2

we get the desired

estimate. �
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In what follows, we will use the following lemma.

LEMMA 3.4 [13, Lemma 3.6]. If there exists σ > 0 such that
∫ t
−∞ eσ s|ϕ(s)|2ds < ∞,

for all t ∈ �, then

lim
γ→+∞

∫ t

−∞
e−γ (t−s)|ϕ(s)|2ds = 0, t ∈ �. (3.30)

Let Hm = span{e1, e2, . . . , em} in L2(�) and Pm : L2(�) → Hm be the orthogonal
projection, where {ei}∞i=1 are eigenvectors of the operator A = −div(σ (x)∇). For any
u ∈ L2(�), then u has a unique decomposition

u = Pmu + (I − Pm)u = u1 + u2.

LEMMA 3.5. For any t ∈ �, any bounded set B of L2(�) and any ε, there exist
τ0(t, B, ε) and m0 ∈ � such that

|(I − Pm)v|22 < ε,∀τ ≤ τ0,∀uτ ∈ B and m ≥ m0, (3.31)

where v = ut.

Proof. Multiplying (3.12) by v2 = (I − Pm)v and integrating over �, using the
inequality ‖v2‖2

D1
0(�,σ )

≥ λm|v2|22 and the Cauchy inequality, we get

d
dt

|v2|22 + λm|v2|22 ≤ C
∫

�

|f ′(u)v|2dx + C|g′(t)|22. (3.32)

We multiply (3.32) by eλmt and use assumption (1.3) to get

d
dt

(
eλmt|v2|22

) ≤ Ceλmt
∫

�

|u|2(p−2)|v|2dx + Ceλmt|g′(t)|22. (3.33)

Integrating (3.33) from s to t,

eλmt|v2(t)|22 ≤ eλms|v2(s)|22 + C
∫ t

s
eλmr

∫
�

|u|2(p−2)|v|2dxdr + C
∫ t

s
eλmr|g′(r)|22dr

≤ eλms|v(s)|22 + C
∫ t

−∞
eλmr

∫
�

|u|2(p−2)|v|2dxdr + C
∫ t

−∞
eλmr|g′(r)|22dr.

(3.34)
Now integrating (3.34) with respect to s from τ to t, we infer that

(t − τ )eλmt|v2(t)|22 ≤
∫ t

τ

eλms|v(s)|22ds + C(t − τ )
∫ t

−∞
eλmr

∫
�

|u|2(p−2)|v|2dxdr

+C(t − τ )
∫ t

−∞
eλmr|g′(r)|22dr, (3.35)

thus

|v2(t)|22 ≤ 1
t − τ

∫ t

−∞
e−λm(t−s)|v(s)|22ds + C

∫ t

−∞
e−λm(t−r)

∫
�

|u|2(p−2)|v|2dxdr

+ C
∫ t

−∞
e−λm(t−r)|g′(r)|22dr. (3.36)
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By Lemma 3.4 and since λm → +∞ as m → +∞, there exist τ1 and m1 such that

1
t − τ

∫ t

−∞
e−λm(t−s)|v(s)|22ds <

ε

3
, (3.37)

and

C
∫ t

−∞
e−λm(t−r)|g′(r)|22dr <

ε

3
, (3.38)

for all τ ≤ τ1 and m ≥ m1. For the second term on the right-hand side of (3.36), using
Hölder’s inequality we have

∫ t

−∞
e−λm(t−r)

∫
�

|u|2(p−2)|v|2dxdr

≤
∫ t

−∞

(∫
�

e− p−1
p−2 λm(t−r)|u|2p−2dx

) p−2
p−1

(∫
�

e−(p−1)λm(t−r)|v|2p−2dx
) 1

p−1

dr

≤
(∫ t

−∞
e− p−1

p−2 λm(t−r)‖u‖2p−2
L2p−2(�)dr

) p−2
p−1

(∫ t

−∞
e−(p−1)λm(t−r)

∫
�

|v|2p−2dxdr
) 1

p−1

. (3.39)

Using Lemmas 3.2–3.4, there exist τ2 and m2 ∈ � such that

C
∫ t

−∞
e−λm(t−r)

∫
�

|u|2(p−2)|v|2dxdr <
ε

3
, for all τ ≤ τ0, m ≥ m2. (3.40)

Let τ0 = min{τ1, τ2} and m0 = max{m1, m2}, from (3.36), taking into account (3.37),
(3.38) and (3.40) we obtain (3.31). �

LEMMA 3.6 [14]. Let B be a bounded subset in Lq(�)(q ≥ 1). If B has a finite ε−net
in Lq(�), then there exists a number M = M(B, ε) such that for any u ∈ B, the following
estimate holds ∫

�(|u|≥M)
|u|qdx < ε,

where �(|u| ≥ M) = {x ∈ � : |u| ≥ M}.
Using Lemma 3.6 and taking into account Lemmas 3.1 and 3.5, we conclude that

the set {ut(s) : s ≤ t, uτ ∈ B} has a finite ε-net in L2(�). Therefore, we get the following
result.

LEMMA 3.7. For any t ∈ �, any B ⊂ L2(�) is bounded and any ε > 0, there exist
τ0 ≤ t and M0 > 0 such that∫

�(|u|≥M)
|ut(t)|2dx < ε, for all τ < τ0, M > M0, uτ ∈ B. (3.41)

One can prove the following lemma by using arguments in [14] with a few
modifications.
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LEMMA 3.8 [14]. For any t ∈ �, any bounded set B ⊂ L2(�) and any ε > 0, there
exist τ0 and M0 > 0 such that

mes (�(u(t) ≥ M)) < ε, for all τ ≤ τ0, M ≥ M0 and uτ ∈ B, (3.42)

where mes is the Lebesgue measure in �N.

LEMMA 3.9 [2]. Let {U(t, τ )} be a norm-to-weak continuous process in L2(�) and
Lq(�), q ≥ 2. Then {U(t, τ )} is pullback asymptotically compact in Lq(�) if

(i) {U(t, τ )} is pullback asymptotically compact in L2(�), and
(ii) for any t ∈ �, any bounded set D ⊂ L2(�) and any ε > 0, there exist M > 0

and τ0 ≤ t such that

sup
τ≤τ0

sup
uτ ∈D

(∫
�(|U(t,τ )uτ |≥M)

|U(t, τ )uτ |qdx
)

≤ Cε,

where C is independent of M, τ , uτ and ε.

We are now ready to prove the existence of a pullback attractor in L2p−2(�).

THEOREM 3.10. Assume that assumptions (H1)–(H4) hold. Then the process
{U(t, τ )} associated to problem (1.1) possesses a pullback attractor A2p−2 = {A2p−2(t) :
t ∈ �} in L2p−2(�).

Proof. Since {U(t, τ )} has a family of pullback absorbing sets in L2p−2(�), by
Lemma 3.9, we only have to prove that for any t ∈ �, any bounded set B ⊂ L2(�) and
any ε > 0, there exist τ2 ≤ t and M2 > 0 such that∫

�(|u|≥M)
|u|2p−2dx ≤ Cε,∀τ ≤ τ2, M ≥ M2, uτ ∈ B.

Taking the inner product of (1.1) with (u − M)p−1
+ in L2(�), where

(u − M)+ =
{

u − M if u ≥ M,

0 otherwise,

we have ∫
�

ut(u − M)p−1
+ dx + (p − 1)

∫
�

σ (x)|∇u|2(u − M)p−2
+ dx

+
∫

�

f (u)(u − M)p−1
+ dx =

∫
�

g(t)(u − M)p−1
+ dx. (3.43)

Some standard computations give that∫
�

f (u)(u − M)p−1
+ dx ≥ C0

∫
�(u≥M)

|u|2p−2dx + C
∫

�

|u|pdx, (3.44)

−
∫

�

ut(u − M)p−1
+ dx ≤ C0

4

∫
�(u≥M)

|u|2p−2dx + 1
C0

∫
�(u≥M)

|ut|2dx (3.45)

https://doi.org/10.1017/S0017089512000663 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000663


444 CUNG THE ANH, TANG QUOC BAO AND LE THI THUY

and ∫
�

g(t)(u − M)p−1
+ ≤ C0

4

∫
�(u≥M)

|u|2p−2dx + 1
C0

∫
�(u≥M)

|g(t)|2dx. (3.46)

Combining (3.43)–(3.46), we have∫
�(u≥M)

|u|2p−2dx ≤ C
(∫

�(u≥M)
|ut|2dx +

∫
�(u≥M)

|g(t)|2dx +
∫

�(u≥M)
|u|pdx

)
.

(3.47)
Using Lemmas 3.7 and 3.8 and the fact that {U(t, τ )} has a pullback attractor in Lp(�),
from (3.47) we can find τ0 and M0 such that∫

�(u≥M)
|u|2p−2dx < ε for all τ ≤ τ0, M ≥ M0. (3.48)

Repeating the above arguments with |(u + M)−|p−2(u + M)− instead of (u − M)p−1
+ ,

we have ∫
�(u≤−M)

|u|2p−2dx < ε for all τ ≤ τ1, M ≥ M1, (3.49)

for some τ1 ≤ t and M1 > 0, where

(u + M)− =
{

u + M if u ≤ −M
0 otherwise

.

Letting τ2 = min{τ0, τ1} and M2 = max{M0, M1}, we have∫
�(|u|≥M2)

|u|2p−2 < Cε,∀τ ≤ τ2, M ≥ M2. (3.50)

This completes the proof. �
In order to prove the existence of a pullback attractor in D2

0(�, σ ), we will use the
‘(PDC) condition’ defined as follows.

DEFINITION 3.1 [9]. Let X be a Banach space. A process U(t, τ ) : L2(�) → X is
said to satisfy (PDC) condition in X if for any t ∈ �, any bounded subset B ⊂ L2(�)
and any ε > 0, there exists τ0 ≤ t and a finite dimensional subspace X1 of X such that

(i) P
(⋃

τ≤τ0
U(t, τ )B

)
is bounded in X , and

(ii) ‖(IX − P)U(t, τ )uτ‖X < ε, for all τ ≤ τ0 and uτ ∈ B,
where P : X → X1 is a canonical projection and IX is the identity.

LEMMA 3.11 [9]. If a process {U(t, τ )} satisfies (PDC) condition in X, then it is
pullback asymptotically compact in X. Moreover, if X is convex, then the converse is true.

LEMMA 3.12 [14]. Assume that f satisfies (H2). Then for any subset A ⊂ L2p−2(�),
if κ(A) < ε in L2p−2(�), we have

κ(f (A)) < Cε in L2(�), (3.51)
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where κ(.) is the Kuratowski non-compactness measure in a Banach space X defined as

κ(B) = inf{δ > 0 : B has a finite covering by balls in Xwith radii δ}.

THEOREM 3.13. Assume that assumptions (H1)–(H4) hold. Then the process
{U(t, τ )} associated to problem (1.1) has a pullback attractor A = {A(t) : t ∈ �} in
D2

0(�, σ ).

Proof. We consider a complete trajectory u(t) lying on the pullback attractor
A2p−2 in L2p−2(�) for {U(t, τ )}, that is, u(t) ∈ A2p−2(t) and U(t, τ )u(τ ) = u(t), for all
t ≥ τ . Denoting A = −div(σ (x)∇) and multiplying (1.1) by Au2 = A(I − Pm)u = (I −
Pm)Au, we have

(ut, Au2) + ‖u2‖2
D2

0(�,σ ) +
∫

�

f (u)Au2dx = (g(t), Au2). (3.52)

Using the Cauchy inequality, we get

‖u2‖2
D2

0(�,σ ) ≤ C
(

|(I − Pm)ut|22 + |(I − Pm)g(t)|22 +
∫

�

(f (u))2dx
)

. (3.53)

Thanks to Lemmas 3.5 and 3.12 and the fact that g ∈ Cloc
(
�; L2(�)

)
, we see that

{U(t, τ )} satisfies the (PDC) condition in D2
0(�, σ ). Now the result follows from

Lemmas 3.2 and 3.11. �

4. Fractal dimension estimates of the pullback attractor. In this section, we will
prove that the pullback attractor has a finite fractal dimension in L2(�).

THEOREM 4.1. Assume that f and g satisfy conditions (H2) − (H4), and that g
satisfies the following additional condition

∫ 0

−∞

∫ s

−∞
eλ1r (|g(r)|22 + |g′(r)|22

)
drds < +∞. (4.1)

Then the pullback attractor A of the process U(t, τ ) associated to problem (1.1) has a
finite fractal dimension in L2(�), and

dimF (A(t)) ≤ m log
(

1 + 8e2�

1 − δ

) (
log

2
1 + δ

)−1

, ∀t ∈ �,

for some δ < 1 and some m ∈ �.

Proof. According to (3.10), we easily see that there exists a uniform pullback
absorbing setB0 of {U(t, τ )} inD1

0(�, σ ). Now let u(t) = U(t, τ )uτ and v(t) = U(t, τ )vτ

be solutions of problem (1.1) with initial data uτ , vτ ∈ B0 respectively.
Let w(t) = u(t) − v(t). Then we have

1
2

d
dt

|w(t)|22 + ‖w(t)‖2
D1

0(�,σ ) + (f (u) − f (v), w) = 0. (4.2)
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Using (1.4), we get

d
dt

|w(t)|22 ≤ 2�|w(t)|22, (4.3)

thus

|w(t)|22 ≤ e2�(t−τ )|w(τ )|22. (4.4)

Let w = Pmw + (I − Pm)w = w1 + w2, then

|w1(t)|22 ≤ e2�(t−τ )|w(τ )|22. (4.5)

Taking the inner product of (1.1) with w2 in L2(�), we obtain

1
2

d
dt

|w2(t)|22 + ‖w2(t)‖2
D1

0(�,σ ) + (f (u) − f (v), w2) = 0. (4.6)

Taking into account (1.2) and Hölder’s inequality, we see that

|(f (u) − f (v), w2)| ≤
(∫

�

|f (u) − f (v)|2dx
)1/2 (∫

�

|w2|2dx
)1/2

≤ C
(∫

�

(1 + |u|p−1 + |v|p−1)2dx
)1/2 (∫

�

|w2|2dx
)1/2

≤ C
(

1 + ‖u‖2p−2
L2p−2(�) + ‖v‖2p−2

L2p−2(�)

)1/2
|w|2. (4.7)

Combining (4.6), (4.7) and noticing that ‖w2‖2
D1

0(�,σ )
≥ λm|w2|22, we have

d
dt

|w2(t)|22 + 2λm|w2(t)|22 ≤ C
(

1 + ‖u‖2p−2
L2p−2(�) + ‖v‖2p−2

L2p−2(�)

)1/2
|w|2. (4.8)

Using Gronwall’s lemma and (3.20) we conclude that

|w2(t)|22 ≤ e−λm(t−τ )|w(τ )|22
+ Ce−λmt

∫ t

τ

eλms
(

1 + ‖u(s)‖2p−2
L2p−2(�) + ‖v(s)‖2p−2

L2p−2(�)

)1/2
|w(s)|2ds

≤ e−λm(t−τ )|w(τ )|22 + C
∫ t

τ

e−λm(t−s)
(

1 + ‖u(s)‖p
Lp(�) + ‖v(s)‖p

Lp(�)

+ |ut(s)|22 + |vt(s)|22 + |g(s)|22
)
|w(s)|2ds ≤ e−λm(t−τ )|w(τ )|22

+ Ce�(t−τ )|w(τ )|2
∫ t

τ

e−λm(t−s)
(

1 + ‖u(s)‖p
Lp(�) + ‖v(s)‖p

Lp(�)

+ |ut(s)|22 + |vt(s)|22 + |g(s)|22
)

ds. (4.9)

It is easy to see from (3.10), (4.1) and (3.15) that∫ t

−∞
eλ1s

(
‖u(s)‖p

Lp(�) + ‖v(s)‖p
Lp(�) + |ut(s)|22 + |vt(s)|22

)
ds < +∞, ∀t ∈ �.
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Thus, using Lemma 3.4 we get

lim
m→∞

∫ t

τ

e−λm(t−s)
(

1 + ‖u(s)‖p
Lp(�) + ‖v(s)‖p

Lp(�) + |ut(s)|22 + |vt(s)|22 + |g(s)|22
)

ds = 0.

(4.10)
Let T0 = t − τ = 1, by combining (4.10) with (4.9), we get m large enough so that

|w2(t)|22 ≤ δ|w(τ )|2, (4.11)

with δ < 1. Thus, from (4.5) and (4.11), using Theorem 2.5 we get the result. �

5. Some further remarks. We have just proved the existence of pullback attractors
A = {A(t) : t ∈ �} of ‘fixed’ bounded sets for problem (1.1). It is noted that the pullback
attractors obtained in Theorems 3.10 and 3.13 are the same object and equal to the
pullback attractor obtained in [2]. On the other hand, several authors use the concept
of attraction in a universe D not only composed by ‘fixed’ sets, but also moving in
time, which usually appears in applications and is defined in terms of a tempered
condition (see e.g. [4]). Here D is a non-empty class of bounded sets parameterized in
time D̂ = {D(t) : t ∈ �} with a tempered condition on their growth in time. When D
is the universe of all constant bounded subsets, the pullback D-attractor is equal to
the pullback attractors of ‘fixed’ bounded sets. We now give some remarks about the
relationship between these two concepts of pullback attractors for problem (1.1) base
on the abstract results obtained in [11].

Firstly, let R be the set of all functions r : � → (0,+∞) satisfying the tempered
condition lim

t→−∞ eλ1tr2(t) = 0, and denote by D the class of all families D̂ = {D(t) :

t ∈ �} such that D(t) ⊂ B(r(t)) for some r ∈ R, where B(r(t)) is the closed ball
in D2

0(�, σ ) ∩ L2p−2(�) with radius r(t). Using this universe D, one may establish
the existence of a pullback D-attractor AD = {AD(t) : t ∈ �} for problem (1.1) by
arguments similar to the ones given in Section 3. As a corollary of the results in
[11], this pullback D-attractor contains the pullback attractor obtained in Theorems
3.10 and 3.13. Moreover, also using the abstract results in [11], one can see that if g
satisfies an additional hypothesis, namely supt≤T |g(t)|22 < ∞ for some T, then these
two pullback attractors are coincident for all t ≤ T , that is AD(t) = A(t) for all t ≤ T .
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