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Abstract

Conversion of primary forest into oil palm plantations is common in tropical countries,
affecting soil properties, ecosystem services and land-usemanagement. However, little is known
about the short-range spatial soil distribution that is important for soil scientists, ecologists,
entomologists, mycologists ormicrobiologists. In this study, seven soil properties (pH, EC (μS/m),
P (mg/kg), NO3

- (mg/kg), N%,C% andC:N)weremeasured to quantify the spatial autocorrelation
across primary forest, selectively logged forest and oil palm plantation in Sabah, Malaysian
Borneo. Local variograms were calculated (range ~5 m) to determine the short-range variation,
and a decision tree as well as principal component analysis were implemented to determine if
the overall (global) mean differed between land uses. As hypothesised, oil palm soils deviated
the most from primary forest soils, which had more fluctuating variograms and in general,
a shorter range. Oil palm plantations also showed a difference in the global mean except for
electrical conductivity. Selectively logged forests also differed in their short-range spatial
structure; however, the global mean and variance remained similar to primary forest soil with
the exception of labile phosphorus and nitrate. These results were attributed to initial plantation
development, removal of topsoil, fertiliser application and topography.

Introduction

Anthropogenic land-use change often affects soil properties over a shorter time span than
natural factors such as climate, topography, vegetation, age and parent material (Amundson and
Jenny 1991; Winkler et al. 2021; Yaalon and Yaron 1966). In the tropics, logging of primary
forests and conversion into agricultural land is widespread (Benhin 2006; Kleinschmit et al.
2021; World Resource Institute 1991), which reduces the quality and quantity of natural
resources (Guerrero et al. 2020). This topic has been widely studied; however, little is known
about the short-range variation of soil chemical properties and hence, biodiversity, ecology,
entomology, microbiology, mycology and many other ecosystem services.

It is known that the conversion to oil palm plantation reduces numerous ecosystem services
provided by soil. For example, after logging, areas that are leveled (along with roads) increase
run-off causing erosion (Van Wambeke 1992; Hartanto et al. 2003), and with the removal of
topsoil and drainage, the soil organic matter (SOM) content is reduced (Krejčová et al. 2021;
Andriesse and Schelhaas 1987). This causes loss of fertility (Dressen et al. 1976) and an increase
in soil compaction (Lal 2021; Lyczak et al. 2021). These losses further cause a reduction in
biodiversity (World Resource Institute 1991), can affect soil processes such as bioturbation
(Tuma et al. 2019), increase evapotranspiration (Uhl et al. 1981) and cause pollution
(Henderson and Osbourne 2000; Koh and Wilcove 2007). This reduces the provisioning of
ecosystem services such as water purification, food production, livelihood, climate regulation
and biodiversity (FAO and UNEP 2020).

The soil properties that provide these functions and services are correlated in geographic
space. This spatial autocorrelation reflects processes that help form soils and informs proper
land-usemanagement. Themost common geostatistical technique tomodel the spatial structure
of soil properties is known as a variogram. A variogram generalises a random process over the
distance between point pairs (Matheron 1963). A variogram shows the short-range variance or
measurement errors (nugget), the total semivariance (sill) and the distance over which the
property is no longer correlated in geographic space and/or time (range).

Oil palm plantations need the least area per litre of any vegetable oil (Basiron 2007; Poore and
Nemecek 2018), provide a low financial cost to the consumer and high profitability for the
producer, and are a driver of economic development (Qaim et al. 2020). Consequently, oil
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palm expansion is driving deforestation in Southeast Asia
(Henderson and Osborne 2000; Koh and Wilcove 2007; Palm
2005). For example, in Malaysian Borneo, from 1990 to 2018, oil
palm was responsible for decreasing the area of primary forest by
13% in Sarawk and 16% in Sabah and decreasing the area of peat
forests fromby 21% in Sarawak and 19% in Sabah (Jaafar et al. 2020).

In the state of Sabah, Malaysian Borneo, oil palm plantations
are generally established from areas that were originally selectively
logged forests (Osman et al. 2012), where trees with the highest
economic value were harvested first and then fast-growing trees in
the following round of harvest. Once logged, the areas were left to
naturally regenerate, often for multiple decades. However, even
with regulations, logged forest mainly consists of pioneering trees
and the forests were left degraded (Reynolds et al. 2011). These
areas were converted to oil palm by mechanically levelling,
draining and/or removing the topsoil as well as adding infra-
structure, fertiliser, herbicides and pesticides.

The aim of this study was to determine if land use alters soil
chemical properties. It is hypothesised that the largest change
will be seen in the short-range spatial autocorrelation in oil palm
and logged forest relative to primary forest soils. Additionally, it
is believed that the global mean will be significantly different for
oil palm but similar for logged forest and primary forest soils.

Materials and methods

Study sites

The research site (Figure 1a, b) forms part of the Stability of Altered
Forest Ecosystems (SAFE) project in the state of Sabah, Borneo
Malaysia (Ewers et al. 2011; Tuma et al. 2019) approximately 4� 40’
27” N and 117� 31’ 40” E with an elevation ranging from 370 to
500 m. The climate is characterised by an isohyperthermic soil
temperature and an udic soil moisture regime with a mean annual
temperature of 26.7 and mean annual precipitation of ~2,650 mm
(Kumagai and Porporato 2012; Kuntashula et al. 2014; Walsh and
Newbery 1999). The dominant soil types in the region are Typic/
Humic Hapludults and Kandiudults on hilly positions with various
types of Histosols, Inceptisols and Entisols in lower regions
(Sakurai 1999). The geology is characterised by a metamorphic
complex of amphibolites, and gneiss intruded by granite, gabbro,
and ultramafic rock (Haile and Lee 1997).

Three land uses were sampled before any SAFE project-related
experimental fragmentation. The primary forest has been under
conservation since 1976 and has experienced little to no human
disturbances. This area lies on both eastern and western hill slopes
and has a mean elevation of 431 m, and Shorea and Diospyros tree
genera predominate. The logged forest areas were on western
sloping positions, has a mean elevation of 450 m, had been
selectively logged at least twice (between 1970–1990 and 1999–
2010) and was previously logged for Dryobalanops,
Dipterocarpus, Shorea and Parashorea tree genera. Only past
signs of logging have been observed and secondary forest now
predominates. Oil palm plantations were found almost
continuously in slightly lower elevation areas (mean elevation
of 385 m) such as foot slopes and valleys, planted in 2006 and
are fertilised twice a year with diammonium phosphate
((NH4)2HPO4)), potassium chloride (KCl), ammonium sul-
phate ((NH4)2,SO4), magnesium sulphate (MgSO4) and diso-
dium tetraborate octahydrate (Na2[B4O5(OH)4]·8H2O) (Elias
et al. 2020). However, the amount of fertiliser applied was not

known. The oil palm site is managed by the company Benta
Wawasan Sdn. Bhd. (Ewers et al. 2011) and consist of Elaeis
guineensis monocultures with a low, open canopy and sparse
under vegetation.

Twenty-two sampling clusters (Figure 1b) were dug on the
three land-use areas (8 in primary forest, 6 in logged forest and 8
in oil palm). Each sampling cluster comprised 10 samples
(n = 220), 1 m apart, taken in the shape of a right triangle as
shown in Figure 1c. Since the sample locations within each cluster
were inside the precision of the GPS (5 m), the coordinates were
manually entered.

Composite soil samples (average of total depth) down to 20 cm
in depth were taken, were homogenised by hand (in the field
by mixing the soil by hand), then sieved (2 mm), and oven-dried at
70–80℃ for 3–5 days. Seven soil chemical properties were measured:
pH, EC (μS/m), P (mg/kg), NO3

- (mg/kg), N%, C% and C:N. The
pH and EC were measured in a 1:2.5 soil to water solution after
mechanically shaking for an hour and filtered. A 1:100 soil to
Mechlich-3 solution was shaken for 30 min and filtered to measure
labile P with a UV Genesys 10 Thermo spectrometer at an 889 nm
wavelength as described by Watanabe and Olsen (1965). To
determine NO3

-, samples were extracted in deionised water (1:5
soil:water ratio) and filtered, and the NO3

- was determined using a
colorimetric method (Zbíral et al. 1997). The same filtrate was used
to determine pH and conductivity using a glass and potentiometric
electrode. Total organic C and N percent were measured through a
Flash 2000 Thermo Scientific elemental analyser.

Data analysis

A flow chart of the process used to determine the variability of the
soil properties on the site is shown in Figure 2. From the observations,
variograms were created for each soil property and the model fit
was estimated through ordinary kriging. The difference in mean soil
properties between land uses was then calculated through a
conditional inference tree (ctree). Then, principal component analysis
(PCA) was conducted to determine the variance. To determine the
correlations between soil properties, a correlation matrix was
constructed for all soil properties within a land use. All statistical
analysis was conducted in R software (R Core Team 2017).

Spatial autocorrelation
Before developing the variograms, data for each soil property were
checked for normality and heterogeneity through a Shapiro–Wilk
test (Shapiro and Wilk 1965) and Levene’s test (Levenes 1960),
respectively. Variograms were then constructed to determine the
spatial structure of individual soil properties within each land use.
Variograms are derived from the semivariance between point pairs
with distance. Mathematically, this is described as follows
(Matheron 1963):

� hð Þ ¼ 1
2 N hð Þj j

X
N hð Þ

ðzi � zjÞ2;

where � hð Þ is the semivariance at distance h, N hð Þ is the set of all
point pairs with distance, and zi and zj are values of the soil
property at distance i and j, Therefore, h is the product of i and j.
This is known as an empirical variogram from which theoretical
variograms are computed from.
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Theoretical variograms were then fit using residual maximum
likelihood (REML; Bartlett 1937) to automatically fit the nugget
(h ¼ 0), the sill (h ¼ lim

h !1
� hð ÞÞ and the range. This method was

used because it is an unbiased estimate of variance, it does not need
homogenous variance, its residuals can be correlated and it is
computationally efficient (Johnston 1972). Four theoretical
variogram models were tried for each property including spherical
(Sph), exponential (Exp), gaussian (Gau) and wave (Wav) models.
A more detailed explanation of these variogram models can be
found in the supplementary material A1. The final models were
selected through ordinary kriging (Matheron 1963) with leave-
one-out cross-validation. The model with the lowest root mean
squared error (RMSE) for each land use was selected as the
final model.

To compare soil properties on different land uses, the spatial
autocorrelation of each variogram was evaluated on their spatial
dependence, which involved the ratio of the nugget, sill and range
(NSR). In this paper, the NSR is as follows:

NSR ¼ Nugget
Sillþ Rangeð Þ ;

The nugget, sill and range were scaled from 0.1 to 0.9, so each
variable had equal weight (e.g., no large range or sill). The smaller
the NSR is, the greater the spatial autocorrelation. This spatial
dependency measure was used because it incorporates the three
common aspects of a variogram into one simple equation (x and y
axis), where the commonly used nugget:sill ratio to compare
variograms leaves out the range.

Mean soil properties
The means of the soil properties were evaluated between each land
use through a type of decision tree known as a ctree (Hothorn et al.
2006; Zeileis and Hothorn 2015). A ctree recursively splits the data
on the independent variable to make the dependent variable more
homogenous. It does so until no more splits are possible in the
ctree, or a user-defined significance value (p-value) has been
reached (Hastie et al. 2009). The ctree was developed with a
Bonferroni test at each split with a p-value of 0.01 as the stopping
criteria. A ctree was used because they are easy to interpret, do not
need linear data, perform well with small sample sizes and are non-
parametric (Hothorn et al. 2006; Zeileis and Hothorn 2015).

After the ctree was grown, the residuals for each model were
checked for normality, heterogeneity and spatial autocorrelation. If
there was spatial autocorrelation, the residuals were kriged and
added back to the model, and the distributions were checked again.
It should be noted that the models were only used to see the
statistically significant differences and not to predict the soil
properties.

Soil property correlations
Before PCA analysis (Pearson 1901), the soil properties were

normalised !
0;1

� �
so that all properties had an equal weight in the

covariance matrix. The soil properties were evaluated on how
much each contributed to the variability and how well the soils
represent the principal components (PCs), also known as Cos2.
The contribution is the percentage a soil property contributes to
the total variance in a PC and ranges from 0 to 100%. The further
away the soil property is from the origin (coordinates= 0,0), the
more that property contributes to the variance explained. A larger

Figure 1. Site within the surrounding area (a), sampling clusters (b) and sampling orientation in each cluster extending from the GPS placed at the black dot (c). Numbers
represent how the coordinates were manually entered for each observation. PF: Primary Forest; LF: Logged Forest; OP: Oil Palm.
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Cos2 implies a better representation within a PC and, hence, the
more important the property is. Cos2 is simply the sum of the
squared coordinates of a soil property on a biplot.

A correlation matrix was created to determine how the soil
properties correlate with each other within a land use. Correlations
were determined using the REML model as described in Sec 2.2.1.
p-Values and Pearson’s correlation coefficient (R2) were used to
interpret the correlations.

Results

Spatial autocorrelation

The variograms for each land use (Figure 3) and (Table 1) clearly
show a large difference in the semivariance for each land use. In
primary forest soils, pH (nugget = 0.00, sill= 0.02, range= 0.03 m,
NSR = 0.50), EC (nugget = 148, sill= 480, range= 5.85 m,
NSR = 0.24), N (nugget= 0.00, sill= 0.008, range= 1.11 m,
NSR = 0.29) and C (nugget = 0.50, sill= 0.80, range = 1.50 m,
NSR = 0.12) all had Exp theoretical variograms with RMSE of 0.15,
15.2 μS/mg, 0.08% and 1.01%, respectively. On the other hand,
labile P (nugget = 2.00, sill= 5.50, range= 3.00 m, NSR= 0.17),
NO3

- (nugget= 2.00, sill= 5.50, range= 3.00, NSR= 0.17) and C:N
(nugget = 0.00, sill= 1.56, range= 1.11, NSR= 0.29) had a Sph
theoretical variogram as their best-fitting model with a RMSE of
2.10 mg/kg, 8.37 mg/kg and 1.31, respectively.

Selectively logged forest changed to more complex theoretical
variogram models with only labile P (nugget= 2.00, sill= 5.00,
range = 1.50 m and NSR= 0.25) having an Exp variogram with a
RMSE of 21.1 mg/kg, while only NO3

- (nugget= 37.9, sill= 79.0,
range = 2.80 m and NSR= 1.26) and N (nugget = 4.00×10-3,
sill= 9.00×10-3, range= 3.80 m, NSR= 14) had Sph theoretical
variograms with a RMSE of 8.50 mg/kg for NO3

- and 0.09% for N.
Properties with Wav theoretical variograms included pH
(nugget = 0.04, sill = 0.10, range = 1.70 m and NSR =0.24)
and EC (nugget = 198, sill = 245, range = 1.60 and NSR = 0.63)
with RMSE of 0.33 and 16.0 μS/mg, respectively. Carbon
(nugget = 1.00, sill = 3.00, range = 2.80 m and NSR = 0.17) and
C:N (nugget = 1.00, sill = 3.90, range = 3.20 m and NSR = 0.16)
had a Gau theoretical variogramwith a RMSE of 1.34% for C and
1.25 for C:N.

In oil palm, the Wav theoretical variogram was dominant with
the best-fitting models for labile P (nugget = 200, sill= 400,
range = 1.50 m and NSR= 0.49), NO3

- (nugget = 19.4, sill= 27.8,
range = 0.88 m and NSR= 0.39), N (nugget= 3.00×10-4,
sill= 9.00×10-4, range= 1.12 m and NSRE= 0.29) and C
(nugget = 0.05, sill= 0.13, range= 1.55 m and NSR= 0.25) with
RMSE of 21.9 mg/kg, 5.38 mg/kg, 0.03% and 0.34%, respectively.
The Gau model was utilised for pH (nugget= 0.05, sill= 0.06,
range = 1.70 m and NSR= 0.23) and C:N (nugget= 1.00,
sill= 3.00, range= 4.00 m and NSR= 0.23), which had a Gau

Figure 2. Flow chart of the process used to capture the variation
of measured soil properties.
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theoretical variogram and a RMSE of 0.32 for pH and 1.20 for C:N.
Electrical conductivity (nugget = 200, sill= 400, range = 1.00 m
and NSR= 0.52) was the only property to have an Exp model and
had a RMSE of 20.3 μS/mg.

Mean soil properties

Except for NO3
- and labile P, there was no statistically significant

difference between the mean in primary forest and logged forest
soil properties (Figure 4) according to the ctrees’ terminal nodes.
On the other hand, oil palm soils were statistically different from
both primary forest and logged forest for all soil properties except
EC. Oil palm plantations had a lower pH (5.25) relative to primary
forest (6.00) and logged forest (5.98). Electrical conductivity was
the lowest in oil palm (57.5 μS/cm), then logged forest (67.4 μS/cm)
and highest in primary forest soils (70.5 μS/cm). Labile P was
the lowest in primary forest (5.70 mg/kg), then logged forest
(6.61 mg/kg) and highest in oil palm soils (29.1 mg/kg), which
was also seen in the PCA. Oil palm plantation soils had low

NO3
- (10.4 mg/kg), primary forest soils had relatively high (21.4

mg/kg) and logged forest soils had the highest NO3
- (26.6 mg/kg).

Nitrogen was highest in logged forest (0.28%) and primary forest
(0.26%) with the lowest in oil palm (0.13%). Carbon follows a
similar trend, with logged forest soils having the greatest (3.41%),
followed by primary forest (3.12%) and then oil palm with the
lowest (1.25%). The C:N ratio indicates that primary forest has the
highest (12.3), followed by logged forest (12.0) and then oil palm
(9.27) soils.

Soil property correlations

The first two PCs accounted for 64% of the variability in the dataset
(Figure 5). Nitrogen and C percent contributed the most to PC1
(darker lines) with 23% and 26% contribution, respectively. These
two elements are also best represented in PC1 with a Cos2 of 0.75
and 0.84 for N and C, respectively. Nitrate and EC represent the
next largest contributors to PC1 with contributions of 16% and
14% with a Cos2 of 0.50 and 0.44, respectively. All four of these

Figure 3. Variograms with the trends for primary forest (PF), logged forest (LF) and oil palm (OP) being green, blue and yellow, respectively. The points represent the
semivariance between observation pairs, while the curve is the model of the observation pairs.
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elements were negatively correlated with PC1 and PC2. In other
words, as the two PCs decrease, EC, NO3

-, N and C values increase.
Labile P represented more than half the contribution to PC2

(58%) with a Cos2 of 0.74. The pH also contributed to PC2 (26%)
but had a much lower Cos2 (0.32). Unlike the other soil properties,
a high P content was correlated with oil palm and had little
correlation to primary forest or logged forest. On the other hand,
higher values for all other soil properties were more strongly
correlated with primary forest and logged forest. This can be seen
in the strong directionality for both C and N towards these two
land uses.

The R2 values (Figure 6) for primary forest soils show that EC
was highly correlated with P (0.66), N (0.82) and C (0.82). Labile P
correlated with N (0.74) and C (0.74), while N correlated highly
with C (0.93). In logged forest soils, EC correlated with N (0.86),
C (0.84) and C:N (0.74), while N correlated with C (0.97) and C:N
(0.75). Surprisingly, pH negatively correlated with N (-0.69) and
C (-0.49) in OP soils and again, N was highly correlated with
C (0.91).

Discussion

Logging altered the short-range spatial structure of the soil
properties, yet the mean values of most of the soil properties
remained similar between primary forest and logged forest soils.
This is most notable for pH, where it was observed that the

theoretical variogram changed from an Expmodel with a highNSR
in primary forest soils to a Wav model with a small NSR in logged
forest soils. Therefore, the spatial structure changed to a higher
degree of spatial dependency that has positive and negative
correlations with an increase in range (Mahdi et al. 2020). This
agrees with observations made by Lima et al. (2020), that logging
substantially alters spatial patterns of many ecosystem parameters,
for example, logging could have made the forest less homogenous
and/or opened the canopy (Berry et al. 2008). There should be
noted that spatial aspects of logged forest is more variable than
primary forest; however, the larger differences between logged
forest and primary forest in smaller scale variation appear even
in situations where aspects is similar. Despite some effects by slope
variations and these cannot be excluded, it is believed that selective
logging was a major reason for the observed difference between
primary forest and logged forest.

Interestingly, EC and NO3
- in primary forest had effective

ranges greater than the distance than the soil samples and,
therefore, increased without bounds at this scale. This may indicate
there is trend in the data such as a slope gradient and sample
design, or the scale was too fine (Webster and Oliver 2001).
However, this was not found for properties in any other land use,
and because of the short distances, it is thought this was due to the
fine scale. However, there are many factors that can affect EC such
as mineralogy, salts, structure, water content, bulk density and
more (Adviento-Borbe et al. 2006). Therefore, further studies into

Table 1. Theoretical variogrammodels used, goodness of fit (RMSE) and parameters (nugget, sill, range and normalised spatial dependency (NSR) for primary forest,
logged forest and oil palm for each soil property.

Veg Property Model RMSE Nugget Sill Range (m) N/(SþR)

Primary forest pH Exp 0.15 0.00 0.02 0.03 0.50

EC (μS/cm) Exp 15.2 148 480 5.85 0.23

Labile P (mg/kg) Sph 2.10 2.00 5.50 3.00 0.17

NO3- (mg/kg) Sph 8.37 39.0 87.0 5.10 0.18

N% Exp 0.08 0.00 8e-3 1.11 0.29

C% Exp 1.01 0.50 0.80 1.50 0.25

C:N Sph 1.31 0.00 1.56 1.11 0.29

Logged forest pH Wav 0.33 0.04 0.10 1.70 0.24

EC (μS/cm) Wav 16.0 198 245 1.61 0.63

Labile P (mg/kg) Exp 21.1 2.00 5.00 1.50 0.25

NO3- (mg/kg) Sph 8.50 379 79.0 2.80 1.26

N% Sph 0.09 4e-3 7e-3 3.80 0.14

C% Gau 1.34 1.00 3.00 2.80 0.17

C:N Gau 1.25 1.00 3.90 3.20 0.16

Oil palm pH Gau 0.32 0.05 0.06 1.70 0.23

EC (μS/cm) Exp 20.3 200 400 1.00 0.52

Labile P (mg/kg) Wav 21.9 200 400 1.50 0.49

NO3- (mg/kg) Wav 5.38 19.4 27.8 0.88 0.39

N% Wav 0.03 3e-4 9e-4 1.12 0.29

C% Wav 0.34 0.05 0.13 1.55 0.25

C:N Gau 1.20 1.00 3.00 4.00 0.14

For models, “Exp” = exponential, “Sph” = spherical, “Gau” = Gaussian and “Wav” = wave models.
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soil physical properties could improve the interpretation of EC and
NO3

- on the different land uses.
Labile P had a much greater sill in oil palm than primary forest

and logged forest soils. This is not surprising for two reasons: i) P
generally binds to sorption sites on minerals and, therefore, gets
preferentially eroded causing variability, and ii) the plantation
applies P fertiliser, which may have not been precisely applied
causing the Wav spatial structure and increasing the variance at
this scale.

It was speculated that the low spatial autocorrelation could be
due to an unpronounced catena effect so that the logged forest soil
properties do not influence each other as much as in primary forest
soils (smaller nugget to sill ratio with shorter range). This canmake
the soil distribution appear random, which has implications for soil
mapping in the area. For example, randomness would make field
surveys more expensive, or the maps could be less accurate
(Beckett and Burrough 1971). This has downstream effects
particularly for land-use management, restoration efforts and
monitoring environmental resources. However, it is difficult to
know if this is a result of other environmental factors such as
topography, climate, and parent material. For example, Flynn et al.
(2020) found that both physical and chemical factors are strongly
affected by landform elements.

Oil palm also shows a difference in the spatial structure of the
variograms compared to primary forest. Like logged forest soil, oil
palm seem to have changed into a more periodic structure
(semivariance fluctuates around the sill over distance), especially

for components commonly associated with SOM such as P, N, C and
C:N. It is thought that the stripping of SOM during plantation
development was the cause of this trend. When stripped, some places
are easier to strip than others and may not always be near to each
other and, hence, the periodic structure. Therefore, in this area, logged
forest and oil palm change the spatial distribution of these seven soil
chemical properties, which is important for economic efficiency and
sustainability.

Unlike the variogram analysis, primary forest and logged forest
soils are similar according to the global mean and variance.
Therefore, it is believed that logged forest soils experienced little
degradation and/or have partially regenerated. Both land uses
show a similar distribution in orthogonally transformed space,
indicating that the same soil properties are controlling the global
variance. Not surprisingly, N and C account for the most variation
in primary forest and logged forest as these land uses were not
stripped of SOM. Originally, expected by general patterns of C and
N, primary forest would have the highest amount of both C and N;
however, trees in the Dipterocarpaceae family associate with
ectomycorrhiza (Smits 1994), which help to form microaggregates
and root exudes that protect N and C physically and chemically
(Center for International Forestry Research 1998). Therefore, N
and C were the same in primary forest and logged forest soils even
with the more open canopy due to soil stability.

It was unexpected that NO3
- and P were statistically higher in

logged forest than primary forest as it was thought that the more
open canopy of logged forest would cause more surface erosion or

Figure 4. Boxplot of the significant differences (p<0.01*) of soil properties and land-use types according to the conditional inference trees’ terminal nodes. The horizontal line
represents the median, the hinges represent the 25th and 75th quantiles, the vertical lines represent the distance between the 1st and 3rd quartiles, and the points are outliers. PF:
Primary Forest; LF: Logged Forest; OP: Oil Palm.

Journal of Tropical Ecology 7

https://doi.org/10.1017/S026646742300024X Published online by Cambridge University Press

https://doi.org/10.1017/S026646742300024X


leaching of salts. This could also indicate that conditions for
mineralisation are greater in logged forest soils possibly due to
better drainage (Stottlemyer et al. 2001) and higher temperatures
(Miller and Geisseler 2018), and the litter fall from the pioneering
trees could be easier for microbes to break down (Quan et al. 2014).
Since logged forest soils have a southeastern slope and a more
open canopy, these attributes may have better drainage and
higher temperatures and, hence, caused greater mineralisation.

Unfortunately, this has an environmental impact as it can cause
eutrophication both on- and off-site (Carpenter et al. 1998).

On the other hand, oil palm soils were not similar in the
transformed space and besides P, soil properties had a lower global
mean and variance in the oil palm cluster. Nevertheless, in the
tropics with high temperatures and precipitation, low pH values
were expected. The lower pH in oil palm soils is most likely due
to nitrification of NH4

þ-based fertiliser application and the

Figure 5. The first two principal components of all soil properties with their contributions to the components (colour of arrows in percent). Ellipsis show the clusters for primary
forest (PF), logged forest (LF) and oil palm (OP). The larger the ellipsoid, themore variation in soil properties determined by the observations (points) for the principal components.

Figure 6. Correlation matrix of soil properties within primary forest (PF), logged forest (LF) and oil palm (OP). Blank spaces indicate p-values > 0.01, and therefore, the
correlations are not displayed.
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subsequent hydrolysis of Al3þ both of which release Hþ (Ragland
and Coleman 1960; Sigurdarson et al. 2018). These changes in soil
properties have impacts on ecosystem services dramatically such as
long-term degradation causing a reduction in growth and yield.
For example, it affects nutrient cycles and availability and nutrient
toxicity (flora and fauna), decreases water quality, decreases soil
fertility, facilitates leaching (ion exchange) and influences SOM
accumulation (Lükewille and Alewell 2008).

The results of EC in oil palm were unexpected because it was
thought that the application of fertiliser and the position in the
landscape (low lying) would cause salt and clay accumulation.
However, a pH below 5.50 facilitates the exchange of Alþ3 and Hþ

for basic cations on the solid phase and, hence, leaching of salts
(Haynes & Swift 1986). This reaction would be pushed further with
the addition of fertiliser (acidification) and leaching (cations
removed). Additionally, this could represent a low water-holding
capacity due to the removal of the C-rich topsoil (Brevik et al. 2006).
Nevertheless, the global mean ECwas similar in all land types, further
indicating that there are more processes controlling EC than simply
land use. These could include many soil physio-chemical, environ-
mental and anthropogenic factors such as geology, water quality,
atmospheric deposition, land management, landscape position
amongst others (Corwin and Lesch 2005) and bioturbation/biogenic
processes (Tuma et al. 2019).

Not surprisingly, P in oil palm was much greater than in
primary forest and logged forest. For oil palm soils, it is speculated
that the application of diammonium phosphate increased the P
content along planting rows. The high P content in oil palm soils
can have a large ecological impact as P often ends up in aquatic
systems (Smith et al. 1999) creating hypoxic conditions in lakes
and coastal zones, decreases water quality (Khan and Mohammad
2014) and decreases biodiversity (Rabalais 2002). This is of
concern as some measurements of P were excessively high,
increasing the risk of land degradation.

It was thought that fertiliser in oil palm soils would increase the
NO3

- concentration due to the nitrification of NH4
þ fertiliser;

however, this was not the case. The most likely explanations for the
lowNO3

- are increased leaching from the profile due to the udic soil
moisture regime (Spalding et al. 2001), an increase in erosion from
heavy rain with less protection from the canopy or the lower pH
has been slowing the nitrification of NH4

þ to NO3
- (Amatya et al.

2011) caused by an alteration of microbe populations (Lee-Cruz
et al. 2013; Tripathi et al. 2016). Conversely, in primary forest and
logged forest soils, NO3

- was more abundant most likely due to
vegetation cover and possibly, and nitrification was not inhibited
on these land uses.

Like the spatial distribution of oil palm soils, the loss of N and C
most likely originated from the initial plantation development
due to oxidation of SOM, anthropogenic pedoturbation and the
physical removal of topsoil (Corley and Tinker 2015).
Additionally, oil palm do not naturally form symbiotic relation-
ships with mycorrhiza and need to be inoculated with arbuscular
mycorrhiza (Sundram 2010). Therefore, N and C do not have the
protection that is provided by the fungi in primary forest and
logged forest soils. However, C losses were not observed by
Khasanah et al. (2015) over long-term monitoring of C in oil palm
soils (> 25 years). This is because initially, C declines and then
increases from oil palm residues, forming a U-shaped curve. Since
the oil palm in this study site is still considered early in the life
cycle, C and N may be on the downward trend of the U curve
described by the authors. Additionally, the lower C:N of oil palm
soils would indicate faster mineralisation rates and the release of

NH4
þwith subsequent uptake from organisms or leaching and loss of

C through the release of CO2 (Hossain et al. 2017).
An additional pattern that emerged was the correlation between

properties in each land use, which helped to further explain these
results. The difference in property interactions indicates a
difference in soil functionality. For example, the negative
correlation of N and C with pH in oil palm soils (positive in
primary forest and logged forest) could represent a loss of the pH
buffering capacity due to low SOM from removal and heavy
fertilisation. The loss of the pH buffering capacity due to N
fertiliser is poorly understood; however, Zhang et al. (2016) found
that even on calcareous soils with a high buffering capacity,
fertiliser decreased this capacity and soils acidified. Alternatively,
this negative correlation could be due to the acidic soils stabilising
the C content, all be it low, through chelation with sesquioxides
(Sparks 1995). Therefore, as the pH decreases, SOM content could
increase in these soils due to the chemical protection chelation
provides.

Electrical conductivity correlated with P in primary forest soils
and is best explained by the negative charge of labile orthophos-
phate (PO4

3-), which together with cations will facilitate a higher
EC as it has been shown that the concentration of cations and
anions positively affects EC (Carmo et al. 2016). Electrical
conductivity also correlated with N and C in both primary forest
and logged forest soils. These two soil properties make up a large
portion of SOM with a pH-dependent charge and, therefore, can
hold more cations and water, which would increase the EC as these
properties increase. However, Auerswald et al. (2001) found that
SOM only had a small influence on EC, which was more correlated
with clay, fertilisation history and water content (near wilting
point). Additionally, these results are contradictory to Lei et al.
(2019), who found a negative correlation of EC with C. However,
the greater SOM content can also cover P sorption sites on clay
minerals and the greater SOM stock can be mineralised to release
P, thereby increasing EC (Yusran 2011).

As expected, C and N were highly correlated in all land uses.
However, it was surprising that N and C correlated with C:N only
in logged forest soils. This was unexpected because it was thought
that both N and C would be highly correlated with C:N in all land
uses due to the fact the chemicals make up the ratio. Additionally,
N had a positive correlation with C:N, but it was expected that N
would be negatively correlated with C:N. Therefore, it is thought
that if N andCwere accumulating,Ndoes so at a slower rate in logged
forest soils. This hypothesis was confirmed by the coefficients of N
(0.06) and C (1.16) in the linear regression. The difference in the
accumulation rates could be due to the logging process and vegetation
type, which can leave more lignin and, hence, more C on the soil
surface.

Conclusion

This study showed the effect land use has in a tropical landscape
and potential depletion of ecosystem services provided by soils.
The spatial distribution of soil properties differed on each land use
with logged forest showing less spatial autocorrelation and oil palm
showing a different spatial structure relative to primary forest.
Although the spatial distribution of soil properties changed in
logged forest, the soils appear to have little to no degradation, or
they have regenerated as themean values of the soil properties were
similar to those of primary forest. On the other hand, the mean soil
properties changed in oil palm relative to both primary forest and
logged forest, which were associated with degradation of ecosystem
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services. Correlations of soil properties within each land use also
differed between land uses, and the results indicated a loss of pH
buffering capacity in oil palm soils. These changes suggested SOM
degradation from mechanical removal and management practices
such as fertiliser and pesticide application in oil palm soils resulting
in threats to biodiversity, soil and water quality and sustainability
of oil palm agriculture. Further research should include measuring
soil physical properties to better understand the dynamics of the
conversion of ecosystems for different land uses.
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