H. Tamura Nagoya Math. J. Vol. 60 (1976), 7-33

THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF THE LAPLACE OPERATOR IN AN UNBOUNDED DOMAIN

HIDEO TAMURA

§ 1. Introduction.

This paper is devoted to the study of the asymptotic distribution of eigenvalues of the Laplace operator with zero boundary conditions in a quasi-bounded domain contained in Euclidean space \mathbb{R}^2 . Let us consider the following eigenvalue problem:

$$-\Big(\frac{\partial^2}{\partial x_1^2}+\frac{\partial^2}{\partial x_2^2}\Big)u=\lambda u\;,\qquad u\in H^1_0(\varOmega)\;,$$

where

(1.2)
$$\Omega = \{(x_1, x_2) \mid -\infty < x_1 < \infty, 0 < x_2 < q(x_1)\},$$

and q(x) is a smooth positive function defined on $(-\infty, \infty)$ satisfying $\lim_{\|x\|\to\infty} q(x) = 0$.

It has been shown in [1] that the problem (1.1) has an infinite sequence of discrete eigenvalues approaching to ∞ . We denote by N(h) the number of eigenvalues less than h of the problem (1.1). We are concerned with the asymptotic behavior of N(h) as $h \to \infty$.

The asymptotic distribution of eigenvalues of the Laplace operator with zero boundary conditions in a quasi-bounded domain has been studied by Clark [1], Hewgill [4], and Glazman and Skacek [2]. It seems to the author that any true asymptotic formula for N(h) even in the case of such a simple domain as (1.2) has not been known.

We shall study the problem (1.1) under the formulation as an eigenvalue problem of a differential operator with operator-valued coefficients. On the other hand, Kostjuchenko and Levitan [5] studied the eigenvalue problem for the operator $-(d^2/dt^2) + Q(t)$ under the assumption that Q(t) is

Received April 30, 1975.

8

a semi-bounded self-adjoint operator for each fixed $t \in \mathbb{R}^1$ with the common domain of definition $\mathcal{D}(Q(t)) = \mathcal{D}_0$ and other restrictions. Our method is different from that in [5] in some ways.

DEFINITION 1.1. We denote by K(m) ($0 < m \le 1$) the set of smooth functions q(x) defined on \mathbb{R}^1 satisfying the following conditions: There exist positive constants C_1 , C_2 and C independent of x and y such that

(i)
$$C_1(1+|x|)^{-m} \leq q(x) \leq C_2(1+|x|)^{-m}$$
,

(ii) for
$$|x - y| \le 1$$
, $|q(x) - q(y)| \le Cq(x)|x - y|$,

(iii)
$$\left| \left(\frac{d}{dx} \right)^j q(x) \right| = |q^{(j)}(x)| \le Cq(x) \quad (j=1,2).$$

Now we shall state our main theorem which will be proved in § 4.

THEOREM 1.1. Let $\{\zeta_j > 0\}_{j=1}^{\infty}$ be eigenvalues of the operator A_0 $\left(= -\frac{\partial^2}{\partial y^2} \right)$ with the domain of definition $\mathscr{D}(A_0) = H^1_0(0,1) \cap H^2(0,1)$. Suppose that q(x) belongs to K(m) $(0 < m \le 1)$. Then, as $h \to \infty$

$$N(h) \sim \frac{1}{\pi} \sum_{j=1}^{\infty} \int_{Q_j(h)} (h - \zeta_j q(x)^{-2})^{1/2} dx$$
,

where $\Omega_j(h) = \{x \in \mathbf{R}^1 | hq(x)^2 > \zeta_j\}$, while $f(h) \sim g(h)$ means that $\lim_{j \to \infty} f(h)^{-1}g(h) = 1$.

Remark. $\{\zeta_j q(x)^{-2}\}_{j=1}^{\infty}$ are regarded as eigenvalues of the operator $-\frac{\partial^2}{\partial y^2}$ with the domain of definition $H^1_0(0,q(x))\cap H^2(0,q(x))$.

EXAMPLE. If $\lim_{|x|\to\infty}|x|^m q(x)=a$ (>0), then

$$N(h) \sim C(a) h^{-1/2 + 1/2m} \qquad (0 < m < 1) \; ,$$
 $\sim C(a) h \log h \qquad (m = 1) \; .$

Throughout this paper, we confine ourselves to such a simple problem as (1.1), but some generalizations will be discussed without proofs in §7. Finally we note that in this paper we use one and the same symbol C in order to denote positive constants which may differ from each other. When we specify the dependence of such a constant on a parameter, say m, we denote it by C(m) or C_m .

§ 2. Preliminaries.

Let us introduce some function spaces.

 $H^j(0,1)$ and $H^j_0(0,1)$ $(j=1,2,\cdots)$ denote the usual Sobolev spaces on the interval (0,1). For any real s, the Sobolev space $H^s(0,1)$ can be defined by interpolation methods ([6]). We denote by X the Hilbert space $L^2(0,1)$ with the usual scalar product $(u,v)_0=\int_0^1 u(x)\overline{v(x)}dx$, and the norm $\|u\|_0=\int_0^1 |u|^2\,dx$. $L^2(-\infty,\infty;X)$ denotes the Hilbert space of X-valued square integrable functions with the scalar product $\langle f,g\rangle=\int_0^\infty (f(x),g(x))_0dx$.

Let q(x) be a function belonging to K(m) and let Ω be an open domain defined by $\Omega = \{(x_1, x_2) | -\infty < x_1 < \infty, 0 < x_2 < q(x_1)\}$ and G be a cylinder domain defined by $G = \{(x, y) | -\infty < x < \infty, 0 < y < 1\}$. Then we define the unitary operator U from $L^2(\Omega)$ onto $L^2(G)$ by

(2.1)
$$(U \cdot u)(x, y) = q(x)^{1/2} u(x, q(x)y), \qquad u \in L^2(\Omega).$$

Similarly we define the unitary operator $V(=U^*)$ from $L^2(G)$ onto $L^2(\Omega)$ by

$$(2.2) \hspace{1cm} (V \cdot v)(x_{\scriptscriptstyle 1}, x_{\scriptscriptstyle 2}) = q(x_{\scriptscriptstyle 1})^{\scriptscriptstyle -1/2} v(x_{\scriptscriptstyle 1}, q(x_{\scriptscriptstyle 1})^{\scriptscriptstyle -1} x_{\scriptscriptstyle 2}) \;, \qquad v \in L^2(G) \;.$$

Now consider the following eigenvalue problem in $L^2(\Omega)$:

(1.1)
$$Hu = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) u = \lambda u , \qquad u \in H^1_0(\Omega) .$$

Here the operator H is a positive self-adjoint operator associated with the symmetric bilinear form

$$(2.3) a(u,v) = \int_{a} \left(\frac{\partial}{\partial x_{1}} u \frac{\partial}{\partial x_{1}} \overline{v} + \frac{\partial}{\partial x_{2}} u \frac{\partial}{\partial x_{2}} \overline{v} \right) dx_{1} dx_{2} , u, v \in H^{1}_{0}(\Omega) .$$

By using the operators U and V, we shall transform the above problem (1.1) into the problem in $L^2(G)$.

Let U and V be the operators defined by (2.1) and (2.2) respectively. Then, we have

$$(2.4) \quad U\frac{\partial}{\partial x_1}V = \frac{d}{dx} - q(x)^{-1}q^{_{(1)}}(x)y\frac{\partial}{\partial y} - \frac{1}{2}q(x)^{-1}q^{_{(1)}}(x) = \frac{d}{dx} + P(x) \; ,$$

(2.5)
$$U\frac{\partial}{\partial x_2}V = q(x)^{-1}\frac{\partial}{\partial y} = Q(x) ,$$

where for each fixed $t \in \mathbb{R}^1$, P(t) and Q(t) are regarded as operators acting on X with the domain of definition $\mathcal{D}(P(t)) = \mathcal{D}(Q(t)) = H_0^1(0, 1)$. Here we remark that the coefficients of the operator P(t) are uniformly bounded. By using (2.4) and (2.5), the symmetric bilinear form a(u, v) is transformed into a bilinear form

(2.6)
$$b(u,v) = \int_{-\infty}^{\infty} \left(\left(\frac{d}{dx} + P(x) \right) u, \left(\frac{d}{dx} + P(x) \right) v \right)_{0} dx + \int_{-\infty}^{\infty} \left(Q(x)u, Q(x)v \right)_{0} dx,$$

where b(u,v) is defined on the set $\mathscr{D}(b) = \left\{ u \in L^2(-\infty,\infty;X) | \frac{d}{dx}u \in L^2(-\infty,\infty;X), Q(x)u \in L^2(-\infty,\infty;X) \right\}$. The symmetric bilinear form b(u,v) induces a unique positive self-adjoint operator T in the sense of Friedrichs. T has the following expression:

(2.7)
$$T = -\left(\frac{d}{dx}\right)^{2} - \frac{d}{dx}P(x) + P^{*}(x)\frac{d}{dx} + P^{*}(x)P(x) + Q^{*}(x)Q(x),$$
$$= -\left(\frac{d}{dx}\right)^{2} - \frac{d}{dx}P(x) + P^{*}(x)\frac{d}{dx} + A(x),$$

where for each fixed $t \in \mathbb{R}^1$, $P^*(t)$ and $Q^*(t)$ denote the adjoint operators in X and A(t) (t; fixed) is a self-adjoint operator with the domain of definition $\mathscr{D}(A(t)) = H^1_0(0,1) \cap H^2(0,1)$. Thus we have transformed the eigenvalue problem (1.1) in $L^2(\Omega)$ into the following equivalent problem (2.8) in $L^2(-\infty,\infty;X)$:

$$(2.8) Tu = -\left(\frac{d}{dx}\right)^2 u - \frac{d}{dx}P(x)u + P^*(x)\frac{d}{dx}u + A(x)u = \lambda u.$$

We denote by $\{\mu_j\}_{j=1}^{\infty}$ and $\{u_j\}_{j=1}^{\infty}$ eigenvalues of the problem (2.8) and the normalized eigenfunctions corresponding to $\{\mu_j\}_{j=1}^{\infty}$ respectively.

Let A_0 be the positive self-adjoint operator $-\frac{\partial^2}{\partial y^2}$ with the domain of definition $\mathcal{D}(A_0)=H^1_0(0,1)\cap H^2(0,1)$. Then, we have with a constant C independent of $t\in R^1$,

$$||A(t)u||_0 < Cq(t)^{-2} ||A_0u||_0$$
, for any $u \in \mathcal{D}(A_0)$,

and

$$||A(t)^{1/2}v||_0 \geq Cq(t)^{-1} ||A_0^{1/2}v||_0$$
, for any $v \in \mathcal{D}(A_0^{1/2})$.

Hence, with the aid of the Heinz interpolation inequality, we have LEMMA 2.1.

$$(2.9) ||A(t)^{\alpha}u||_{0} \leq Cq(t)^{-2\alpha} ||A_{0}^{\alpha}u||_{0}, for u \in \mathcal{D}(A_{0}^{\alpha}), (0 \leq \alpha \leq 1),$$

$$(2.10) \quad ||A(t)^{\beta}u||_{0} \geq Cq(t)^{-\beta} ||A_{0}^{\beta}u||_{0}, \qquad for \ u \in \mathcal{D}(A_{0}^{\beta}), \ (0 \leq \beta \leq 1/2),$$

where C is a constant independent of $t \in \mathbb{R}^1$ and u.

The following lemma is obvious from the definitions of the operators P(t) and A(t).

LEMMA 2.2. For any t and s such that $|t-s| \leq 1$, we have

$$||(P^*(t) - P^*(s))u||_0 \le C |t - s|||A(t)^{1/2}u||_0,$$

where C is a constant independent of $t, s, u \in \mathcal{D}(A(t)^{1/2}) = H_0^1(0, 1)$ and $v \in \mathcal{D}(A(t))$.

By Lemma 2.2, we see that the operators $A(t)^{-1/2}(P(t) - P(s))$, $A(t)^{-1/2} \cdot (P^*(t) - P^*(s))$ and $A(t)^{-1}(A(t) - A(s))$ can be extended to bounded operators in X and satisfy

$$|||A(t)^{-1/2}(P^*(t) - P^*(s))|||_0 \le C||t - s||,$$

$$(2.14) \qquad |||A(t)^{-1}(A(t) - A(s))|||_0 \le C |t - s| , \qquad (|t - s| \le 1)$$

where $|||\cdot|||_0$ stands for the usual operator norm for bounded operators in X.

LEMMA 2.3. Let b(u,v) be the symmetric bilinear form defined by (2.6). Then, we have for a constant C independent of $u \in \mathcal{D}(b)$,

$$b(u,u) \geq C \int_{-\infty}^{\infty} \left\{ \left(\frac{d}{dx} u, \frac{d}{dx} u \right)_{0} + |x|^{2m} \left(A_{0}^{1/2} u, A_{0}^{1/2} u \right)_{0} \right\} dx.$$

Proof. We note that there exist constants C and β independent of x and $v \in \mathcal{D}(A_0^{1/2})$ such that $\|P(x)v\|_0^2 \leq \beta \|Q(x)v\|_0^2$ and $\|Q(x)v\|_0^2 \geq C \|x\|^{2m} \cdot \|A_0^{1/2}v\|_0^2$. For any $\varepsilon > 0$, we have

$$(2.15) \begin{array}{c} b(u,u) \geq \int_{-\infty}^{\infty} \left(\left\| \frac{d}{dx} u \right\|_{_{0}}^{2} - 2 \left\| \frac{d}{dx} u \right\|_{_{0}} \|P(x)u\|_{_{0}} + \|P(x)u\|_{_{0}}^{2} + \|Q(x)u\|_{_{0}}^{2} \right) dx \\ \geq \int_{-\infty}^{\infty} \left(\varepsilon \left\| \frac{d}{dx} u \right\|_{_{0}}^{2} - \varepsilon \beta / (1 - \varepsilon) \|Q(x)u\|_{_{0}}^{2} + \|Q(x)u\|_{_{0}}^{2} \right) dx \ . \end{array}$$

Hence, by choosing ε in (2.15) so that $\varepsilon(1+\beta) < 1$, we obtain the proof. Q.E.D.

Let us consider the following eigenvalue problem in $L^2(-\infty,\infty;X)$:

$$-\frac{d^2}{dx^2}u + |x|^{2m} A_0 u = \lambda u.$$

We denote by $\{\zeta_j\}_{j=1}^{\infty}$ eigenvalues of the operator A_0 and by $\{\lambda_k\}_{k=1}^{\infty}$ eigenvalues of the operator $-\frac{d^2}{dx^2} + |x|^{2m}$ considered in $L^2(-\infty,\infty)$. Then with the aid of separation of variables, we easily see that the eigenvalues $\{\nu_j\}_{j=1}^{\infty}$ of the problem (2.16) are given by $\{\zeta_j^{1/(1+m)}\lambda_k\}_{j,k=1}^{\infty}$.

LEMMA 2.4. Let $\{\nu_j\}_{j=1}^{\infty}$ be eigenvalues of the problem (2.16). Then, for any p > 1/2 + 1/2m and h > 2, we have

$$\sum_{j=1}^{\infty} (\nu_j + h)^{-p} \le C(p) h^{1/2 + 1/2m - p} \qquad (0 < m < 1)$$

$$< C(p) h^{1-p} \log h \qquad (m = 1).$$

Proof. It is known that there exists a constant C independent of k such that $\lambda_k \geq Ck^{2m/(m+1)}$ and it is clear that $\zeta_j \geq Cj^2$. ([7]) Hence, it follows that

$$\textstyle\sum\limits_{j=1}^{\infty} (\nu_j \, + \, h)^{-p} \leq C \, \sum\limits_{j,k=1}^{\infty} (j^{2/(m+1)} k^{2m/(m+1)} \, + \, h)^{-p} \; .$$

Furthermore, by using the estimate with a constant C independet of h

$$\sum_{k=1}^{\infty} (k^{2m/(m+1)} + h)^{-p} \le Ch^{1/2+1/2m-p},$$

we have

$$\sum_{j,k=1}^{\infty} (j^{2/(m+1)}k^{2m/(m+1)} + h)^{-p} \le C \sum_{j=1}^{\infty} j^{-1/m}k^{1/2+1/2m-p}.$$

This gives the proof in the case of 0 < m < 1. When m = 1, it is easy to see that $\sum_{j,k=1}^{\infty} (jk+h)^{-p} \le Ch^{1-p} \log h$, which completes the proof.

Q.E.D.

PROPOSITION 2.1. Let $\{\mu_j\}_{j=1}^{\infty}$ be eigenvalues of the problem (2.8). Then, for any p > 1/2 + 1/2m and h > 2, we have with a constant C independent of h,

$$\sum_{j=1}^{\infty} (\mu_j + h)^{-p} \le C h^{1/2 + 1/2m - p} \qquad (0 < m < 1 ,$$
 $\le C h^{1-p} \log h \qquad (m = 1) .$

Proof. By virture of Lemma 2.3, we see that there exists a constant C independent of j such that $\mu_j \geq C\nu_j$. Hence, by combining this fact with Lemma 2.4, we get our assertion. Q.E.D.

§ 3. Propositions.

In this section, we shall state fundamental propositions which will be used later.

Let us fix some notations.

Let Y be a separable Hilbert space with the scalar product $(,)_Y$ and the norm $\| \cdot \|_Y$. B(Y) stands for the Banach space of all bounded operators acting on Y with the operator norm $| \cdot \|_Y \cdot \|_$

PROPOSITION 3.1. Let K(x) $(-\infty < x < \infty)$ be a family of operators belonging to $B_2(Y)$ such that K(x) is continuous under the norm $|||\cdot|||_0$ with respect to x and that $\int_{-\infty}^{\infty} |||K(x)|||_2^2 dx < +\infty$. Let $\{\psi_j(x)\}_{j=1}^{\infty}$ be a complete orthonormal system in $L^2(-\infty,\infty;Y)$. If we define $\beta_j = \int_{-\infty}^{\infty} K(x)\psi_j(x)dx$, then $\sum_{j=1}^{\infty} ||\beta_j||_Y^2 = \int_{-\infty}^{\infty} |||K(x)|||_2^2 dx$.

Proof. Let $\{\theta_j\}_{j=1}^{\infty}$ be a complete orthonormal system in Y. Then, we set $k^{ji}(x) = (K(x)\theta_j, \theta_i)_Y$ and $t_{ji}(x) = (\psi_j(x), \theta_i)_Y$. We note that $\{t_j(x) = (t_{ji}(x))_{i=1}^{\infty}\}_{j=1}^{\infty}$ forms a complete orthonormal system in $L^2(-\infty, \infty; \ell^2)$, where ℓ^2 denotes the usual Hilbert space consisting of all complex-valued square summable series. By the above definitions of $k^{ji}(x)$ and $t_{ji}(x)$, we have

(3.1)
$$K(x)\psi_j(x) = \sum_{i,\ell=1}^{\infty} t_{ji}(x)k^{i\ell}(x)\theta_{\ell}.$$

By (3.1), we obtain

$$\begin{split} \sum_{j=1}^{\infty} \|\beta_j\|_Y^2 &= \sum_{j=1}^{\infty} \left(\int_{-\infty}^{\infty} K(x) \psi_j(x) dx, \int_{-\infty}^{\infty} K(x) \psi_j(x) dx \right)_Y \\ &= \sum_{j=1}^{\infty} \left(\sum_{i,\ell=1}^{\infty} \int_{-\infty}^{\infty} t_{ji}(x) k^{i\ell}(x) dx \theta_\ell, \sum_{n,m=1}^{\infty} \int_{-\infty}^{\infty} t_{jn}(x) k^{nm}(x) dx \theta_m \right)_X \\ &= \sum_{j=1}^{\infty} \sum_{\ell=1}^{\infty} \left| \sum_{i=1}^{\infty} \int_{-\infty}^{\infty} t_{ji}(x) k^{i\ell}(x) dx \right|^2 \\ &= \sum_{i=1}^{\infty} \sum_{\ell=1}^{\infty} \int_{-\infty}^{\infty} |k^{i\ell}(x)|^2 dx = \int_{-\infty}^{\infty} |||K(x)|||_2^2 dx , \end{split}$$

where we have used the fact that $\{t_j(x)\}_{j=1}^{\infty}$ forms a complete orthonormal system in $L^2(-\infty,\infty;\ell^2)$. This completes the proof.

Let $\mathscr{H}_r(\gamma)$: positive real number) be the Hilbert space with the scalar product $(u,v)_r = (A_0^r u,A_0^r v)_0$ and the norm $\|u\|_r^2 = \|A_0^r u\|_0^2$. Let $\mathscr{H}_{-r}(\gamma > 0)$ be the dual space of \mathscr{H}_r . The norm in \mathscr{H}_{-r} is defined by

$$||u||_{-r} = \sup_{v \in x_r} \frac{|(u,v)_0|}{||v||_r}.$$

It has been shown in [3] that the space \mathcal{H}_r is characterized as follows:

Let $B(\alpha, \beta)$ be the Banach space of all bounded operators from \mathscr{H}_{α} to \mathscr{H}_{β} with the usual operator norm $||| \ |||_{(\alpha,\beta)}$. When B belongs to $B(\alpha,\alpha)$, in particuler, we write $||| \cdot |||_{\alpha}$ instead of $||| \cdot |||_{(\alpha,\alpha)}$.

The following proposition is well-known.

PROPOSITION 3.2. (Interpolation theorem) ([6]). Let B be a bounded operator belonging to $B(\alpha, 0) \cap B(\beta, 0)$ ($\alpha \leq \beta$). Then, B is the bounded operator belonging to $B(\gamma, 0)$ ($\alpha \leq \gamma \leq \beta$) and satisfies the following estimate

$$|||B|||_{(\tau,0)} \leq C(\alpha,\beta,\gamma) |||B|||_{(\alpha,0)}^{(\beta-\tau)/(\beta-\alpha)} |||B|||_{(\beta,0)}^{(\tau-\alpha)/(\beta-\alpha)}.$$

where a constant $C(\alpha, \beta, \gamma)$ is independent of B.

LEMMA 3.1. If $-1/4 < \gamma \le 0$, then the operators $A(t)^{-1/2}P(t)$ and

 $A(t)^{-1/2}P^*(t)$ can be extended to bounded operators belonging to $B(\gamma, \gamma)$ with the operator norm independent of $t \in \mathbb{R}^1$.

Proof. We shall give the proof only for $A(t)^{-1/2}P(t)$. Since $C_0^{\infty}(0,1)$ is dense in \mathscr{H}_r under the norm $\|\cdot\|_r$, it is sufficient to show that for any $u \in C_0^{\infty}(0,1)$,

$$||A(t)^{-1/2}P(t)u||_{r} \leq C||u||_{r}.$$

Let $u \in C_0^{\infty}(0,1)$. Then, by the definition of \mathcal{H}_r , we have

$$\begin{aligned} \|A(t)^{-1/2}P(t)u\|_{r} &= \sup_{v \in \mathscr{X}_{-7}} \frac{|(A(t)^{-1/2}P(t)u, v)_{0}|}{\|v\|_{-r}} \\ &= \sup_{v \in \mathscr{X}_{-7}} \frac{|(u, P^{*}(t)A(t)^{-1/2}v)_{0}|}{\|v\|_{-r}} \\ &\leq \|u\|_{r} \sup_{v \in \mathscr{X}_{-7}} \frac{\|P^{*}(t)A(t)^{-1/2}v\|_{-r}}{\|v\|_{-r}} \,. \end{aligned}$$

We note that $P^*(t)$ it a bounded operator from $\mathcal{H}_{1/2-r} = H_0^1(0,1) \cap H^{1-2r}(0,1)$ to $\mathcal{H}_{-r} = H^{-2r}(0,1)$ with the operator norm independent of t. Hence, we have

which together with (3.4) implies our assertion (3.3). Q.E.D.

§ 4. Main theorem.

In this section, our main theorem stated in §1 will be proved by a series of lemmas.

Let $t \in \mathbb{R}^1$ be fixed. Then, we consider the following differential equation for given $f \in L^2(-\infty, \infty; X)$ and any h > 0:

$$(4.1) (T(t) + h)u = -\frac{d^2}{dx^2}u - \frac{d}{dx}P(t)u + P^*(t)\frac{d}{dx}u + A(t)u + hu = f.$$

The solution u(x) is given by

$$u(x) = (T(t) + h)^{-1}f = R_t(h)f = \int_{-\infty}^{\infty} K_t(x - s; h)f(s)ds$$
,

where

$$(4.2) \quad K_t(x-s\,;\,h) = (2\pi)^{-1} \int_{-\infty}^{\infty} e^{i(x-s)\xi} (\xi^2 + h + E(t,\xi))^{-1} d\xi \,\,, \qquad (i=\sqrt{-1})$$

(4.3)
$$E(t,\xi) = -i\xi P(t) + i\xi P^*(t) + A(t).$$

We denote by $R_t^{(j)}(h)$ ($=0,1,2,\cdots$) the operator $\left(\frac{d}{dh}\right)^j R_t^{(j)}(h)$, which is defined by

(4.4)
$$R_{t}^{(j)}(h)f = \int_{-\infty}^{\infty} K_{t}^{(j)}(x-s)f(s)ds,$$

where

$$(4.5) \quad K_t^{(j)}(x-s;h) = (-1)^j (j!) (2\pi)^{-1} \int_{-\infty}^{\infty} e^{i(x-s)\xi} (\xi^2 + h + E(t,\xi))^{-(j+1)} d\xi .$$

We often write $R_t^{(0)}(h)$ and $K_t^{(0)}(x;h)$ instead of $R_t(h)$ and $K_t(x;h)$ respectively.

Let us introduce real-valued C_0 -functions $\varphi(x)$, $\psi(x)$ and $\chi(x)$ defined on \mathbb{R}^1 such that $\varphi(x)$, $\psi(x)$ and $\chi(x) = 1$ if $|x| \le 1$, = 0 if $|x| \ge 2$, and that $\varphi(x)\psi(x) \equiv \varphi(x)$ and $\psi(x)\chi(x) \equiv \psi(x)$. For each fixed $t \in \mathbb{R}^1$ and $\varepsilon > 0$ ($\varepsilon < 1$), we denote by $\varphi_{t,\bullet}(x)$ the function $\varphi_{t,\bullet}(x) = \varphi((x-t)/\varepsilon)$. Similarly we define the functions $\psi_{t,\bullet}(x)$ and $\chi_{t,\bullet}(x)$. Then, putting $R(h) = (T+h)^{-1}$ and using the resolvent equation, we have

(4.6)
$$\varphi_{t,\epsilon}R(h) = \psi_{t,\epsilon}R_t(h)\varphi_{t,\epsilon} + \psi_{t,\epsilon}R_t(h)((T(t)+h)\varphi_{t,\epsilon} - \varphi_{t,\epsilon}(T+h))\gamma_{t,\epsilon}R(h).$$

(We have used that $\varphi_{t,\epsilon}(T+h)\chi_{t,\epsilon}=\varphi_{t,\epsilon}(T+h)$.)

Let $\{u_j(x)\}_{j=1}^{\infty}$ be the normalized eigenfunctions corresponding to the eigenvalues $\{\mu_j\}_{j=1}^{\infty}$ of the operator T. Then, by letting (4.6) operate on each $u_j(x)$, we have

(4.7)
$$(\mu_j + h)^{-1} \varphi_{t, \iota} u_j = \psi_{t, \iota} R_t(h) \varphi_{t, \iota} u_j + (\mu_j + h)^{-1} \psi_{t, \iota} R_t(h) B(t, s, \varepsilon) u_j ,$$

where we have set

$$(4.8) B(t, s, \varepsilon) = (T(t)\varphi_{t, \varepsilon}(s) - \varphi_{t, \varepsilon}(s)T)\chi_{t, \varepsilon}(s) = (T(t)\varphi_{t, \varepsilon}(s) - \varphi_{t, \varepsilon}(s)T)$$

$$= \left(\left(-\frac{d^{2}}{ds^{2}} - \frac{d}{ds}P(t) + P^{*}(t)\frac{d}{ds} + A(t)\right)\varphi_{t, \varepsilon}(s)\right)$$

$$- \varphi_{t, \varepsilon}(s)\left(-\frac{d^{2}}{ds^{2}} - \frac{d}{ds}P(s) + P^{*}(s)\frac{d}{ds} + A(s)\right).$$

By differentiating (4.7) *n*-times with respect to h in the sense of $L^2(-\infty,\infty;X)$, we have

(4.9)
$$(-1)^{n}(n!)(\mu_{j}+h)^{-(n+1)}\varphi_{t,\epsilon}u_{j}$$

$$= \psi_{t,\epsilon}R_{t}^{(n)}(h)\varphi_{t,\epsilon}u_{j} + \sum_{p=0}^{n} C_{p}(\mu_{j}+h)^{-(n-p+1)}\psi_{t,\epsilon}R_{t}^{(p)}(h)B(t,s,\varepsilon)u_{j}.$$

Furthermore, by rewriting (4.9) in the form of the integral equation,

$$(-1)^{n}(n \, !)(\mu_{j} + h)^{-(n+1)}\varphi_{t,s}(x)u_{j}(x)$$

$$= \psi_{t,s}(x) \int_{-\infty}^{\infty} K_{t}^{(n)}(x - s \, ; \, h)\varphi_{t,s}(s)u_{j}(s)ds$$

$$+ \sum_{p=0}^{n} C_{p}(\mu_{j} + h)^{-(n-p+1)}\psi_{t,s}(x) \int_{-\infty}^{\infty} K_{t}^{(p)}(x - s \, ; \, h)B(t, s, \varepsilon)u_{j}(s)ds$$

$$= a_{j}(t, x, \varepsilon) + \sum_{p=0}^{n} C_{p}b_{j,p}(t, x, \varepsilon) .$$

We remark that by the regularity theorem for elliptic operators, the eigenfunction $u_j(x)$ belongs to $C^{\infty}(-\infty,\infty;X)$ (the set of smooth functions with values in X). Hence, the equality (4.10) is well-defined for all x. By this fact, we can put x=t in (4.10). Then, we have

(4.11)
$$(-1)^{n}(n !)(\mu_{j} + h)^{-(n+1)}u_{j}(t)$$

$$= a_{j}(t, \varepsilon) + \sum_{p=0}^{n} C_{p}b_{j,p}(t, \varepsilon) ,$$

where we have set $a_j(t, \varepsilon) = a_j(t, t, \varepsilon)$ and $b_j(t, \varepsilon) = b_{j,p}(t, t, \varepsilon)$. By taking the scalar products in X of both sides of (4.11) and the summation with respect to j, and integrating over $(-\infty, \infty)$, we have

$$(n !)^{2} \sum_{j=1}^{\infty} (\mu_{j} + h)^{-2(n+1)} = \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|a_{j}(t, \varepsilon)\|_{0}^{2} dt$$

$$+ 2 \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \operatorname{Re} \left(a_{j}(t, \varepsilon), \sum_{p=0}^{n} C_{p} b_{j, p}(t, \varepsilon)\right)_{0} dt$$

$$+ \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \left\|\sum_{p=0}^{n} C_{p} b_{j, p}(t, \varepsilon)\right\|_{0}^{2} dt .$$

This is our basic equality in proving the main theorem. From now on, we fix n (integer) such that

$$(4.13) n > 1/2 + 1/2m - 1.$$

Let $\{\alpha_j(t,\xi)\}_{j=1}^{\infty}$ be eigenvalues of the operator $E(t,\xi)$. Then, we have

LEMMA 4.1. For any r > 1/2 + 1/2m, there exist positive constants $C_1(r)$ and $C_2(r)$ independent of h > 2 such that

$$C_{1}(r)h^{1/2+1/2m-r} \leq \left\{ \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} (\xi^{2} + h + \alpha_{j}(t, \xi))^{-r} d\xi \right\} \begin{cases} \leq C_{2}(r)h^{1/2+1/2m-r} . \\ (0 < m < 1) \\ \leq C_{2}(r)h^{1-r} \log h . \\ (m = 1) \end{cases}$$

LEMMA 4.2.

$$\begin{split} \sum_{j=1}^\infty \int_{-\infty}^\infty dt \int_{-\infty}^\infty (\xi^2 + h + \alpha_j(t,\xi))^{-2(n+1)} d\xi \\ &\sim \sum_{j=1}^\infty \int_{-\infty}^\infty dt \int_{-\infty}^\infty (\xi^2 + h + \zeta_j q(t)^{-2})^{-2(n+1)} d\xi \text{ , as } h \to \infty \text{ .} \end{split}$$

The proofs of the above lemmas will be given in this section after the proof of Theorem 1.1. In what follows, we shall state two lemmas concerning the estimates for $\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|a_j(t,\varepsilon)\|_0^2 dt$ and $\int_{-\infty}^{\infty} \sum_{j=1}^{\infty} \|b_{j,p}(t,\varepsilon)\|_0^2 dt$. These lemmas will be proved in the following two sections.

LEMMA 4.3. For any $\varepsilon > 0$ and any sufficiently large r, there exists a constant $C(r, \varepsilon)$ such that

$$\left| \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|a_{j}(t,\varepsilon)\|_{0}^{2} dt - (n!)^{2} (2\pi)^{-1} \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} (\xi^{2} + h + \alpha_{j}(t,\xi))^{-2(n+1)} d\xi \right| \leq C(r,\varepsilon)h^{-r}.$$

LEMMA 4.4. For any sufficiently small $\delta > 0$, we can take $\varepsilon(\delta)$ small enough and $h(\delta)$ large enough so that for any $h > h(\delta)$,

$$\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|b_{j,p}(t,\varepsilon(\delta))\|_{0}^{2} dt \leq \delta h^{1/2+1/2m-2(n+1)} \qquad (0 < m < 1) .$$

$$(\leq \delta h^{1-2(n+1)} \log h \ (m=1).) \qquad (0 \leq p \leq n) .$$

Now we shall prove Theorem 1.1.

Proof of Theorem 1.1:

From (4.12) it follows that for any sufficiently small $\delta > 0$, there exists a constant $C(\delta)$ such that

$$\begin{split} \left| (n\,!)^2 \sum_{j=1}^{\infty} (\mu_j \,+\, h)^{-2(n+1)} - \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|a_j(t,\varepsilon)\|_0^2 \,dt \right| \\ & \leq \delta \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|a_j(t,\varepsilon)\|_0^2 \,dt \,+\, C(\delta) \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \sum_{n=0}^{n} \|b_{j,\,p}(t,\varepsilon)\|_0^2 \,dt \;. \end{split}$$

Hence, by virtue of Lemmas 4.1, 4.3 and 4.4, we can first choose $\epsilon(\delta)$

small enough and next $h(\delta)$ large enough so that for any $h > h(\delta)$

(4.13)
$$\begin{vmatrix} \sum_{j=1}^{\infty} (\mu_j + h)^{-2(n+1)} - \sum_{j=1}^{\infty} (2\pi)^{-1} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} (\xi^2 + h + \alpha_j(t, \xi))^{-2(n+1)} d\xi \\ \leq \delta h^{1/2+1/2m-2(n+1)} & (0 < m < 1) \\ \leq \delta h^{1-2(n+1)} \log h & (m = 1) . \end{vmatrix}$$

Furthermore, by using Lemmas 4.1 and 4.2, we have

$$(4.14) \quad \sum_{j=1}^{\infty} (\mu_j + h)^{-2(n+1)} \sim (2\pi)^{-1} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} (\xi^2 + h + \zeta_j q(t)^{-2})^{-2(n+1)} d\xi$$
as $h \to \infty$.

Now we are in a position to apply the Tauberian theorem due to Keldysh (see [5]) to (4.14). Then, we have

$$N(h) \sim (\pi)^{-1} \sum_{j=1}^{\infty} \int_{arrho_{j(h)}} (h - \zeta_{j} q(x)^{-2})^{1/2} dx$$
 as $h o \infty$,

which completes the proof.

Q.E.D.

Next we shall prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1:

An argument similar to the proof of Lemma 2.3 shows that for any $u \in \mathcal{D}(A_0)$.

$$C((\xi^{2}u, u)_{0} + (1 + |t|^{2m})(A_{0}u, u)_{0})$$

$$\leq (\xi^{2}u, u)_{0} + (E(t, \xi)u, u)_{0}$$

$$< C((\xi^{2}u, u)_{0} + (1 + |t|^{2m})(A_{0}u, u)_{0}).$$

Hence, we have

$$(4.15) C(\xi^2 + \zeta_j(1+|t|^{2m})) \leq \xi^2 + \alpha_j(t,\xi) \leq C(\xi^2 + \zeta_j(1+|t|^{2m})).$$

By using (4.15), we have

$$\begin{split} \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} (\xi^2 + h + \alpha_j(t, \xi))^{-r} d\xi \\ & \leq C \sum_{j=1}^{\infty} \zeta_j^{-1/2m} (\zeta_j + h)^{1/2 + 1/2m - r} \leq C h^{1/2 + 1/2m - r} \quad (0 < m < 1) . \\ & (\leq C h^{1-r} \log h \ (m = 1).) \end{split}$$

Thus we have obtained the estimate from above. Similarly we can get the estimate from below. Q.E.D.

Proof of Lemma 4.2:

We shall give only an outline. As was remarked in § 2, coefficients of P(t) are uniformly bounded. Hence, for any sufficiently small $\varepsilon > 0$, there exists $R(\varepsilon)$ such that for $|t| \geq R(\varepsilon)$ and $u \in \mathcal{D}(A_0^{1/2})$,

From (4.16) it readily follows that for $|t| \geq R(\varepsilon)$,

(4.17)
$$(1 - C\varepsilon)(\xi^2 + h + \zeta_j q(t)^{-2}) \le \xi^2 + h + \alpha_j(t, \xi)$$

$$\le (1 + C\varepsilon)(\xi^2 + h + \zeta_j q(t)^{-2}) .$$

On the other hand, for any bounded interval I, we have

$$(4.18) \qquad \sum_{j=1}^{\infty} \int_{I} dt \int_{-\infty}^{\infty} (\xi^{2} + h + \alpha_{j}(t, \xi))^{-2(n+1)} d\xi \leq C(I) h^{1-2(n+1)}.$$

By combining (4.17) and (4.18), we obtain the proof. Q.E.D.

§ 5. Proof of Lemma 4.3.

Lemma 4.3 is proved with the aid of the following lemma.

LEMMA 5.1. Let α be any non-negative integer and let n be the fixed integer by (4.13). Then, the operator $\left(\frac{d}{d\xi}\right)^{\alpha}(\xi^2 + h + E(t, \xi))^{-(n+1)}$ belongs to $B_2(X)$ and satisfies the following estimate:

$$egin{aligned} & \left\| \left(rac{d}{d\xi}
ight)^{\!lpha} \! (\xi^2 + \, h \, + \, E(t, \xi))^{-(n+1)}
ight\|_2 \ & \leq C(lpha, n) (\xi^2 + \, h)^{-lpha/2} \! \left(\sum_{j=1}^\infty \, (\xi^2 + \, h \, + \, lpha_j(t, \xi))^{-2(n+1)}
ight)^{\!1/2} \, . \end{aligned}$$

The proof of this lemma will be given at the end of this section

Proof of Lemma 4.3:

By virtue of Proposition 3.1, we have

$$\begin{split} \sum_{j=1}^{\infty} \|a_{j}(t,\varepsilon)\|_{0}^{2} &= \int_{-\infty}^{\infty} |||K_{t}^{(n)}(t-s\,;\,h)\varphi_{t,\bullet}(s)|||_{2}^{2}\,ds \\ &= \int_{-\infty}^{\infty} |||K_{t}^{(n)}(t-s\,;\,h)|||_{2}^{2}\,ds \\ &+ \int_{-\infty}^{\infty} |||K_{t}^{(n)}(t-s\,;\,h)|||_{2}^{2}\left(\varphi_{t,\bullet}(s)^{2}-1\right)ds\;, \\ &= I(t) + II(t)\;. \end{split}$$

We first investigate the term I(t). By means of the Parseval equality we see that

(5.2)
$$I(t) = (n!)^{2}(2\pi)^{-1} \int_{-\infty}^{\infty} |||(\xi^{2} + h + E(t, \xi))^{-2(n+1)}|||_{2}^{2} d\xi$$
$$= (n!)^{2}(2\pi)^{-1} \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} (\xi^{2} + h + \alpha_{j}(t, \xi))^{-2(n+1)} d\xi.$$

Next we shall deal with the term II(t). We note that

$$(t-s)^{\alpha}K_t^{(n)}(t-s;h) = C\int_{-\infty}^{\infty}e^{i(t-s)\xi}\left(\frac{d}{d\xi}\right)^{\alpha}(\xi^2+h+E(t,\xi))^{-2(n+1)}d\xi$$
.

By using Lemma 5.1 and this equality, we calculate as follows:

$$\begin{aligned} |||K_{t}^{(n)}(t-s;h)||_{2} \\ &\leq C |t-s|^{-\alpha} \int_{-\infty}^{\infty} (\xi^{2}+h)^{-\alpha/2} \left(\sum_{j=1}^{\infty} (\xi^{2}+h+\alpha_{j}(t,\xi))^{-2(n+1)} \right)^{1/2} d\xi , \\ &\leq C |t-s|^{-\alpha} h^{-\alpha/2+1/4} \left(\sum_{j=1}^{\infty} \int (\xi^{2}+h+\alpha_{j}(t,\xi))^{-2(n+1)} d\xi \right)^{1/2} . \end{aligned}$$
(Schwarz' inequality)

Furthermore, by virtue of Lemma 4.1 and (5.3), we have

$$\int_{-\infty}^{\infty} |II(t)| dt \le C(\varepsilon) h^{-\alpha+1/2} \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} (\xi^{2} + h + \alpha_{j}(t, \xi))^{-2(n+1)} d\xi$$

$$\le C(\varepsilon) h^{-\alpha+1+1/2m-2(n+1)} \qquad (0 < m < 1) .$$

$$(\le C(\varepsilon) h^{-\alpha+2-2(n+1)} \log h \qquad (m = 1).)$$

(We have used the inequality
$$\int_{-\infty}^{\infty} |t-s|^{-2\alpha} |\varphi_{t, \bullet}(s)^2 - 1| ds \leq C(\varepsilon)$$
.)

By combining (5.2) and (5.4), we get the proof since α is arbitrary.

In order to prove Lemma 5.1, we have to prepare the following two lemmas

LEMMA 5.2. For any non-negative integer α , the following estimates hold:

(5.5)
$$\left\| \left(\frac{d}{d\xi} \right)^{\alpha} (\xi^2 + h + E(t, \xi))^{-1} \right\|_{0} \le C(\alpha) (\xi^2 + h)^{-(\alpha/2+1)};$$

(5.6)
$$|||P(t)\left(\frac{d}{d\xi}\right)^{\alpha}(\xi^{2}+h+E(t,\xi))^{-1}||_{0} \leq C(\alpha)(\xi^{2}+h)^{-(\alpha+1)/2}.$$

Replacing P(t) by $P^*(t)$ in (5.6), we have the same estimate as (5.6).

Proof. We shall make induction on α . It is clear that (5.5) and (5.6) hold when $\alpha = 0$. Assuming that (5.5) and (5.6) are valid for $\alpha \le k$, we shall prove (5.5) when $\alpha = k + 1$. For the sake of simplity, we set $(\xi^2 + h + E(t, \xi))^{-1} = F(t, \xi)$. Then, a direct calculation yields

$$\left(\frac{d}{d\xi}\right)^{(k+1)} F(t,\xi) = -\left(\frac{d}{d\xi}\right)^k \{F(t,\xi)(2\xi - iP(t) + iP^*(t))F(t,\xi)\}
= 2\xi \sum_{p=0}^k C(p) \left(\frac{d}{d\xi}\right)^p F(t,\xi) \left(\frac{d}{d\xi}\right)^{(k-p)} F(t,\xi)
+ \sum_{q=0}^{k-1} C(q) \left(\frac{d}{d\xi}\right)^q F(t,\xi) \left(\frac{d}{d\xi}\right)^{(k-1-q)} F(t,\xi)
+ \sum_{r=0}^k C(r) \left(\frac{d}{d\xi}\right)^r F(t,\xi)(-iP(t) + iP^*(t))
\cdot \left(\frac{d}{d\xi}\right)^{(k-r)} F(t,\xi) .$$

By the assumption of induction, (5.7) implies (5.5) with $\alpha = k + 1$. By multipying (5.7) by P(t) from the left, we obtain (5.6) with $\alpha = k + 1$. Q.E.D.

LEMMA 5.3. For any non-negative integer α , $\left(\frac{d}{d\xi}\right)^{\alpha}(\xi^2 + h + E(t, \xi))^{-1}$ belongs to $B_{\gamma}(X)$ $(\gamma \geq 2)$ with the estimate

Proof. As in the proof of the above lemma, we shall give the proof by induction on α . It is clear that (5.8) is valid for $\alpha=0$. Under the assumption that (5.8) is true for $\alpha \leq k$, we shall show that (5.8) holds also when $\alpha=k+1$. Noting that if $A \in B_r(X)$ and $B \in B(X)$, then $A \cdot B$ belongs to $B_r(X)$ with the estimate $|||A \cdot B|||_r \leq |||A|||_r |||B|||_0$, we have, by means of Lemma 5.2 and (5.7), the desired result. Q.E.D.

Now we shall prove Lemma 5.1.

Proof of Lemma 5.1. As in the proof of Lemma 5.2, we set $F(t,\xi) = (\xi^2 + h + E(t,\xi))^{-1}$. Then, a simple calculation gives

$$\left(\frac{d}{d\xi}\right)^{a} F(t,\xi)^{(n+1)} \\
= \sum_{\beta_1 + \beta_2 \cdots \beta_{n+1} = \alpha} C(\beta_1, \cdots, \beta_{n+1}) \left(\frac{d}{d\xi}\right)^{\beta_1} F(t,\xi) \cdots \left(\frac{d}{d\xi}\right)^{\beta_{n+1}} F(t,\xi) .$$

Since each $\left(\frac{d}{d\xi}\right)^{\beta k} F(t,\xi)$ $(k=1,2,\dots,n+1)$ belongs to $B_{2(n+1)}(X)$, we have, by means of Lemma 5.3,

$$\begin{split} \left\| \left(\frac{d}{d\xi} \right)^{\alpha} & F(t,\xi)^{-(n+1)} \right\|_{2} \\ & \leq C(\alpha) \sum_{\beta_{1} + \dots + \beta_{n+1} = \alpha} \left\| \left(\frac{d}{d\xi} \right)^{\beta_{1}} & F(t,\xi) \right\|_{2(n+1)} \dots \left\| \left(\frac{d}{d\xi} \right)^{\beta_{n+1}} & F(t,\xi) \right\|_{2(n+1)} \\ & \leq C(\alpha) (\xi^{2} + h)^{-\alpha/2} \left(\sum_{j=1}^{\infty} (\xi^{2} + h + \alpha_{j}(t,\xi))^{-2(n+1)} \right)^{1/2}. \end{split}$$

(We have used the well-known fact that if $A \in B_p(X)$ and $B \in B_q(X)$, then $A \cdot B \in B_r(X)$ (1/p + 1/q = 1/r) and satisfies $|||A \cdot B|||_r \le C(p,q)|||A|||_p |||B|||_q$.) Q.E.D.

§ 6. Proof of Lemma 4.4.

In this section we shall prove Lemma 4.4. For this purpose, recalling the definition of the operator $B(t, s, \varepsilon)$ given by (4.8), we rewrite $B(t, s, \varepsilon)$ as follows:

$$B(t, s, \varepsilon) = B_1(t, s, \varepsilon) - \frac{d}{ds} (P(t) - P(s)) \varphi_{t, \varepsilon}(s)$$

$$+ \frac{d}{ds} (P^*(t) - P^*(s)) \varphi_{t, \varepsilon}(s) + (A(t) - A(s)) \varphi_{t, \varepsilon}(s)$$

$$= B_1(t, s, \varepsilon) + \sum_{k=0}^{2} H_k(t, s, \varepsilon) ,$$

where

$$B_{\mathbf{1}}(t,s,\mathbf{e}) = \left[-\left(\frac{d}{ds}\right)^{\mathbf{2}},\varphi_{t,\mathbf{e}} \right] + \left[\varphi_{t,\mathbf{e}},\frac{d}{ds} \right] P(s) + \left[\frac{d}{ds},P^*(s)\varphi_{t,\mathbf{e}} \right].$$

([,] stands for a commutator between two operators.) Then, $b_{j,p}(t,\varepsilon)$ is rewritten as follows:

$$b_{j,p}(t,\varepsilon) = (\mu_j + h)^{-(n-p+1)} \int_{-\infty}^{\infty} K_t^{(p)}(t-s;h) B_1(t,s,\varepsilon) u_j(s) ds$$

(6.2)
$$+ (\mu_{j} + h)^{-(n-p+1)} \int_{-\infty}^{\infty} K_{t}^{(p)}(t-s;h) \sum_{k=0}^{2} H_{k}(t,s,\varepsilon) u_{j}(s) ds$$

$$= d_{j,p}(t,\varepsilon) + e_{j,p}(t,\varepsilon) + f_{j,p}(t,\varepsilon) + g_{j,p}(t,\varepsilon) .$$

We note that for $v(s) \in C_0^{\infty}(-\infty, \infty; X)$ (the set of all X-valued smooth functions with compact support) and $p \geq 1$,

(6.3)
$$\int_{-\infty}^{\infty} K_t^{(p)}(t-s;h) \frac{d}{ds} v(s) ds = \int_{-\infty}^{\infty} F_t^{(p)}(t-s;h) v(s) dt,$$

where

(6.4)
$$F_t^{(p)}(t-s;h) = C \int_{-\infty}^{\infty} e^{i(t-s)\xi} \xi(\xi^2 + h + E(t,\xi))^{-(p+1)} d\xi.$$

The relation (6.3) is easily obtained with the aid of the vector-valued Fourier transform. The integral (6.4) is valid also for p=0. In this case, the integration must be taken in the weak sense. But we don't use this fact below. By virtue of (6.3), we can rewrite $e_{j,p}(t,\varepsilon)$ $(p \ge 1)$ as follows:

$$e_{{\scriptscriptstyle j},p}(t,\varepsilon) = (\mu_{{\scriptscriptstyle j}} + h)^{-(n-p+1)} \int_{-\infty}^{\infty} F_{{\scriptscriptstyle t}}^{(p)}(t-s\,;\,h) (P(s)-P(t)) \varphi_{{\scriptscriptstyle t,s}}(s) u_{{\scriptscriptstyle j}}(s) ds \;.$$

The following lemma plays an important role in the proof of Lemma 4.4.

LEMMA 6.1. Let $K_t^{(p)}(t-s;h)$ and $F_t^{(p)}(t-s;h)$ be operators defined by (4.5) and (6.4) respectively. Then, $K_t^{(p)}(t-s;h)A(t), K_t^{(p)}(t-s;h)A(t)^{1/2}$ and $F_t^{(p)}(t-s;h)A(t)^{1/2}$ can be extended to bounded operators in $X(t \neq s)$ and satisfy the following estimates:

(6.5)
$$|||K_t^{(p)}(t-s;h)A(t)|||_0 \leq C(p,\alpha)h^{-p}|t-s|^{-\alpha},$$

(6.6)
$$\begin{aligned} |||K_t^{(p)}(t-s;h)A(t)^{1/2}|||_0 &\leq C(p,\alpha)h^{-p-1/2}|t-s|^{-\alpha},\\ &\leq C(p,\beta)h^{-p}|t-s|^{-\beta}.\end{aligned}$$

(6.7)
$$|||F_t^{(p)}(t-s;h)A(t)^{1/2}|||_0 \le C(p,\alpha)h^{-p}|t-s|^{-\alpha}, \qquad (p\ge 1)$$

where constants $C(p,\alpha)$ and $C(p,\beta)$ are independent of t,s and h, and α and β are some constants satisfying $0 < \alpha < 2$ and $0 < \beta < 1$ respectively.

Proof. We shall give the proof only for (6.5) with p=0, because (6.5) with general p, (6.6), (6.6') and (6.7) can be proved in the same

manner. Let δ be a fixed number such that $0 < \delta < 1/8$. Then, we shall establish the following two assertions:

$$(6.8) ||K_t^{(0)}(t-s;h)A(t)u||_0 \le C(\delta)q(t)^{-(1+2\delta)} ||u||_{1/2+\delta},$$

(6.9)
$$||K_t^{(0)}(t-s;h)A(t)u||_0 \le C(\delta)q(t)^{2\delta}|t-s|^{-2}||u||_{-\delta}$$
, for $u \in \mathcal{D}(A_0)$.

All constants C appearing throughout the proof of this lemma may depend only on δ . If we can prove (6.8) and (6.9), the operator $K_t^{(0)}(t-s;h)A(t)$ can be extended to a bounded operator from $\mathcal{H}_{1/2+\delta}$ to X and from $\mathcal{H}_{-\delta}$ to X since $\mathcal{D}(A_0)$ is dense in both spaces $\mathcal{H}_{1/2+\delta}$ and $\mathcal{H}_{-\delta}$. Hence, the application of the well-known interpolation theorem (Proposition 3.2) shows that

$$|||K_t^{(0)}(t-s;h)A(t)||_0 \le C|t-s|^{-\alpha}, \quad (0 \le \alpha \le 2).$$

Proof of (6.8): Since $||A(t)^{1/2+\delta}u||_0 \le Cq(t)^{-(1+2\delta)} ||A_0^{1/2+\delta}u||_0$ for $u \in \mathcal{D}(A_0)$ by (2.9), it is sufficient to prove that

$$(6.10) ||K_t^{(0)}(t-s;h)A(t)^{1/2-\delta}v||_0 < C||v||_0, for v \in \mathscr{D}(A_0^{1/2-\delta}).$$

By the definition of $K_t^{(0)}(t-s;h)$, we have

$$(6.11) \quad K_t^{(0)}(t-s\,;\,h)A(t)^{1/2-\delta} = C \int_{-\infty}^{\infty} e^{i(t-s)\xi} (\xi^2 + h + E(t,\xi))^{-1} A(t)^{1/2-\delta} d\xi \ .$$

On the other hand, we easily see that

(6.13)
$$|||(\xi^2 + h + E(t, \xi)^{-(1/2+\delta)}|||_0 \le C(\xi^2 + 1)^{-(1/2+\delta)} .$$

Hence, in view of (6.11), (6.12) and (6.13), we have (6.10).

Proof of (6.9): Since $||A(t)^{-\delta}u||_0 \le Cq(t)^{2\delta} ||A_0^{-\delta}u||_0$ by (2.10), it suffices to show that for $w \in \mathcal{D}(A(t)^{1+\delta})$,

$$(6.14) ||K_{\epsilon}^{(0)}(t-s;h)A(t)^{1+\delta}w||_{0} < C|t-s|^{-2}||w||_{0}.$$

The operator $K_t^{(0)}(t-s;h)A(t)^{1+\delta}$ is represented as

(6.15)
$$K_t^{(0)}(t-s;h)A(t)^{1+\delta} = C(t-s)^{-2} \int_{-\infty}^{\infty} e^{i(t-s)\xi} \left(\frac{d}{d\xi}\right)^2 (\xi^2 + h + E(t,\xi))^{-1} A(t)^{1+\delta} d\xi .$$

For brevity, we again put $F(t,\xi)=(\xi^2+h+E(t,\xi))^{-1}$. By the resolvent equation, we have

$$\left(\frac{d}{d\xi}\right)^{2} F(t,\xi) = \left(\frac{d}{d\xi}\right)^{2} (\xi^{2} + h + A(t))^{-1}$$

$$+ i \left(\frac{d}{d\xi}\right)^{2} \{F(t,\xi)\xi P(t)(\xi^{2} + h + A(t))^{-1}\}$$

$$- i \left(\frac{d}{d\xi}\right)^{2} \{F(t,\xi)\xi P^{*}(t)(\xi^{2} + h + A(t))^{-1}\}$$

$$= I(t,\xi) + i II(t,\xi) - i III(t,\xi) .$$

By inserting (6.16) into (6.15), we have

$$K_{t}^{(0)}(t-s;h)A(t)^{1+\delta}$$

$$=C(t-s)^{-2}\int_{-\infty}^{\infty}e^{i(t-s)\xi}(\mathrm{I}(t,\xi)+i\,\mathrm{II}(t,\xi))-i\,\mathrm{III}(t,\xi))A(t)^{1+\delta}d\xi$$

$$=C(t-s)^{-2}\sum_{t,k}^{2}K_{t,k}^{(0)}(t-s;h)A(t)^{1+\delta}$$

It is easy to see that for $w \in \mathcal{D}(A(t)^{1+\delta})$,

$$\|\mathrm{I}(t,\xi)A(t)^{1+\delta}w\|_{0} \leq C(\xi^{2}+1)^{-(1-\delta)}\|w\|_{0}$$

This implies that

(6.18)
$$||K_{t,1}^{(0)}(t-s;h)A(t)^{1+\delta}w||_{0} \leq ||w||_{0} .$$

Next we shall investigate the term II $(t, \xi)A(t)^{1+\delta}$. A simple calculation yields

(6.19)
$$\begin{aligned} \text{II } (t,\xi) &= \sum_{\beta_1 + \beta_2 = 2} \left(\frac{d}{d\xi} \right)^{\beta_1} \{ F(t,\xi) \} \xi P(t) \left(\frac{d}{d\xi} \right)^{\beta_2} \{ (\xi^2 + h + A(t))^{-1} \} \\ &+ \sum_{\alpha_1 + \alpha_2 = 1} \left(\frac{d}{d\xi} \right)^{\alpha_1} \{ F(t,\xi) \} P(t) \left(\frac{d}{d\xi} \right)^{\alpha_2} \{ (\xi^2 + h + A(t))^{-1} \} \ . \end{aligned}$$

We shall consider only the term $\left(\frac{d}{d\xi}\right)\{F(t,\xi)\}P(t)(\xi^2+h+A(t))^{-1}$, because the other terms can be dealt with in the same way. Putting $2\xi-iP(t)+iP^*(t)=T(t,\xi)$, we have,

$$\left(\frac{d}{d\xi}\right) \{F(t,\xi)\} P(t)(\xi^2 + h + A(t))^{-1}$$

$$= -F(t,\xi) T(t,\xi) F(t,\xi) P(t)(\xi^2 + h + A(t))^{-1} .$$

We shall show that for $w \in \mathcal{D}(A(t)^{1+\delta})$,

$$(6.20) ||F(t,\xi)P(t)(\xi^2+h+A(t))^{-1}A(t)^{1+\delta}w||_0 < C(\xi^2+1)^{-\delta}||w||_0.$$

If we have proved (6.20), then we have

$$(6.21) \left\| \left(\frac{d}{d\xi} \right) \{ F(t,\xi) \} P(t) (\xi^2 + h + A(t))^{-1} A(t)^{1+\delta} w \right\|_0 \le C (\xi^2 + 1)^{-1/2 - \delta} \| w \|_0$$

since $|||F(t,\xi)T(t,\xi)|||_0 \le C(\xi^2+1)^{-1/2}$.

Since the other terms in (6.19) obey the estimate of the same type as (6.21), we see that for $w \in \mathcal{D}(A(t)^{1+\delta})$.

$$\| \text{II } (t, \xi) A(t)^{1+\delta} w \|_{0} \le C(\xi^{2} + 1)^{-1/2-\delta} \| w \|_{0}.$$

This implies that

Similarly we have

$$||K_{t,s}^{(0)}(t-s;h)A(t)^{1+\delta}w||_{0} \leq C||w||_{0}.$$

Hence, by combining (6.18), (6.22) and (6.23), we have (6.14).

Now we shall prove (6.20). To this end, we rewrite $F(t,\xi)P(t)$ $(\xi^2 + h + A(t))^{-1}A(t)^{1+\delta}$ as follows:

$$\begin{split} F(t,\xi)P(t)(\xi^2+h+A(t))^{-1}A(t)^{1+\delta} \\ &= [F(t,\xi)A(t)][A(t)^{-1}P(t)A(t)^{2\delta}][(\xi^2+h+A(t))^{-1}A(t)^{1-\delta}] \\ &= \mathrm{II}_1(t,\xi)\,\mathrm{II}_2(t)\,\mathrm{II}_3(t,\xi)\;. \end{split}$$

The operators $\mathrm{II}_1(t,\xi)$ and $\mathrm{II}_3(t,\xi)$ can be extended to bounded operators in X and satisfy the estimates $|||\mathrm{II}_1(t,\xi)|||_0 \leq C$ and $|||\mathrm{II}_3(t,\xi)|||_0 \leq C(\xi^2+1)^{-\delta}$ respectively. Hence, in order to prove (6.20), it is sufficient to show that $\mathrm{II}_2(t)$ can be extended to a bounded operator in X and that $|||\mathrm{II}_2(t)|||_0 \leq C$. But this fact readily follows from Lemma 3.1. In fact, we have for $w \in \mathcal{D}(A(t)^{2\delta})$,

$$\begin{split} \|A(t)^{-1}P(t)A(t)^{2\delta}w\|_0 \ &\leq C\,\|A(t)^{-2\delta}A(t)^{-1/2}P(t)A(t)^{2\delta}w\|_0 \ &\leq Cq(t)^{2\delta}\,\|A(t)^{-1/2}P(t)A(t)^{2\delta}w\|_{-2\delta} \ &\leq Cq(t)^{2\delta}\,\|A(t)^{2\delta}w\|_{-2\delta} \leq C\,\|w\|_0 \ , \end{split}$$

which implies that $|||II_2(t)|||_0 \le C$ since $\mathcal{D}(A(t)^{2\delta})$ is dense in X. Q.E.D.

LEMMA 6.2. Let $g_{j,p}(t,\varepsilon)$ $(j=1,2,\cdots,p=0,1,\cdots,n)$ be the functions defined in (6.2). Then, for any sufficiently small $\delta > 0$, there exists $\varepsilon(\delta)$ such that for $\varepsilon < \varepsilon(\delta)$,

$$\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|g_{j,p}(t,\varepsilon)\|_{0}^{2} dt \le \delta h^{1/2+1/2m-2(n+1)} \qquad (0 < m < 1) .$$

$$(< \delta h^{1-2(n+1)} \log h \qquad (m=1).)$$

Here we should note that $\varepsilon(\delta)$ is taken independently of h > 2.

Proof. We shall consider only the case of 0 < m < 1. Two different methods of estimates will be employed in proving this lemma.

Case 1, $0 \le p < n + 1 - 1/4 - 1/4m$: By the definition of $g_{j,p}(t,\varepsilon)$, we have

$$\begin{split} &\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|g_{j,p}(t,\varepsilon)\|_{0}^{2} dt \\ &\leq \sum_{j=1}^{\infty} (\mu_{j} + h)^{-2(n-p+1)} \int_{-\infty}^{\infty} dt \Big(\int_{-\infty}^{\infty} \|K_{t}^{(p)}(t-s;h)H_{2}(t,s,\varepsilon)u_{j}(s)\|_{0} ds \Big)^{2} \,. \end{split}$$

Set I $(t, s, j) = ||K_t^{(p)}(t - s; h)H_2(t, s, \varepsilon)u_j(s)||_0$. Then, by virtue of Lemma 6.1 and (2.14) in Lemma 2.2, I (t, s, j) is estimated as follows:

$$\begin{split} \mathrm{I}\; (t,s,j) &= \| [K_t^{(p)}(t-s\,;\,h)A(t)] [A(t)^{-1}(A(t)-A(s))\varphi_{t,\bullet}(s)] u_j(s) \|_0 \\ &\leq C h^{-p}\, |t-s|^{1-\alpha}\, \|u_j(s)\|_0 \;, \qquad \text{for } |t-s| \leq 2\varepsilon \;. \\ (&= 0 \qquad \qquad \text{for } |t-s| > 2\varepsilon) \end{split}$$

Hence, it follows that

$$\begin{split} \int_{-\infty}^{\infty} dt \Big(\!\!\int_{-\infty}^{\infty} \mathrm{I}\,(t,s,j) ds\Big)^{\!2} &\leq C h^{-2p} \!\int_{-\infty}^{\infty} dt \Big(\!\!\int_{|t-s| \leq 2\epsilon} |t-s|^{1-\alpha} \, \|u_{j}(s)\|_{0} \, ds\Big)^{\!2} \\ &\leq C h^{-2p} \!\int_{|s| \leq 2\epsilon} |s|^{1-\alpha} \, ds \int_{|r| \leq 2\epsilon} |r|^{1-\alpha} \, dr \\ & \cdot \int_{-\infty}^{\infty} \|u_{j}(t+s)\|_{0} \, \|u_{j}(t+r)\|_{0} \, dt \\ &\leq C h^{-2p} \varepsilon^{4-2\alpha} \; . \end{split}$$

(We have used that $0 < \alpha < 2$ and $\int_{-\infty}^{\infty} \|u_j(t+s)\|_0 \|u_j(t+r)\|_0 dt \le 1$ (Schwarz's inequality).) On the other hand, we have proved in Proposition 2.1 that if 2(n-p+1) > 1/2 + 1/2m,

(6.25)
$$\sum_{j=1}^{\infty} (\mu_j + h)^{-2(n-p+1)} \le Ch^{1/2+1/2m-2(n-p+1)}.$$

Hence, by combining (6.24) and (6.25), we have the desired estimate.

Case 2, $n \ge p \ge n + 1 - 1/4 - 1/4m \ge (1/4 + 1/4m)$: $(m \le 1/3^{1})$

It is easily seen that the operator $K_t^{(p)}(t-s;h)H_2(t,s,\varepsilon)$ belongs to $B_2(X)$ since $(\xi^2+h+E(t,\xi))^{-1}A(t)$ can be extended to a bounded operator in X. Therefore, by virtue of Proposition 3.1, we have

$$(6.26) \sum_{j=1}^{\infty} \|g_{j,p}(t,\xi)\|_{0}^{2} \leq h^{-2(n-p+1)} \sum_{j=1}^{\infty} \left\| \int_{-\infty}^{\infty} K_{t}^{(p)}(t-s;h) H_{2}(t,s,\varepsilon) u_{j}(s) ds \right\|_{0}^{2}$$

$$= h^{-2(n-p+1)} \int_{-\infty}^{\infty} |||K_{t}^{(p)}(t-s;h) H_{2}(t,s,\varepsilon)||_{2}^{2} ds.$$

Furthermore, it follows from (2.14) in Lemma 2.2 that

(6.27)
$$\begin{aligned} |||K_{t}^{(p)}(t-s;h)H_{2}(t,s,\varepsilon)|||_{2} \\ &= |||[K_{t}^{(p)}(t-s;h)A(t)][A(t)^{-1}(A(t)-A(s))\varphi_{t,\epsilon}(s)]|||_{2} \\ &\leq C\varepsilon \,|||K_{t}^{(p)}(t-s;h)A(t)|||_{2} \,.\end{aligned}$$

On the other hand, with the aid of the Parseval equality we have

(6.28)
$$\int_{-\infty}^{\infty} |||K_{t}^{(p)}(t-s;h)A(t)|||_{2}^{2} dt$$

$$= C \int_{-\infty}^{\infty} |||(\xi^{2}+h+E(t,\xi))^{-(p+1)}A(t)|||_{2}^{2} d\xi$$

$$\leq C \int_{-\infty}^{\infty} |||(\xi^{2}+h+E(t,\xi))^{-p}|||_{2}^{2} d\xi$$

$$= C \sum_{i=1}^{\infty} \int_{-\infty}^{\infty} (\xi^{2}+h+\alpha_{j}(t,\xi))^{-2p} d\xi.$$

Hence, by combining (6.27) and (6.28) with (6.26), we have

$$\sum_{j=1}^\infty \|g_{j,p}(t,arepsilon)\|_0^2 \leq C arepsilon h^{-2(n-p+1)} \sum_{j=1}^\infty \int_{-\infty}^\infty (\xi^2 + h + lpha_j(t,\xi))^{-2p} d\xi$$
 ,

which together with Lemma 4.1 implies that

$$\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|g_{j,p}(t,\varepsilon)\|_{0}^{2} dt \leq C \varepsilon h^{1/2+1/2m-2(n+1)}).$$

This completes the proof.

Q.E.D.

LEMMA 6.3. Let $e_{j,p}(t,\varepsilon)$ be the function defined in (6.2). Then, for any sufficiently small $\delta > 0$, there exist $\varepsilon(\delta)$ and $h(\delta)$ such that for $h > h(\delta)$,

$$\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|e_{j,p}(t,\epsilon(\delta))\|_{0}^{2} dt \leq \delta h^{1/2+1/2m-2(n+1)} \qquad (0 < m < 1) ,$$

$$(\leq \delta h^{1-2(n+1)} \log h \qquad (m = 1.)$$

¹⁾ If m>1/3, it is enough to consider only the case 1.

Proof.

Case 1, $n \ge p \ge 1$:

By using (6.7) instead of (6.5), the proof is obtained exactly in the same way as in the proof of Lemma 6.2.

Case 2, p=0:

Recalling the definition of $H_0(t, s, \varepsilon)$ given by (6.1), we rewrite $H_0(t, s, \varepsilon)$ as follows:

$$egin{aligned} H_0(t,s,arepsilon) &= -(P(t)-P(s))arphi_{t,ullet}(s)rac{d}{ds} - (P(t)-P(s))arphi_{t,ullet}'(s) + P'(s)arphi_{t,ullet}(s) \ &= \mathrm{I}_1\left(t,s,arepsilon
ight) + \mathrm{I}_2\left(t,s,arepsilon
ight) + \mathrm{I}_3\left(t,s,arepsilon
ight) \,, \end{aligned}$$

where we put $P'(s) = \frac{d}{ds}P(s)$ and $\varphi'_{t,s}(s) = \frac{d}{ds}\varphi_{t,s}(s)$. Then, $e_{t,0}(t,s)$ is rewritten as follows:

$$\begin{split} e_{j,0}(t,\varepsilon) &= (\mu_j + h)^{-(n+1)} \int_{-\infty}^{\infty} K_t^{(0)}(t-s;h) \sum_{k=1}^{3} \mathrm{I}_k(t,s,\varepsilon) u_j(s) ds \\ &= e_{j,0,1}(t,\varepsilon) + e_{j,0,2}(t,\varepsilon) + e_{j,0,3}(t,\varepsilon) \; . \end{split}$$

(1) Case 2-1, estimate of $\sum_{i=1}^{\infty} \int_{-\infty}^{\infty} ||e_{j,0,1}(t,\varepsilon)||_{0}^{2} dt$:

We note that there exists a constant C independent of j such that

$$\left\|\frac{d}{ds}u_{j}(s)\right\|_{0}^{2}ds \leq C\mu_{j}.$$

Put II₁ $(t, s, j) = ||K_t^{(0)}(t - s; h) I_1(t, s, \varepsilon)u_j(s)||_0$. Then, an argument similar to the proof of the case 1 in Lemma 6.2 shows that

$$ext{II}_1\left(t,s,j
ight) \leq C h^{-1/2} \left|t-s
ight|^{1-lpha} \left\|rac{d}{ds}u_j(s)
ight\|_0 ext{,} \qquad ext{for } |t-s| \leq 2arepsilon \;.$$

Furthermore, by using (6.29) and this estimate, we obtain

$$\int_{-\infty}^{\infty} dt \Bigl(\int_{-\infty}^{\infty} \mathrm{II}_{1} \left(t, s, j \right) ds \Bigr)^{2} \leq C h^{-1} \varepsilon^{4-2\alpha} \mu_{j} \; .$$

Hence, by virtue of Proposition 2.1, it readily follows that

$$\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|e_{j,0,1}(t,\varepsilon)\|_{0}^{2} dt \le Ch^{-1} \varepsilon^{4-2\alpha} \sum_{j=1}^{\infty} (\mu_{j} + h)^{-2(n+1)} \mu_{j}$$

$$\le Ch^{-1} \varepsilon^{4-2\alpha} h^{1/2+1/2m-2n-1}.$$

Choosing $\varepsilon(\delta)$ in the above estimate so that $C\varepsilon^{4-2\alpha} < \delta$, we can get the desired estimate for the term $\sum_{t=1}^{\infty} \int_{-\infty}^{\infty} \|e_{j,0,1}(t,\varepsilon)\|_0^2 dt$.

(2) Case 2-2, estimate of $\sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \|e_{j,0,2}(t,\varepsilon)\|_0^2 dt$:

Set $\mathrm{II}_2(t,s,j)=\|K_t^{(0)}(t-s\,;\,h)\,\mathrm{I}_2(t,s,\varepsilon)u_j(s)\|_0$. Then, by virtue of (6.6) in Lemma 6.1, we have

(6.30)
$$II_2(t, s, j) \le C(\varepsilon)h^{-1/2}|t - s|^{1-\alpha}||u_j(s)||_0$$
, for $|t - s| \le 2\varepsilon$.
(= 0 for $|t - s| > 2\varepsilon$.)

Hence, as in the proof of the above case 2-1, we have

$$\textstyle \sum\limits_{j=1}^{\infty} \int\limits_{-\infty}^{\infty} \|e_{j,0,2}(t,\varepsilon)\|_{0}^{2} \, dt \leq C(\varepsilon) \cdot h^{-1} h^{1/2+1/2m-2(n+1)} \; .$$

Choosing h such that $C(\varepsilon)h^{-1} < \delta$, we have have the desired estimate for the term $\sum_{i=1}^{\infty} \int_{-\infty}^{\infty} \|e_{j,0,2}(t,\varepsilon)\|_0^2 dt$.

Similarly we can see that $\sum\limits_{j=1}^{\infty}\int_{-\infty}^{\infty}\|e_{j,0,3}(t,\varepsilon)\|_0^2\,dt$ is estimated as in $\sum\limits_{j=1}^{\infty}\int_{-\infty}^{\infty}\|e_{j,0,2}(t,\varepsilon)\|_0^2\,dt$.

Combining the results of the cases 2-1 and 2-2, the proof is completed. Q.E.D.

A method similar to those given in the proofs of Lemmas 6.2 and 6.3 can be applied also to $d_{j,p}(t,\varepsilon)$ and $f_{j,p}(t,\varepsilon)$. Thus the proof of Lemma 4.4 is completed.

7. Generalizations.

The method developed in the preceding sections can be applied to more general problems.

7.1. Multi-dimensional case.

Let us consider the following problem:

$$-\sum_{j=1}^k \frac{\partial^2}{\partial x_j^2} u - \Delta_y u = \lambda u , \qquad u \in H_0^1(\Omega) ,$$

where
$$\Delta_y = \sum_{j=1}^n \frac{\partial^2}{\partial y_j^2}$$
.

Here we impose the following assumptions on a domain Ω in \mathbb{R}^{n+k} .

32 HIDEO TAMURA

- (A-1) Ω is a domain of the form $\Omega = \{(x,y) | x \in \mathbb{R}^k, y \in \Omega(x) \subset \mathbb{R}^n\}$, where $\Omega(x)$ is a bounded domain for each fixed $x \in \mathbb{R}^k$.
- (A-2) There exists a family of differentiable mappings of class C^{∞} , $\{g(x,y)=(g_i(x,y))_{i=1}^n\}$, from $\Omega(x)$ onto $\Omega(0)$ satisfying the following assumptions:

Let m be a positive constant such that $0 < m \le k/n$ and let C be a positive constant independent of $x, y \in \Omega(x)$ and $\xi \in \mathbb{R}^n$.

(1) For the Jacobian
$$J(x,y) = \left| \det \left(\frac{\partial}{\partial y_i} g_i(x,y) \right) \right|$$
,

$$C(1+|x|)^{mn} \le J(x,y) \le C(1+|x|)^{mn}$$
.

(2) For
$$g_{ij}(x,y) = \frac{\partial}{\partial y_i} g_i(x,y)$$
,

$$C(1+|x|)^m |\xi|^2 \le \left(\sum_{i,j=1}^n g_{ij}(x,y)\xi_i\right)^2 \le C(1+|x|)^m |\xi|^2$$
.

(3) For any multi-index
$$\alpha$$
 with $|\alpha| \leq 2$, $\left| \left(\frac{\partial}{\partial x} \right)^{\alpha} g_i(x, y) \right| \leq C (1 + |x|)^{m - |\alpha|}$.

If a domain Ω satisfies the above assumptions (A-1) and (A-2), we say that Ω belongs to D(m).

THEOREM 7.1. Let Ω be a domain belonging to D(m) with $0 < m \le k/n$. Let $\{\alpha_j(x)\}_{j=1}^{\infty}$ be eigenvalues of the operator $-\Delta_y$ with the domain of definition $\mathcal{D}(\Delta_y) = H_0^1(\Omega(x)) \cap H^2(\Omega(x))$. N(h) denotes the number of eigenvalues less than h of the problem (7.1). Then,

$$N(h) \sim C \sum_{j=1}^{\infty} \int_{g_{J}(h)} (h - \alpha_{j}(x))^{k/2} dx$$
 as $h \to \infty$,

where $C = ((2\sqrt{\pi})^k \Gamma(1 + k/2))^{-1}$ and $\Omega_j(h) = \{x \in \mathbf{R}^K \mid \alpha_j(x) > h\}.$

7.2. Case of domains with a finite number of holes: Consider the following eigenvalue problem:

(7.2)
$$-\frac{\partial^2}{\partial x^2}u - \frac{\partial^2}{\partial y^2}u = \lambda u , \qquad u \in H_0^1(\Omega) .$$

Here we assume that an open domain $\Omega = \{(x, y) \mid -\infty \le x \le \infty, y \in \Omega(x)\}$ with the smooth boundary is decomposed into

$$(-\infty, -R) \times (0, q(x)) \cup \Omega_0 \cup (R, \infty) \times (0, q(x))$$

where R is some constant and q(x) is a smooth function belonging to K(m), while Ω_0 is not necessarily a simply connected domain but may have a finite number of holes.

THEOREM 7.2. Let Ω be an open domain satisfying the above assumptions. Let $\{\alpha_j(x)\}_{j=1}^{\infty}$ be eigenvalues of the operator $-\frac{\partial^2}{\partial y^2}$ with the domain of definition $H_0^1(\Omega(x)) \cap H^2(\Omega(x))$. Then,

$$N(h) \sim (\pi)^{-1} \int_{g_{\beta}(h)} (h - \alpha_j(x))^{1/2} dx$$
 as $h \to \infty$.

REFERENCES

- [1] C. Clark, An asymptotic formula for the eigenvalues of the Laplace operator in an unbounded domain, Bull. Amer. Math. Soc., 72 (1966), pp. 709-713.
- [2] I. M. Glazman and B. Ya. Skacek, On the discrete part of the spectrum of the Laplacian in limit cylindrical domains, Dok. Akad. Nauk SSSR, 147 (1962), pp. 760-763.
- [3] P. Grisvard, Caractérisation de quelques espaces d'interpolation, Ark. Rat. Mech. Anal., 25 (1967), pp. 40-63.
- [4] D. E. Hewgill, On the eigenvalues of the Laplacian operator in an unbounded domain, Arch. Rational Mech. Anal., 27 (1967), pp. 153-164.
- [5] A. G. Kostjuchenko and B. M. Levitan, Asymptotic behavior of the eigenvalues of the Sturm-Liouville operator problem, Funkcional Anal. i Prilozen, 1 (1967), pp. 86-96 (in Russian), Funct. Analysis Appl., 1 (1967), pp. 75-83.
- [6] J. L. Lions and E. Magenes, Problèmes aux limites non homogénes et applications, 1, Paris Dunod (1968).
- [7] E. C. Titchmarsh, Eigenfunction Expansions associated with second order differential equations, vol. II. Oxford University Press (1958).

Department of Mathematics Nagoya University