
6
Gauge fields on a lattice

The modern formulation of non-Abelian lattice gauge theories is due to
Wilson [Wil74]. Independently, gauge theories were discussed on a lattice
by Wegner [Weg71] as a gauge-invariant extension of the Ising model and
in an unpublished work by A. Polyakov in 1974 which deals mostly with
Abelian theories.
Placing gauge fields on a lattice provides, first, a nonperturbative reg-

ularization of ultraviolet divergences. Secondly, the lattice formulation of
QCD possesses some nonperturbative terms in addition to perturbation
theory. A result of this is that one has a nontrivial definition of QCD
beyond perturbation theory which guarantees confinement of quarks.
The lattice formulation of gauge theories deals with phase-factor-like

quantities, which are elements of the gauge group, and are natural vari-
ables for quantum gauge theories.
The gauge group on the lattice is therefore compact, offering the pos-

sibility of nonperturbative quantization of gauge theories without fixing
the gauge. The lattice quantization of gauge theories is performed in such
a way as to preserve the compactness of the gauge group.
The continuum limit of lattice gauge theories is reproduced when the

lattice spacing is many times smaller than the characteristic scale. This
is achieved when the non-Abelian coupling constant tends to zero as it
follows from the renormalization-group equation.
In this chapter we consider the Euclidean formulation of lattice gauge

theories. First, we introduce the lattice terminology and discuss the action
of lattice gauge theory at the classical level. Then, we quantize gauge
fields on the lattice using the path-integral method, where the integration
is over the invariant group measure. We explain Wilson’s criterion of
confinement and demonstrate it using calculations in the strong-coupling
limit. Finally, we discuss how to pass to the continuum limit of lattice
gauge theories.
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100 6 Gauge fields on a lattice
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Fig. 6.1. Two-dimensional lattice with periodic boundary conditions. The sites
labeled by the same numbers are identified. The lattice spacing equals a, while
the spatial size of the lattice corresponds to L1 = 6 and L2 = 4.

6.1 Sites, links, plaquettes and all that

The first step in constructing a lattice gauge theory is to approximate the
continuous space by a discrete set of points, i.e. a lattice. In the Euclidean
formulation, the lattice is introduced along all four coordinates, while the
time is left as continuous in the Hamiltonian approach.∗ We shall discuss
only the Euclidean formulation of lattice gauge theories.
The lattice is defined as a set of points of the d-dimensional Euclidean

space with the coordinates

xµ = nµa , (6.1)

where the components of the vector

nµ = (n1, n2, . . . , nd) (6.2)

are integer numbers. The points (6.1) are called the lattice sites.
The dimensional constant a, which is equal to the distance between the

neighboring sites, is called the lattice spacing. Dimensional quantities are
usually measured in units of a, therefore setting a = 1.
A two-dimensional lattice is depicted in Fig. 6.1. A four-dimensional

lattice for which the distances between sites are the same in all directions
(as for the lattice in Fig. 6.1) is called a hypercubic lattice.
The next concept is the link of a lattice. A link is a line which connects

two neighboring sites. A link is usually denoted by the letter l and is

∗ A Hamiltonian formulation of lattice gauge theories was developed by Kogut and
Susskind [KS75].
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Fig. 6.2. A link of a lattice. The link connects the sites x and x+ aµ̂.
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Fig. 6.3. A plaquette of a lattice. The plaquette boundary is made of four links.

characterized by the coordinate x of its starting point and its direction
µ = 1, . . . , d:

l = {x;µ} . (6.3)

The link l connects sites with coordinates x and x+aµ̂, where µ̂ is a unit
vector along the µ-direction, as shown in Fig. 6.2. The lengths of all links
are equal to a for a hypercubic lattice.
The elementary square enclosed by four links is called the plaquette.

A plaquette p is specified by the coordinate x of a site and by the two
directions µ and ν along which it is constructed:

p = {x;µ, ν} . (6.4)

A plaquette is depicted in Fig. 6.3. The set of four links which bound the
plaquette p is denoted as ∂p.
If the spatial size of the lattice is infinite, then the number of dynamical

degrees of freedom is also infinite (but enumerable). In order to limit the
number of degrees of freedom, one deals with a lattice which has a finite
size L1 × L2 × · · · × Ld in all directions (see Fig. 6.1).
Usually, one imposes periodic boundary conditions to reduce finite-size

effects that are due to the finite extent of the lattice. In other words,
one identifies pairs of sites which lie on parallel bounding hyperplanes.
Usually the sites with the coordinates (0, n2, . . . , nd) and (L1, n2, . . . , nd)
are identified and similarly along other axes.
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Fig. 6.4. Description of continuum field configurations using (a) “coarse” and
(b) “fine” lattices. Lattice (a) can represent the given continuum field configu-
ration very roughly, while lattice (b) has a spacing which is small enough.

Problem 6.1 Calculate the numbers of sites, links and plaquettes for a sym-
metric hypercubic lattice with periodic boundary conditions.

Solution Let us denote L1 = L2 = · · · = Ld = L. Then

Ns = Ld, Nl = dLd, Np =
d(d − 1)

2
Ld. (6.5)

Problem 6.2 Label the lattice links by a natural number l ∈ [1, Nl].

Solution One of the choices is as follows:

l = µ+ n1d+ n2dL+ · · ·+ nddL
d−1, (6.6)

where nν = xν/a and µ is the direction of the link {x;µ}.

6.2 Lattice formulation

The next step is to describe how matter fields and gauge fields are defined
on a lattice.
A matter field, say a quark field, is attributed to the lattice sites. One

can just think that a continuous field ϕ(x) is approximated by its values
at the lattice sites:

ϕ(x) =⇒ ϕx . (6.7)

It is clear that, in order for the lattice field ϕx to be a good approximation
of a continuous field configuration ϕ (x), the lattice spacing should be
much smaller than the characteristic size of a given configuration. This
is explained in Fig. 6.4.
The gauge field is attributed to the links of the lattice:

Aµ(x) =⇒ Uµ(x) . (6.8)

https://doi.org/10.1017/9781009402095.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402095.007


6.2 Lattice formulation 103

It looks natural since a link is characterized by a coordinate and a direc-
tion (see Eq. (6.3)) – the same as Aµ(x). Sometimes the notation Ux,µ

is used as an alternative for Uµ(x) to emphasize that it is attributed to
links.
The link variable Uµ(x) can be viewed as

Uµ(x) = P ei
∫ x+aµ̂
x

dzµAµ(z), (6.9)

where the integral is along the link {x;µ}. As a→ 0, this yields

Uµ(x) → eiaAµ(x) (6.10)

so that Uµ(x) is expressed via the exponential of the µth component of
the vector potential, say, at the center of the link to agree with Eq. (5.25).
Since the path-ordered integral in Eq. (6.9) depends on the orientation,

the concept of the orientation of a given link arises. The same link, which
connects the points x and x + aµ̂, can be written either as {x;µ} or as
{x + aµ̂;−µ}. The orientation is positive for µ > 0 in the former case
(i.e. the same as the direction of the coordinate axis) and is negative in
the latter case.
We have assigned the link variable Uµ(x) to links with positive orien-

tations. The U -matrices which are assigned to links with negative orien-
tations are given by

U−µ(x+ aµ̂) = U †
µ(x) . (6.11)

This is a one-link analog of Eq. (5.46).
It is clear from the relation (6.9) between the lattice and continuum

gauge variables how one can construct lattice analogs of the continuum
phase factors – one should construct the contours from the links of the
lattice.
An important role in the lattice formulation is played by the phase fac-

tor for the simplest closed contour on the lattice: the (oriented) boundary
of a plaquette, as is shown in Fig. 6.5. The plaquette variable is composed
from the link variables (6.9) as

U(∂p) = U †
ν (x)U

†
µ(x+ aν̂)Uν(x+ aµ̂)Uµ(x) . (6.12)

The link variable transforms under the gauge transformation, according
to Eq. (5.52), as

Uµ(x)
g.t.−→ Ω(x+ aµ̂)Uµ(x) Ω†(x) , (6.13)

where the matrix Ω(x) is attributed to the lattice sites. This defines the
lattice gauge transformation.
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Fig. 6.5. A contour in the form of an oriented boundary of a plaquette.

The plaquette variable transforms under the lattice gauge transforma-
tion as

U(∂p)
g.t.−→ Ω(x)U(∂p)Ω†(x) . (6.14)

Therefore, its trace over the color indices is gauge invariant:

trU(∂p)
g.t.−→ trU(∂p) . (6.15)

The invariance of the trace under the lattice gauge transformation is
used in constructing an action of a lattice gauge theory. The simplest
(Wilson) action is

Slat[U ] =
∑
p

[
1− 1

N
Re trU(∂p)

]
. (6.16)

The summation is over all the elementary plaquettes of the lattice (i.e.
over all x, µ, and ν), regardless of their orientations.
Since a reversal of the orientation of the plaquette boundary results,

according to Eq. (5.46), in complex conjugation:

trU(∂p) reor.−→ trU †(∂p) = [trU(∂p)]∗, (6.17)

one can rewrite the action (6.16) in the equivalent form

Slat[U ] =
1
2

∑
orient p

[
1− 1

N
trU(∂p)

]
, (6.18)

where the sum is also over the two possible orientations of the boundary
of a given plaquette.
In the limit a → 0, the lattice action (6.16) becomes (in d = 4) the

action of a continuum gauge theory. In order to show this, let us first
note that

U(∂p) → exp
[
ia2Fµν(x) +O

(
a3
)]
, (6.19)

where Fµν(x) is defined using Eq. (5.14).
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6.2 Lattice formulation 105

In the Abelian theory, the expansion (6.19) is easily found from the
Stokes theorem. The commutator of Aµ(x) and Aν(x), which arises in
the non-Abelian case, complements the field strength to the non-Abelian
one, as is ensured by the gauge invariance. Equation (6.19) was, in fact,
already derived in Problem 5.8 on p. 94.
The transition to the continuum limit is performed by virtue of

a4
∑
p

a→0−→ 1
2

∫
d4x
∑
µ,ν

. (6.20)

Expanding the exponential on the RHS of Eq. (6.19) in a, we obtain

Slat
a→0−→ 1

4N

∫
d4x
∑
µ,ν

trF2µν(x) , (6.21)

which coincides modulo a factor with the action of the continuum gauge
theory.

Problem 6.3 Derive the lattice version of the non-Abelian Maxwell equation
(5.17).

Solution Let us perform the change of the link variable

Uµ(x)→ Uµ(x) [1− iεµ(x)] , U †
µ(x)→ [1 + iεµ(x)]U †

µ(x) , (6.22)

where εµ(x) is an infinitesimal traceless Hermitian matrix.
A given link {x;µ} enters 4(d−1) plaquettes p = {x;µ, ν} in the action (6.18).

One-half of them have a boundary with a positive orientation and the other half
with a negative one. The variation of the action (6.18) under the shift (6.22) is

δS[U ] =
i
2N

∑
ν �=±µ

[
trU(∂p)εµ(x)− tr εµ(x)U †(∂p)

]
. (6.23)

Since εµ(x) is arbitrary, we obtain∑
ν �=±µ

[
U(∂{x;µ, ν})− U †(∂{x;µ, ν})

]
= 0 , (6.24)

or, graphically,

∑
ν �=±µ


✲

✻

✛

❄

x µ

ν

−
❄

✲
✻

✛x

µ

ν


= 0 . (6.25)

In the latter equation we have depicted only plaquettes with positive orien-
tation, while those with negative orientation are recovered by the sum over ν
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106 6 Gauge fields on a lattice

for ν < 0. Equation (6.24) (or (6.25)) is the lattice analog of the non-Abelian
Maxwell equation.
In order to show how this equation reproduces the continuum one (5.17) as

a→ 0, let us rewrite the second term on the LHS of Eq. (6.25) using (6.11):

∑
ν �=±µ


✲

✻

✛

❄

x µ

ν

−
❄

✲
✻

✛

❄✻✂ ✁
x

µ

ν

x−aν̂


= 0 (6.26)

or, analytically,∑
ν �=±µ

[
U(∂{x;µ, ν})− Uν(x− aν̂)U(∂{x− aν̂;µ, ν})U †

ν (x− aν̂)
]
= 0 .

(6.27)

It is now clear that the plaquette boundary in the second term on the LHS,
which is the same as the first one but transported by one lattice spacing in the
ν-direction, is associated with Fµν(x − aν̂). Using Eqs. (6.10) and (6.19), we
recover the continuum Maxwell equation (5.17).

Remark on the naive continuum limit

The limit a → 0, when Eqs. (6.10) and (6.19) hold reproducing the con-
tinuum action (6.21), is called the naive continuum limit. It is assumed in
the naive continuum limit that Aµ(x) is weakly fluctuating at neighboring
lattice links. Fluctuations of the order of 1/a are not taken into account,
since discontinuities of the vector potential in the continuum theory are
usually associated with an infinite action.
Another subtlety with the naive continuum limit is that the next or-

der in a terms of the expansion of the lattice action (6.16), say the term
∝ a2 trF3, are associated with nonrenormalizable interactions and the
smallness of a2 can be compensated, in principle, by quadratic diver-
gences.
The actual continuum limit of lattice gauge theories is, in fact, very

similar to the naive one modulo some finite renormalizations of the gauge
coupling constant. The large fluctuations of Aµ(x) of the order of 1/a
become frozen when passing to the continuum limit. How one can pass
to the continuum limit of lattice gauge theories is explained in Sect. 6.7.

Remark on ambiguities of the lattice action

The Wilson action (6.16) is the simplest one which reproduces the contin-
uum action in the naive continuum limit. One can alternatively use the
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6.3 The Haar measure 107

characters of U(∂p) in other representations of SU(N), e.g. in the adjoint
representation

χadj(U) = |trU |2 − 1 , (6.28)

to construct the lattice action.
The adjoint-representation lattice action is given as

Sadj[U ] =
∑
p

[
1− 1

N2
|trU(∂p)|2

]
. (6.29)

The naive continuum limit will be the same as for the Wilson action (6.16).
Moreover, one can define the lattice action as a mixture of the funda-

mental and adjoint representations [BC81, KM81]:

Smix[U ] =
∑
p

[
1− 1

N
Re trU(∂p)

]
+
βA
2β

∑
p

[
1− 1

N2
|trU(∂p)|2

]
.

(6.30)
The ratio βA/β is a constant ∼ 1 which does not affect the continuum
limit. This action is called the mixed action.
The lattice action (6.29) for N = 2 is associated with the action of

the SO(3) lattice gauge theory. Since algebras of the SU(2) and SO(3)
groups coincide, these two gauge theories coincide in the continuum and
differ on the lattice.
One more possibility is to use the phase factor associated, say, with the

boundary of two plaquettes having a common link, or the phase factors for
more complicated closed contours of finite size on the lattice to construct
the action. These actions will also reproduce, in the naive continuum
limit, the action of the continuum gauge theory.
The independence of the continuum limit of lattice gauge theories on

the choice of lattice actions in called the universality. We shall say more
about this in Sect. 7.4 when discussing the renormalization group on the
lattice.

6.3 The Haar measure

The partition function of a pure∗ lattice gauge theory is defined by

Z(β) =
∫ ∏

x,µ

dUµ(x) e−βS[U ] , (6.31)

where the action is given by Eq. (6.16).

∗ Here “pure” means without matter fields.
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108 6 Gauge fields on a lattice

This is the analog of a partition function in statistical mechanics at an
inverse temperature β given by∗

β =
N

g2
. (6.32)

This formula results from comparing Eq. (6.21) with the gauge-field part
of the continuum action (5.13).∗∗

A subtle question is what is the measure dUµ(x) in Eq. (6.31). To
preserve the gauge invariance at finite lattice spacing, the integration is
over the Haar measure which is an invariant group measure. Invariance
of the Haar measure under multiplication by an arbitrary group element
from the left or from the right:

dU = d(ΩU) = d(UΩ′) , (6.33)

guarantees the gauge invariance of the partition function (6.31).
This invariance of the Haar measure is crucial for the Wilson formula-

tion of lattice gauge theories.
It is instructive to present an explicit expression for the Haar measure

in the case of the SU(2) gauge group. An element of SU(2) can be
parametrized using the unit four-vector aµ (a2µ = 1) as

U = a4I+ i�a�σ , (6.34)

where �σ are the Pauli matrices. The Haar measure for SU(2) then reads

dU =
1
π2

4∏
µ=1

daµ δ(1)
(
a2µ − 1

)
, (6.35)

since detU = a2µ.

Problem 6.4 Rewrite the Haar measure on SU(2) via a unit three-vector �n
(�n2 = 1) and an angle ϕ (ϕ ∈ [0, 2π]).
Solution An element of SU(2) reads in this parametrization as

U = eiϕ*n*σ/2 = cos
ϕ

2
+ i�n�σ sin

ϕ

2
. (6.36)

The geometric meaning of this parametrization is simple: the element (6.36) is
associated with a rotation through the angle ϕ around the �n-axis. The Haar
measure for the SU(2) group is then

dU =
d2�n
4π

dϕ
π
sin2

ϕ

2
. (6.37)

This formula can be obtained from Eq. (6.35) by integrating over |�a|.

∗ The standard factor of 2 is missing because of the normalization (5.6).
∗∗ One has instead β = N/g2a4−d on a d-dimensional lattice since the Yang–Mills
coupling g is dimensional for d 	= 4.
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Problem 6.5 For the U(N) group represent the Haar measure as a multiple
integral over the matrix elements of U .

Solution Elements of a unitary matrix U are complex numbers. The Haar
measure can be represented as∫

dU · · · =

+∞∫
−∞

∏
i,j

dReUij d ImUij δ
(N2)
(
UU † − I

)
· · · . (6.38)

The integral in this formula goes over unrestricted Uij as if U were a general
complex matrix while the delta-function restricts U to be unitary.

The partition function (6.31) characterizes vacuum effects in the quan-
tum theory. Physical quantities are given by the averages of the same
type as Eq. (2.6):

〈F [U ] 〉 = Z−1(β)
∫ ∏

x,µ

dUµ(x) e−βS[U ] F [U ] , (6.39)

where F [U ] is a gauge-invariant functional of the link variable Uµ(x).
The averages (6.39) become the corresponding expectation values in the
continuum theory as a→ 0 and β is related to g2 by Eq. (6.32).

Remark on the lattice quantization

On a lattice of finite size, the integral over the gauge group in Eq. (6.39) is
finite since the integration is over a compact group manifold, in contrast
to the continuum case, where the volume of the gauge group is infinite.
Therefore, the expression (6.39) is a constructive method for calculating
averages of gauge-invariant quantities, though the gauge is not fixed.
The gauge can be fixed on the lattice in the standard way by the

Faddeev–Popov method. This procedure involves extracting a (finite)
common factor, which equals the volume of the gauge group, from the
numerator and denominator on the RHS of Eq. (6.39). Therefore, the
averages of gauge-invariant quantities coincide for a fixed and unfixed
gauge, while the average of a functional which is not gauge invariant van-
ishes when the gauge is not fixed.
The fixing of gauge is convenient (though not necessary) for calcula-

tions in a lattice perturbation theory. A Lorentz gauge cannot be fixed,
however, outside perturbation theory because of Gribov copies [Gri78].
In contrast, the lattice path integral (6.39) with an unfixed gauge is a
method of nonperturbative quantization.
A price for the compactness of the group manifold on the lattice is the

presence of fluctuations Aµ(x) ∼ 1/a which do not occur in the continuum
(say, the values of the vector potential Aµ and Aµ + 2π/ae are identified
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for the Abelian U(1) group). However, these fluctuations become unim-
portant when passing to the continuum limit.

6.4 Wilson loops

As has already been mentioned in Sect. 6.2, lattice phase factors are
associated with contours which are drawn on the lattice.
In order to write down an explicit representation of the phase factor on

the lattice via the link variables, let us specify the (lattice) contour C by
its initial point x and by the directions (some of which may be negative)
of the links from which the contour is built:

C = {x;µ1, . . . , µn} . (6.40)

Then the lattice phase factor U(C) is given by

U(C) = Uµn(x+ aµ̂1 + · · ·+ aµ̂n−1) · · ·Uµ2(x+ aµ̂1)Uµ1(x) .
(6.41)

For the links with a negative direction it is again convenient to use
Eq. (6.11).
A closed contour has µ̂1 + · · · + µ̂n = 0. The trace of the phase factor

for a closed contour, which is gauge invariant, is called the Wilson loop.
The average of the Wilson loop is determined by the general for-

mula (6.39) to be

W (C) ≡
〈
1
N
trU(C)

〉
= Z−1(β)

∫ ∏
x,µ

dUµ(x) e−βS[U ] 1
N
trU(C) . (6.42)

This average is often called the Wilson loop average.
A very important role in lattice gauge theories is played by the averages

of the Wilson loops associated with rectangular contours. Such a contour
lying in the (x, t)-plane is depicted in Fig. 6.6.
The Wilson loop average is related for T $ R to the energy of the

interaction of the static (i.e. infinitely heavy) quarks, which are separated
by a distance R, by the formula

W (R× T ) T �R= e−E0(R)·T . (6.43)

Problem 6.6 Derive Eq. (6.43) by fixing the gauge A4 = 0.

Solution In the axial gauge A4 = 0, we have U4(x) = 1 so that only vertical
segments of the rectangle in Fig. 6.6 contribute to U(R× T ). Denoting

Ψij(t) ≡
[
P ei

R
0 dz1 A1(z1,...,t)

]
ij
, (6.44)
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Fig. 6.6. Rectangular loop of size R× T .

we then have

W (R× T ) =
〈
1
N
trΨ(0)Ψ†(T )

〉
. (6.45)

Inserting in Eq. (6.45) a sum over a complete set of intermediate states∑
n

|n 〉〈n| = 1 , (6.46)

we obtain

W (R× T ) =
∑
n

1
N

〈
Ψij(0)

∣∣ n〉〈n ∣∣ Ψ†
ji(T )
〉

=
∑
n

1
N

∣∣〈Ψij(0)
∣∣ n〉∣∣2 e−EnT , (6.47)

where En is the energy of the state |n〉. As T → ∞, only the ground state with
the lowest energy survives in the sum over states and finally we find

W (R× T ) large T−→ e−E0T , (6.48)

which results in Eq. (6.43).
Note that nothing in this derivation relies on the lattice. Therefore, Eq. (6.43)

holds for a rectangular loop in the continuum theory as well.

Equation (6.43) can also be understood as follows. Let us consider the
Abelian case when the interaction is described by Coulomb’s law. The
contour integral can then be rewritten as the integral over the whole space

e

∮
C

dzµAµ(z) =
∫
ddxJµ(x)Aµ(x) , (6.49)

where

Jµ(x) = e

∮
C

dzµδ(d)(x− z) (6.50)
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112 6 Gauge fields on a lattice

is a four-vector current of a classical particle moving along the trajectory
C which is described by the function zµ(t).
It is clear that

− lnW (C) = − ln
〈
ei
∫
d4xJµ(x)Aµ(x)

〉
(6.51)

determines the change of action of the classical particle arising from the
electromagnetic interaction in accordance with Eq. (6.43). How one may
obtain Coulomb’s law in this language is shown later in Problem 12.3.
A similar interpretation of Eq. (6.43) in the non-Abelian case is some-

what more complicated. For a heavy particle moving along some tra-
jectory in space-time, color degrees of freedom are quantum and easily
respond to changes of the gauge field Aµ(x), which interacts with them.
Let us suppose that a quark and an antiquark are created at the same
space-time point in some color state. Then this state must be a singlet
with respect to color (or colorless) since the average over the gauge field
would vanish otherwise. When the quarks separate, their color changes
from one point to another simultaneously with the change of color of the
gauge field, in order for the system of the quarks plus the gauge field to
remain colorless. Therefore, the averaging over the gauge field leads to
an averaging over fluctuations of quark color degrees of freedom. E0(R)
in Eq. (6.43) is associated with the interaction energy averaged over color
in this way.

Problem 6.7 Derive a non-Abelian analog of Eq. (6.50).

Solution The proper non-Abelian extension of Eq. (6.50) is given by [Won70]

J a
µ (x) = g

τ∫
0

dt żµ(t) δ(d)(x− z(t)) Ia(t) , (6.52)

where Ia(t), which describes the color state of a classical particle moving along
the trajectory zµ(t) in an external Yang–Mills field Aµ(z), is a solution of the
equation

İa(t) + gfabcżµ(t)Ab
µ(z(t)) I

c(t) = 0 . (6.53)

It is convenient to use Grassmann variables again to describe color degrees of
freedom as in Problem 5.3 on p. 90. Then [BCL77, BSS77]

J a
µ (x) = ψ̄(t)taψ(t) (6.54)

and ψ(t) is a solution of

ψ̇(t)− i żµ(t)Aµ(z(t))ψ(t) = 0. (6.55)
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Remark on mass renormalization

By definition, E0(R) in Eq. (6.43) includes a renormalization of the mass
of a heavy quark owing to the interaction with the gauge field and which
is thus independent of R. To the first order in g2, it is the same as in
QED and is given by

∆Emass =
g2

4πa
N2 − 1
N

(6.56)

as a→ 0. The calculation is presented later in Problem 12.2.
The potential energy of the interaction between the static quarks is

therefore defined as the difference

E(R) = E0(R)−∆Emass . (6.57)

If g2/4πa in ∆Emass did not become infinite as a→ 0, the term resulting
from the mass renormalization would not have to be subtracted, since it
simply changes the reference level for the potential energy.

6.5 Strong-coupling expansion

We already mentioned in Sect. 6.3 that the path integral (6.39) can be
calculated by the lattice perturbation theory in g2. As was pointed out
by Wilson [Wil74], there exists an alternative way of evaluating the same
quantity on a lattice by an expansion in 1/g2 or in β since they are related
by Eq. (6.32). This expansion is called the strong-coupling expansion. It
is an analog of the high-temperature expansion in statistical mechanics
since β is the analog of an inverse temperature.
In order to perform the strong-coupling expansion, we expand the ex-

ponential of the lattice action, say in Eq. (6.42), in β. Then the problem
is to calculate the integrals over the unitary group of the form

I i1···im,k1···kn

j1···jm,l1···ln =
∫
dU U i1

j1
· · ·U im

jm
U †k1

l1
· · ·U †kn

ln
, (6.58)

where the Haar measure (given for SU(2) by Eq. (6.35)) is normalized as∫
dU = 1 . (6.59)

It is clear from general arguments that the integral (6.58) is nonva-
nishing only if n = m (mod N), i.e. only if n = m + kN , where k is
integer.
For the simplest case m = n = 1, the answer can easily be found by

using the unitarity of U and the orthogonality relation:∫
dU U i

j U
† k
l =

1
N
δilδ

k
j . (6.60)
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Problem 6.8 Prove Eq. (6.60) for the U(N) group.

Solution From the general arguments we obtain∫
dU U i

j U
† k
l = Aδilδ

k
j + B δijδ

k
l . (6.61)

Contracting by δli, using the unitarity of U , and Eq. (6.59), we have

AN +B = 1 . (6.62)

One more relation between A and B arises from the fact that the character in
the adjoint representation is given by Eq. (6.28). Contracting Eq. (6.61) by δji
and δlk, and using the orthogonality of the characters which states∫

dU
(
|trU |2 − 1

)
= 0 , (6.63)

we find

AN + BN2 = 1 . (6.64)

Therefore, A = 1/N and B = 0 which proves Eq. (6.60).

The simplest Wilson loop average, which is nonvanishing in the strong-
coupling expansion, is that for the loop which coincides with the boundary
of a plaquette (see Fig. 6.5). It is called the plaquette average and is
denoted by

W (∂p) =
〈
1
N
trU(∂p)

〉
. (6.65)

In order to calculate the plaquette average to order β, it is sufficient
to retain only the terms O(β) in the expansion of the exponentials in
Eq. (6.42):

W (∂p) =

∫ ∏
x,µ

dUµ(x)
[
1 + β
∑
p′

1
N
Re trU(∂p′)

] 1
N
trU(∂p)∫ ∏

x,µ

dUµ(x)
[
1 + β
∑
p′

1
N
Re trU(∂p′)

] +O
(
β2
)
.

(6.66)

The group integration can then be performed by remembering that∫
dUµ(x) [Uµ(x)]ij [U

†
ν (y)]

k
l =

1
N
δxy δµν δ

i
l δ

k
j (6.67)

at different links.
Using this property of the group integral in Eq. (6.66), we immediately

see that the denominator is equal to 1 (each link is encountered no more
than once), while the only nonvanishing contribution in the numerator
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✲

✻

✛

❄

✛

❄

✲

✻ ∂p

∂p′

Fig. 6.7. Boundaries of the plaquettes p and p′ with opposite orientations ∂p
and ∂p′, respectively.

is from the plaquette p′, which coincides with p but has the opposite
orientation as is depicted in Fig. 6.7.
It is convenient to use the graphical notation∗ for Eq. (6.60) at each

link of ∂p:

✲✛i
l

j
k
=

1
N
×
( �✆ ✞✝i
l

j
k

)
, (6.68)

where the semicircles are associated with the Kronecker symbols:

�✆i
l

= δil . (6.69)

This notation is convenient since the lines which denote the Kronecker
symbols in the latter equation can be associated with propagation of
the color indices. Analogously a closed line represents the contracted
Kronecker symbol, which is summed over the color indices,

❥ = δii = N . (6.70)

Using the graphical representation (6.68) for each of the four links de-
picted in Fig. 6.7, we obtain

❥ ❥
❥ ❥∫ ∏

x,µ

dUµ(x) trU(∂p) trU †(∂p′) =
1
N4
× = 1 ,

(6.71)

where the contracted Kronecker symbols are associated with the four sites
of the plaquette.

∗ A calculation of more complicated group integrals (6.58) using the graphical notation
is discussed in the lectures by Wilson [Wil75] and in Chapter 8 of the book by
Creutz [Cre83]. An alternative method of calculating the group integrals using the
character expansion is described in the review by Drouffe and Zuber [DZ83].
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Fig. 6.8. Filling of a loop with elementary plaquettes.

The final answer for the plaquette average is

W (∂p) =
β

2N2
for SU(N) with N ≥ 3 ,

W (∂p) =
β

4
for SU(2) .

 (6.72)

The result for SU(2) differs by a factor of 1/2 because trU(∂p) is real for
SU(2) so that the orientation of the plaquettes can be ignored.
The graphical representation (6.68) is useful for evaluating the lead-

ing order of the strong-coupling expansion for more complicated loops.
According to Eq. (6.67), a nonvanishing result emerges only when pla-
quettes, arising from the expansion of the exponentials of Eq. (6.42) in
β, completely cover a surface enclosed by the given loop C as depicted in
Fig. 6.8. In this case each link is encountered twice (or never), once in
the positive direction and once in the negative direction, so that all the
group integrals are nonvanishing. The leading order in β corresponds to
filling a minimal surface, whose area takes on the smallest possible value.
This yields

W (C) = [W (∂p)]Amin(C) , (6.73)

where W (∂p) is given by Eq. (6.72) and Amin(C) is the area (in units of
a2) of the minimal surface.
For the rectangular loop, which is depicted in Fig. 6.6, the minimal

surface is just a piece of the plane bounded by the rectangle. Therefore,
we find

W (R× T ) = [W (∂p)]R T (6.74)

to the leading order in β.
More complicated surfaces, which do not lie in the plane of the rect-

angle, will give a contribution to W (C) of the order of βarea. They are
suppressed at small β since their areas are larger than Amin.
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(b)(a)

� � ��

Fig. 6.9. Lines of force between static quarks for (a) linear and (b) Coulomb
interaction potentials. For the linear potential the lines of force are contracted
into a tube, while they are distributed over the whole space for the Coulomb
one.

6.6 Area law and confinement

The exponential dependence of the Wilson loop average on the area of
the minimal surface (as in Eq. (6.73)) is called the area law. It is cus-
tomarily assumed that if an area law holds for loops of large area in pure
gluodynamics (i.e. in the pure SU(3) gauge theory) then quarks are con-
fined. In other words, there are no physical |in〉 or 〈out| quark states.
This is the essence of Wilson’s confinement criterion. The argument is
that physical amplitudes (for example, the polarization operator) do not
have quark singularities when the Wilson criterion is satisfied. I refer the
reader to the well-written original paper by Wilson [Wil74], where this
point is clarified.
Another, somewhat oversimplified, justification for the Wilson criterion

is based on the relationship (6.43) between the Wilson loop average and
the potential energy of interaction between static quarks. When the area
law

W (C)
large C−→ e−KAmin(C) (6.75)

holds for large loops, the potential energy is a linear function of the
distance between the quarks:

E(R) = KR . (6.76)

The coefficient K in these formulas is called the string tension because
the gluon field between quarks contracts to a tube or string, whose energy
is proportional to its length, as is depicted in Fig. 6.9a. The value of K
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118 6 Gauge fields on a lattice

is the energy of the string per unit length. This string is stretched with
the distance between quarks and prevents them from moving apart to
macroscopic distances.
Equation (6.74) gives

K =
1
a2
ln
2N2

β
=

1
a2
ln
(
2Ng2
)

(6.77)

for the string tension to the leading order of the strong-coupling expan-
sion. The next orders of the strong-coupling expansion result in correc-
tions in β to this formula.
Therefore, confinement holds in the lattice gauge theory to any order

of the strong-coupling expansion.

Remark on the perimeter law

For the Coulomb potential

E(R) = − g2

4πR
N2 − 1
N

, (6.78)

the gauge field between quarks would be distributed over the whole space
as is depicted in Fig. 6.9b. The Wilson loop average would have the
behavior

W (C)
large C−→ e−const·L(C), (6.79)

where L(C) denotes the length (or perimeter) of the closed contour C.
This behavior of the Wilson loops is called the perimeter law. To each

order of perturbation theory, it is the perimeter law (6.79), rather than
the area law (6.75), that holds for the Wilson loop averages. A perimeter
law corresponds to a potential which cannot confine quarks.

Remark on the Creutz ratio

To distinguish between the area and perimeter law behavior of the Wilson
loop averages, Creutz [Cre80] proposed to consider the ratio

χ(I, J) = − lnW (I × J)W ((I − 1)× (J − 1))
W ((I − 1)× J)W (I × (J − 1)) , (6.80)

where W (I × J) is as before the average of a rectangular Wilson loop of
size I × J . The exponentials of the perimeter, which is equal to

L(I × J) = 2I + 2J , (6.81)
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cancel out in the ratio (6.80). In particular, the mass renormalization
(6.56) cancels out, which is essential for the continuum limit.
The Creutz ratio (6.80) has the meaning of an interaction force be-

tween quarks, which can be seen by stretching the rectangle along the
“temporal” axis (as illustrated by Fig. 6.6). If the area law (6.75) holds
for asymptotically large I and J , then

χ(I, J)
large I,J−→ a2K , (6.82)

i.e. it does not depend on I or J and coincides with the string tension.
This property of the Creutz ratio was used for numerical calculations of
the string tension.

6.7 Asymptotic scaling

Equation (6.77) establishes the relationship between values of the lattice
spacing a and the coupling g2 as follows. Let us set K to be equal to its
experimental value∗

K = (400 MeV)2 ≈ 1 GeV/fm . (6.83)

Then the renormalizability prescribes that variations of a, which plays
the role of a lattice cutoff, and of the bare charge g2 should be made
simultaneously in order that K does not change.
Given Eq. (6.77), this procedure calls for a→∞ as g2 →∞. In other

words, the lattice spacing is large in the strong-coupling limit, compared
with 1 fm – the typical scale of the strong interaction. This is a situation
of the type shown in Fig. 6.4a. Such a coarse lattice cannot describe the
continuum limit correctly and, in particular, the rotational symmetry.
In order to pass to the continuum, the lattice spacing a should be

decreased to have a picture like that in Fig. 6.4b. Equation (6.77) shows
that a decreases with decreasing g2. However, this formula ceases to be
applicable in the intermediate region of g2 ∼ 1 and, therefore, a ∼ 1 fm.
The recipe for further decreasing a is the same as in the strong-coupling

region, further decreasing g2. While no analytic formulas are available at
intermediate values of g2, the expected relation between a and g2 for small
g2 is predicted by the known two-loop Gell-Mann–Low function of QCD.

∗ This value results from the string model of hadrons where the slope of the Regge
trajectory α′ and the string tension K are related by K = 1/2πα′. This formula
holds even for a classical string. The slope α′ = 1 GeV−2 say from the ρ – A2 – g
trajectory. A similar value of K is found from the description of mesons made out of
heavy quarks using a nonrelativistic potential model.
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Fig. 6.10. The dependence of the string tension on 1/g2. The strong-coupling
formula (6.77) holds for small 1/g2. The asymptotic-scaling formula (6.84) sets
in for large 1/g2. Both formulas are not applicable in the intermediate region of
1/g2 ∼ 1 which is depicted by the dashed line.

For pure SU(3) gluodynamics, Eq. (6.77) is replaced at small g2 by

K = const · 1
a2

(
8π2

11g2

) 102
121

e−8π
2/11g2

, (6.84)

where we have used the two-loop Gell-Mann–Low function.
The exponential dependence of K on 1/g2 is called asymptotic scaling.

Asymptotic scaling sets in for some value of 1/g2 as depicted in Fig. 6.10.
For such values of g2, where asymptotic scaling holds, the lattice gauge
theory has a continuum limit.
The knowledge of the two asymptotic behaviors says nothing about the

behavior of a2K in the intermediate region of g2 ∼ 1. There can be either
a smooth transition between these two regimes or a phase transition.
Numerical methods were introduced to study this problem, some of which
are described in the next chapter.

Remark on dimensional transmutation

The QCD action (5.13) does not contain a dimensional parameter of the
order of hundreds MeV. The masses of the light quarks are of the order of
a few MeV and can be disregarded. The only parameter of the action is
the dimensionless bare coupling constant g2. At the classical level, there is
no way to obtain a dimensional parameter of the order of hundreds MeV.
In quantum theory, these is always a dimensional cutoff (such as a for

the lattice regularization). The renormalizability says that a and g2 are
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not independent but are related by the Gell-Mann–Low equation (3.72).
It can be integrated to give the integration constant

ΛQCD =
1
a
exp
[
−
∫

dg2

B(g2)

]
. (6.85)

Up to this point there has been no difference between QCD and QED.
The difference stems from the fact that the Gell-Mann–Low function
B(g2) is positive for QED and negative for QCD. In QED e2(a) increases
with decreasing a, while in QCD g2(a) decreases with decreasing a. The
latter behavior of the coupling constant is called asymptotic freedom. In
both cases the Gell-Mann–Low function vanishes when the coupling con-
stant tends to zero. Such values of coupling constants where the Gell-
Mann–Low function vanishes are called the fixed point. Since the infrared
behavior of e2 in QED is interchangeable with the ultraviolet behavior of
g2 in QCD, the origin is an infrared-stable fixed point in QED and an
ultraviolet-stable fixed point in QCD. In QED the fine-structure constant
(≈ 1/137) is measurable in experiments, while in QCD the constant ΛQCD
is measurable.
This phenomenon of the appearance of a dimensional parameter in

QCD, which remains finite in the limit of vanishing cutoff, is called di-
mensional transmutation. All observable dimensional quantities, such as
the string tension or hadron masses, are proportional to the corresponding
powers of ΛQCD. Therefore, their dimensionless ratios, such as the ratio
of
√
K to the hadron masses, are universal numbers which do not depend

on g2. The goal of a nonperturbative approach in QCD is to calculate
these numbers but not the overall dimensional parameter.

Remark on second-order phase transition

In statistical physics it is usually said that the continuum limits of a lattice
system are reached at the points of second-order phase transitions when
the correlation length becomes infinite in lattice units. This statement
is in perfect agreement with what has been said above concerning the
continuum limit of lattice gauge theories.
A correlation length is inversely proportional to ΛQCD given by

Eq. (6.85). The only chance for the RHS of Eq. (6.85) to vanish is to
have a zero of the Gell-Mann–Low function B(g2) at some fixed point
g2 = g2∗ . Therefore, the bare coupling should approach the fixed-point
value g2∗ to describe the continuum.
As we have discussed, B(0) = 0 for a non-Abelian gauge theory so that

g2∗ = 0 is a fixed-point value of the coupling constant. Therefore, the
continuum limit is associated with g2 → 0 as mentioned above.
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