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ISOMETRIC PREDUALS OF JAMES SPACES 

LEON BROWN AND TAKASHI ITO 

A Banach space B is called an isometric predual, or simply a predual, of a 
Banach space X if the dual B* of B is isometrically isomorphic to X . A Banach 
space X is said to have a unique (isometric) predual if X has a predual and all 
preduals are mutual ly isometrically isomorphic. In general a Banach space 
does not have a unique predual even if it has a predual. A simple example of 
this is the space Z1, because c0 and c are isometric preduals of ll bu t not iso­
metrically isomorphic. A. Grothendieck [3] first noticed tha t L^-spaces have 
unique preduals, and then S. Sakai generalized this to von Neumann algebras 
(see p. 30 of [9]). Recently one of the authors [4] has shown tha t every quot ient 
space of a von Neumann algebra by a a--weakly closed subspace, as a Banach 
space with quotient norm, has a unique predual. Also T. Ando [1] has shown 
tha t the space Hœ has a unique predual and P. Wojtasczcyk has also proved 
this result independently. Evidently, these are the only known non-reflexive 
Banach spaces writh unique preduals. See the Addendum. 

In this paper we prove uniqueness of preduals of James quasi-reflexive 
spaces. In particular, we are interested in James spaces having norms presented 
in [5] and [6]. Note tha t quasi-reflexive spaces have a different character from 
L^-spaces and the spaces mentioned previously. 

We use the following s tandard notat ion. We shall always regard a Banach 
space X as a subspace of its second dual X** in the canonical way. A subspace 
means a closed linear subspace. For a subset A of a Banach space X, A1-
denotes the annihilator of A in the dual X*. If A is a subset of a dual Banach 
space X*, then A± denotes the set of all elements in X annihilated by A. For a 
subset A of a Banach space X, [A] denotes the closed linear span of A in X, 
and X = A © B means tha t X is the direct sum of subspaces A and B. 

The proof of our results is based on the following idea: If X is a Banach 
space, then X*** = X1- © X* where X* is norm 1 complemented in X***. 
T h a t is, the projection from X*** onto X* associated with this decomposition 
has norm 1. Thus a sufficient condition for X* to have a unique predual is t h a t 
X1- is the only norm 1 complement of X* in X***. In order to show this, it is 
sufficient to show tha t if <p £ X*** and 

(1) l k + **|| ^ ||**|| for all x* G X* 

then <p G X x . 
As an illustration of this method, we present a proof (different from the usual 
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60 LEON BROWN AND ÏAKASHI 1TO 

proof) that f° has a unique predual. If X = l\ then we have X* = /°° and 
X*** = X1 ® X* = X1 ® r. A straightforward argument, using the repre­
sentation X* = P = C(@N) and 

X** = C(PN)* = M(fiN) = M(f3N\N) 0 M(N) = M((3N\N) © X 

where fiN is the Stone Cech compactification of the set N of positive integers, 
yields the fact that if x* Ç c0 C /°° and f Ç I 1 then 

||* + **|| = Max(||*|j,||**||). 

If ^ 6 X***,then^ = $ - x0* where ^ G X^andxo* 6 Z°° = X*. Proving that 
inequality (1) implies <p 6 XL is equivalent to showing that 

(2) ||* + **|| ^ ||x0* + x*|| for all x* G X* 

implies x0* = 0. Assume inequality (2), and let n be a positive integer. If 
x* = cen*, where e* is the usual basis element of c0 and c is a complex number, 
then we have 

||* + x*|| = Max(||*||, |c|) ^ ||*o* + <*»*|| ^ |*0*(n) + c\. 

Since this holds for every complex number c, x0*(^) must be 0 for each n which 
completes the proof. 

The James space (/, ||-||) ([5]) is defined to be the space consisting of all 
complex sequences x = (x(n)) such that 

I N I = s u P ( i : ^ 1 i 2 : » € / J x ( « ) i 2 ) i / 2 < +<*> 

where the supremum is taken over all choices of disjoint finite intervals 
Ii, J2, . . . , h of positive integers. 

We are interested in an equivalent norm on this space, first defined by 
James [6]. The following is a slight modification of his norm. 

IIWII = su P (x ; ;_ 1 1 l ^ f , *(»)i2) , / 2 

where/ ; are either intervals or complements of intervals in the space of positive 
integers and the supremum is taken over all choices of disjoint/i, . . . , Ik. One 
easily sees that for x G / , 

ll*|| £ IIWII â V2IMI. 

1. (/, | | - | | ) . In this section, / will always stand for (/, | | - | | ) . The space / 
has the natural normalized basis {en} ; for every x ^ / w e have x = ]L"=i x(n)en, 
where en = (en(j)) = (dnJ) for n,j = 1, 2, . . . . Let {en*\ be the biorthogonal 
sequence with respect to \en\ and let F be the closed linear span of {en*}. Since 
\en) is a boundedly complete monotone basis of / , J is isometrically isomorphic 
to the dual F* of F by the canonical mapping (see p. 91 of [2]). We introduce 
the linear functional <pn on Jby <pn(x) = X)7=n x0) for x £ / and n = 1 ,2 , . . . . 
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JAMES SPACES 61 

As proved in [5], {(pn) forms a normalized basis of J* and we have 

y* = M e F. 

We define/2 G /** as follows: /2OP1) = 1 and/ 2 annihilates Y. Then we have 
J** = [f2] 0 / . More generally, denote Jn(n = 0, 1, 2, . . .) as the rc'th dual 
of / , then we have 

J = J°CJ2 C--.CJ2" C-- , and 

j * = ji c J3 C • . • C J2n+1 C . . . . 

For n ^ 3, fn £ Jn is defined as follows: fn(fn-i)
 = 1 and /„ annihilates Jn~l. 

Thus the one dimensional space [fn] is a norm 1 complement of Jn~2 in Jn and 
we have 

jn = [/n] 0 /»-2 for w = 2, 3, 

For even n = 2, {fn,fn-2, . . . ,/4,/2, £i, 02, • • •} forms a basis of 7W and for odd 
« = 3, {fn,fn-2, . . • ,fs,fz, <Pi, ei*, e2*, . . .) forms a basis of 7W. The canonical 
bilinear functional defined on the product of UJLo J2n and U^=o J"2n+1 will be 
denoted by (x, y) for x G Un=o / 2 n and y G Un=o /2 n + 1 . 

The following lemma will be used many times. 

LEMMA 1. For each « = 1 , 2 , . . . , 

a) f2n = w* - l i m ^ X X l (-Di+lf2n-2j + ( - l ) n + 1** in J2\ 

b) /2n+1 = w* - Hm^œ£;:î (-i)^/2n_2 i+1 + (-iy+v* ™ /2W+1. 

.For m d k = 1 , 2 , . . . and n = 2, 3, . . . , 

c) ||/2w + *|| g sup*<*1<it2 | | ( - i r + ^ 1 + (-l)ne*2 + x|| (* <E / 2 W - 2 ) , 

d) ||/2n+i + y\\ = suP*<*1<it2 | | ( - l ) n + V*i + ( -DV* 2 + yll (y € J2n~l). 

Proof. For a) and b) simply evaluate both sides of the equation on basis 
elements of J2n~l and J2n respectively. 

c) Applying a) ŵ e have for x (E J2n, 

II/2. + *|| ^ | i r n ^ œ \\Zr=\ ( - l ) m /2»-2y + (-D"+ Ie*, + x|| 

= M*„<o\\fu-2 + E*-2 (-D ; + 1 /2B-2, + (-l)"+ 1e*. + *||. 

If * € J2" -2 we may apply a) again and we have 

Il/a, + *|| ^ l i m ^ ^ i i m * ^ I K - 1 ) " ^ * , + ( - 1 ) % , + x|| 

^ supt< t I < t l \\(-iy+lekl + (-l)nek2 + x\\. 

d) is proven in a similar fashion to c) and we shall omit the proof. 

LEMMA 2. a) ||/2n+i|| = I for n = 1, 2, 3, . . . , 

b) ||/2 | | = 1 and ||/2„|| = V2for n = 2,3 
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62 LEON BROWN AND TAKASHI ITO 

Proof, a) From Lemma Id) 

llJW+ill ^ s u p , 1 < A - 2 H ^ - <pk2\\ = 1. 

On the other hand from standard duality arguments, 

H^+ill"1 = infl€J2n-2 \\f2n + x\\. 

Applying Lemma la) , for all x 6 J2/?-2 

H/2, + x\\ g Hm,„>co H E w (-l)^+ 1 /2K-2 j + (-1)"+ Ie* + *||. 

Setting x = —]C"=i (— l)-/+1/2«.-2j, we have 

H/2. + *|| ^ l i m ^ | | ( - l ) " + ^ | | = 1. 

Thus 11/2/i+iH-1 ^ 1 and the proof of a) is complete. 
b) We have H^lh1 = inf?/€F | | ^ + y\\, where Y = [ef, e2*, . . .] C /*. For 

y e F, 

\\<Pi + y\\ ^ \(en, <Pi + y)\ = |1 + fe, 3;)l -^ 1 as « - > oo. 

Thus we have H/2II"1 = inf?/€F ||< î + y\\ = 1. 
Applying Lemma lc), we have 

| |/2,| | g sup,1 < t s ||e,, - e ts || = V2. 

From standard duality arguments, we have 

II/2„II-I = i n f ^ . - 1 1 / ^ + yii. 

Applying Lemma lb) , for y G J2n~* 

Il/2»-i + yll ^ iin)*i->» | |E"-î (-i)m/2„_2j-i + (-i)V*. + y||. 

Setting 3/ = - è ( É 5 - ï (—l)J+1/2«-2j-i + ( - D V i ) and applying Lemma lb) 
again, we have 

H/2,-1 + y | | ^ l i i n ^ 0 O | | è E ï - ï ( - l ) m / 2 . - 2 j - i + ( - D V A - , - M - D V i l l 

g Urn*.-»»lim* r̂o || - è(- i )Vi + (-i)V*. + è(-i)"-V*5|| 
^ s u p i a K b 5IK-V1 + V*i) + (<Pm - <P*2)II ^ V2/2 . 

The last inequality is true because for i f / , 

K*. -Vl + Vjtl + ̂ , - ^2)| = 1- Lîl_I*0") +Lïr1*0")l 
^ VS'dEî'-^O-)!2 + lEr^O')l2)1/2 ^ v^l!*l|. 

This completes the proof of the Lemma. 

As a consequence of Lemma 2a), we have | |/2n + x| | ^ 1 for all x c J2n~2 and 
n = 1, 2, . . . which implies the following: 

COROLLARY 1. 

| | £ ï = i & / 2 * + Z " - i « ^ l l ^ sup^{ | / 3* | , | a , | } . 
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THEOREM 1. 1) (Jn
} ||-||) has a unique isometric predualfor all n = 0, 1, 2, . . . . 

2) Y, the unique predual of / , does not have any isometric predual. 

Proof, la) . J2n~l has a unique isometric predual for all n = 1 , 2 , . . . . 

To show this it suffices to show that [/2n+i] is the unique norm 1 complement 
of J2n~l in J2n+X. In this case, this is equivalent to showing that if y0 G J2n~l 

and 

(3) ||/2n+i + y\\ ^ \\yo + y\\ for all y £ Pn-X 

then y0 = 0. Let y0 = ̂ Jl~x AJ^+i + $<P\ + ]Cî ajej* an<^ assume inequality 
(3). Given c, a complex number and /, a positive integer, set y = ce*. Then by 
Lemma Id), we have 

ILfrn+i + cel*\\ g sup ,<*<*, Wee,* + ( - l ) n + V*i + (-1)V*, | | 

g V\c\2 + 1 

(use Schwartz's inequality as in the end of the proof of Lemma 2b)). 
On the other hand 

Ibo + cefW è \(eh yo + cel*)\ = \/3 + al + c\. 

Thus \/3 -\- ai -{- c\ ^ V K F + 1 for all complex numbers c which implies 
13 + ai = 0 for all / and we have /3 = a, = 0 for all /. Suppose /^ = 0 for 
1 ^ k < I ^ n — 1. Applying Lemma Id) two times, we have for each com­
plex number c 

||/2n+l + Cf2l+l\\ ^ S l i p , ^ I K - l ^ + l ^ + ( - l ) V t î + C/2H-1|| 

^ sup*^^^,^ ||(-l)n+V*i + (-DV*8 + c((-l)'+V*. 
+ ( - D W I I 

On the other hand, since IJ2./+1] is a norm 1 complement of J2i~l in 7 2 ; + 1 for all 
j = 1, 2, . . . , we have 

= |/3, + c\ \\fu+1\\ = |0, + c\ (Lemma 2a)). 

Thus |/3 1 + c| fg VV|2 + 1 for all complex numbers c which implies that Pi = 0. 
This completes the proof that y0 = 0. 

lb) / has a unique isometric predual. 

In the beginning of this section, we noticed that / has an isometric predual Y 
(this fact can be proven directly by showing that H/2 + #|| = \\x\\ for all x £ / 
in a manner similar to the proof of Lemma 3 in Section 2). Let Xo = y ^ afij 
and assume 

H/2+ *|| è ||*o + *|| for all x e J. 
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Given /, then a} = eid\a,\ and we set x = ce, — e,+ i with c > 0. Then applying 

Lemma l a ) we have 

\\e~ief2 + ce, ~ eI+1\\ g l i m ^ œ \\ce, - g I+1 + e'19ek\\ 

S \/c2 + 2 (Definition of the norm in 7 ) . 

On the other hand, we have 

\\e-iex{) + cej - et+i\\ ^ |(e-%<, + ce, — el+1, e?)\ = \a,\ + c. 

T h u s \a,\ + c S \/cl + 2 for all c > 0 which implies tha t a, = 0. 

lc) J2W &as a unique isometric préditai for all n = 1 , 2 , . . . . 

Let x0 = ] Q L i Pkftk + 2 T = I a A / a n < ^ assume 

||/2n+2 + 3c|| ^ ||*o + *| | for all x in Pn. 

i) We claim otj — 0 for all j = 1 , 2 , . . . . 
As in l b ) , we set a, = eie\a,\ and x = ce, — el+ï with c > 0. Lemma lc ) 

implies t ha t 

||ér™/2n+2 + ^< ~ ei+i\\ = sup,+i<Al</t2 \\ce, - el+1 + e~ie((-l)n+2ekl 

+ (- l)w + 1é?*2) | | Û Vc2 + 5 (Definition of the norm i n / ) . 

On the other hand, we have 

\\e-iex0 + cei - el+i\\ ^ \a,\ + c. 

T h u s \a,\ + c ^ \/c2 + o for all c > 0 which implies t ha t a, = 0. 
ii) We claim /^ = 0 for all & = 1, 2, . . . , w. 
Suppose 0i = /32 = • • • = Pi-i = 0 for 1 g / g ». Set 

Then by Lemma l a ) 

| | / 2 „ + 2 + .r|| = S l i m , _ | | ( - l ) » + % , | | = 1. 

On the other hand the corollary to Lemma 2 implies t ha t 

||*o+ *|| è 1/3,+ (-l)"-'+1|-

Consequently, we have 

(4) 10,+ (-l)"-'+1 | S 1. 

If / = 1, set x = ( —l)"+1cei with c > 0. Then by Lemma l c ) , we have 

!l/2„+2+ ( - l y + ' c ^ H ^ s u p 1 < , 1 < t 2 | | ( - l ) " + I
C e i + ( - l ) " + * e t l 

+ (-l)"+1^tl 
= supi<*,<*2 ||cei - ekl + eki\\ g A/C2 + 2, 
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and we have 

| | E Z - I 0 * / * + ( - î r + ' c c l l 2: KlZï-i /8*/« + (-Dn+lceu ^)\ 
= | 0 ,+ ( - l ) - + , c | . 

Thus we have 

(5) |/8i + ( - l ) " + 1 c | ^ V ^ T 2 for all c > 0. 

If/ > 1, we set a; = (—l)"- 'c^ j=i ( - l ) m / 2 ; _ 2 i with c > 0. Then by Lemma 
lc), we have 

||/2„+2 + x\\ g supA.l<A, | |(-l)»+2e4 , + ( - l r + ' e , , + *|| 

= SUP,1<A, | | ( -1)-«C/2 I_2 + ( - l ) " - ' c E ; U ( - 1 ) ^ / 2 , - 2 ; 

+ (-ir+2e t l + (-l)"+,c*,||. 
Applying Lemma la) , we have 

||/2„+2 + x\\ S sup*1<Jfc2<*, \\(-l)n+2ekl + (~miek2 + (-iy-l+lceks\\ 
= supifcl<A:2<*3 I\ekl - ek2 + cek9\\ ^ \ A 2 + 2. 

On the other hand, 

ll*o + *n = iiEï-ift/2* + (-îr-'c Ei-1 (-Di+1/2«-2y|i 
è |<*o + *,/2,-i>| = 10,+ (-iy-'<;|. 

Note that we used the fact that | | /2 ;_i | | = 1, which was proved in Lemma 2a). 
Thus we have 

(6) |0, + ( - l ) n - ' c | g Vc2 + 2 for all c > 0. 

The inequalities (4), (5) and (6) say that for all / with 1 ^ / ^ w, we have 

\pt + ( - l ) w - / + 1 | g 1 and |0, + (-l)n-lc\ ^ v^ 2 + 2 for all c > 0. 

Therefore if n — I is even, then \(3t — 1| ^ 1 and |/?z + c| ^ AA2 + 2 for all 
c > 0 which implies \fit - 1| ^ 1 and Re /^ ^ 0. Thus we have pt = 0. A 
similar argument shows that when n — 1 is odd, /3j = 0. This completes the 
proof of 1). 

2) To prove that Y has no isometric predual, we show that Y is not norm 1 
complemented in /*. That is, if y{) = ^2%i af* £ Y, then the condition 

(7) ||*i + :yo + ;y|| è | b | | for all y Ç Y 

leads to a contradiction. Assuming (7) and setting y = — 3/0 — 2ew*, we have 

I|pi - 2^*|| è || —3̂o - 2en*\\ for each n. 

If x = ]£~=1 pje. g y, then 

Kx, *i - 201 = ixr 1 0, - A + z»+i ^i 
^ VïïdZr1^-!2 + |AJ* + | & n W 2 ^ V5IWI. 

Thus ||^! — 2e„*|| g V^for each ». On the other hand, we have 

II—3̂ 0 - 2 e / | | ^ Kc, - y 0 - 2e,*)| = \-a„ - 2|. 
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Thus we have V3 è \an + 2| for each n which is a contradiction since an 

approaches 0 as n —> oo. This completes the proof of Theorem 1. 

COROLLARY 2. If n ^ m ^ — 1, /feew Jw is no/ isometrically isomorphic to 
Jm where J~l = F, /fte unique predual of J. Furthermore, J is not isometrically 
isomorphic to the second dual X** of any Banach space X. 

2- (J, III " III)- I n this section, Jn will always stand for the n'th dual of 
(J, 11H11) and we use the same basis as introduced in Section 1 for Jn. 

LEMMA 3. | | | /2 - ex + x||| ^ \\\x\\\ for all x £ / . 

Proof. Without loss of generality, we may assume that the given x (z J has a 
finite expansion, x = ^ i w af^ Then given e > 0, there exists a finite set of 
disjoint Ik, k = 1, 2, . . . , m such that 

( E ? - i l E « » « , l 2 ) , / 2 e IIWII-*. 
Since x has a finite expansion, we may assume /] = {1, 2, . . . , /ij \J {/2, 
h + 1, . . .} with /i < h and 72, . . . , / w are the usual finite intervals. Choose 
(3k, k = 1, 2, . . . , m such that 

£T|/?*I2 = 1 and E? &(£*»«,) = (ZTIE^^I*)1'2 

and define 

y = X ^ f o ( l ^ € Â e*) + /3I(SPI - Z)zi<i<z2 ef). 

Then for any s = JZf 7 ^ G / , wre have 

l<*. y)l = l & ft(E^- 7,0 + /3i(Ei> y J + X% 7,01 

^ ( £ ? K! 2 ) 1 / 2 (LL 2 IE*;,, T,-I2 + I E * / , 7,l2)1/2 

^ i - I INI I -
Thus infill ^ 1. It is clear that (/— ex, y) = 0. Thus we have 

IIWII - e < ( E ? - i I Z ^ , « ; | 2 ) 1 / 2 = (x,y) = (.h -et + x,y) 

^ 1 1 1 / 2 - « . + *lllll|y||| £\\\h-^ + *\\\-

Hence we can conclude that |||#||| â HI/2 — £1 + tf|||. 

Since the annihilator of f2 — ex in / * is clearly the closed linear span 
Z = [<Pu £2*, ^3*, . . .], we have 

COROLLARY 3. (/, |||-|||) has an isometric predual, namely, (Z, | | | - | | | ) . 

THEOREM 2. (J, 111 • 111 ) and (J*, 111 • 111 ) have unique isometric preduals. 

Proof, a) J has a unique isometric predual. 

We have observed in Corollary 3 that Z is a predual of / . We shall showr that 
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[J2 — ei] is the only norm 1 complement of / in J2. Let x0 = Ei° afj £ / , and 
assume 

(8) 111/2 + xlH è |||*o + *||| for all x G / . 

We claim x0 = e\. For n > 1, choose 6 so that aw = eie\an\. Set x = — e\ + ce„ 
— gn+i with c > 0. Then by Lemma la), 

||k"'fl/2 + x\\\ S l im^ œ | | | - e i + cen - ew+i + e - ' ^ | | | . 

However for k > n + 1, 

Ill—si + cew - en+i + e-'^IH ^ y/c2 + 9 and 

|||e-"*o + x||| = | | k - ^ E ? ^ ^ - *i + cen - en+1||| ^ | k | + c|. 

Thus we have \an\ + c ^ \/c2 + 9 for all c > 0 which implies an = 0, and we 
have x0 = a\e\. Thus inequality (8) becomes 

(9) 111/2 + xlH ^ Hlaiei + x||| for all x G / . 

If3/ = 0 ^ + E ï / 3 ^ * w i t h | | H | | ^ l , then 

I/» + A.I = Ken, y)\ * llk.HI llblll ^ l for all n = 1, 2, . . . . 

This implies that |</2, y)| = |/3| = l i m ^ |0 + flj g 1. Since |||/2 | | | £ ||/2|| - 1 
(Lemma 2b)), we have IH/2IH = 1. Thus inequality (9) implies 1 = IH/2HI ^ 
IH î̂ ilH = |«i|. Set x = —ei + e2 — ce, with c > 0. Then by Lemma la) , 

111/2 + *||| ^ lim,.^ HI-ex + e2 - ce, + e t||| g v ^ M 7 ^ , and 
llla^! + x||| = | | | ( a i - l)ex + e2- cez\\\ ^ |«i - 1 - c\. 

Hence (9) implies that \a — 1 — c\ ^ AA2 + 3 for all c > 0, and we have 
Re(ai - 1) ^ 0. Since |«i| ^ 1, we can conclude that a 1 = 1 which completes 
the proof of a). 

b) J* has a unique isometric predual. 

We shall show that [/3] is the only norm 1 complement of J* in J3. Suppose 
yo = foi + E ? Pi*J* e / * and 

(13) |||/3 + y||| ^ llbo + ylll for all y <E J*. 

We claim y0 = 0. If 3/ = cew* where c is any complex number, Lemma lb) 
implies 

HI/3 + ^*| | | ^ lim*_œ | |K* + 1̂11 S V\c\2 + 1. 

On the other hand, 

|||yo + <*n*||| è \(en, yo + cen*)\ = |0 + ft, + c\. 

Thus, from (10) we have \fi + (in + c\ ^ VVl2 + 1 for all complex numbers c 
which implies (3 + 0n = 0 for each n. Thus ft = &n = 0 for all w since /3n —> 0 as 
n —+ co. This completes the proof of the theorem. 
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Our norm |||-||| is a slight variant of the norm introduced in James [6]. We 
present the following proof of his theorem for completeness. 

THEOREM 3. (James) If x = X a ^ A / £ J and Sx = «i/2 + ]Ci° a./+i^ 6 /**, 
then S is an isometry from J onto J**. 

Proof. It is sufficient to show that |||5x||| = |||x||| for any x = ^ ï afj with 
finite expansion. For such an x, set zk = a^ex + a^e2 + . . . + a^n-i + onek for 
fe ̂  n. Then, we have \\\zk\\\ = \\\x\\\ for all k ^ n and by Lemma la) 
w* - lîmk_œzk = S* in J**. Thus |||Sx||| g H m , ^ |||**||| = |||x|||. 

Choose 3/0 = /fyi + 2 3 i ° ^ ^ / € ^* w i t n 11 boll I = 1 such that (zn, y0) = 

infill = ii|x|||. if }<o - ^ 1 + Z r 1 Pie* + 0 » ^ . w e can see that 

(11) (z, y0) = (z, y{)) for all z = £ ~ lfj G J, 

where ,5 = X^ï-1 T/^ + (]C« T J ) ^ - Thus we have 

(Sx, 3)0) = l im^^ (z*, 3̂ 0) = l im^ œ (%-, 3/0) = l im^ œ (zn, y0) 

= (zniyQ) = 11KHI = | | jx | | | , 
which implies |||x||| ^ |||&e||| |||5>0|||. However, since |||z||| g |||z||| for all 
z Ç / , identity (11) implies \\\yo\\\ S \\\yo\\\ = 1, and we have j| |x| | | ^ |||5x|||. 
This completes the proof of theorem. 

Note that Corollary 3 can be shown by using Theorem 3. 

The following is a consequence of Theorems 2 and 3. 

COROLLARY 4. For each positive integer n, the nth isometric predual of 
J — (Jy II HII) is uniquely defined (denoted by J~n). In fact for each integer n 
(positive or negative) Jn is isometrically isomorphic fo J (if n is even) or I* 
(if n is odd). 

Note that R. C. James | 7] proved that / and / * are not even isomorphic. 

3. Remarks. 1. If a Banach space X has a unique isometric predual, then it 
is not necessarily true that X* has a unique isometric predual. Such an example 
is lœ. Since (/œ)* = Z1 © (co)-1 (the /]-direct sum), the /^direct sum of ll and 
(/°°)* is isometrically isomorphic to (/°°)*. Therefore /°° © c0 (the /°°-direct sum) 
is an isometric predual of (/œ)*. J. Lindenstrauss [8] shows that any infinite 
dimensional complemented subspace of Ie0 is isomorphic to lœ. Consequently 
Ie0 © Co is not even isomorphic to /°°. 

2. As wre have noticed in the introduction, a Banach spaceX has an isometric 
predual if and only if X has a w*-closed norm 1 complement in X**. Suppose A 
is such a complement then the annihilator A± of A in X* is an isometric predual 
of X. Thus, in order to prove that X has a unique isometric predual it is 
necessary to show that if B is another w*-closed norm 1 complement of X in 
X**, then A± is isometrically isomorphic to B±. Therefore uniqueness of 
î^*-closed norm 1 complement of X in X** appears to be stronger than unique-
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ness of isometric preduals of X. Every known proof of uniqueness of isometric 
preduals, as well as ours, shows this stronger condition. 

Addendum. In a recent paper, G. Godefroy (Espaces de Banach: Existence et 
unicité de certains préduax, Ann. Inst. Fourier, Grenoble, 28, no. 3 (1978), 
87-105) showed that if the dual X* of a Banach space X does not contain 
isomorphic copy of ll then X is the unique isometric predual of X*. Thus any 
quasireflexive Banach space X (dim X**/X < + oo ) has a unique isometric 
predual or no isometric predual. Our proofs for Jn in this paper are direct and 
use elementary properties of the norm of / . They also suggest a newr notion of 
unique predual which will be expanded upon in a subsequent paper. 
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