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ISOMETRIC PREDUALS OF JAMES SPACES
LEON BROWN AND TAKASHI 1TO

A Banach space B is called an zsometric predual, or simply a predual, of a
Banach space X if the dual B* of B is isometrically isomorphic to X. A Banach
space X is said to have a unique (isometric) predual if X has a predual and all
preduals are mutually isometrically isomorphic. In general a Banach space
does not have a unique predual even if it has a predual. A simple example of
this is the space /!, because ¢y and ¢ are isometric preduals of /! but not iso-
metrically isomorphic. A. Grothendieck [3] first noticed that L®-spaces have
unique preduals, and then S. Sakai generalized this to von Neumann algebras
(see p. 30 of [9]). Recently one of the authors [4] has shown that every quotient
space of a von Neumann algebra by a o-weakly closed subspace, as a Banach
space with quotient norm, has a unique predual. Also T. Ando [1] has shown
that the space H™ has a unique predual and P. Wojtasczcyk has also proved
this result independently. Evidently, these are the only known non-reflexive
Banach spaces with unique preduals. See the Addendum.

In this paper we prove uniqueness of preduals of James quasi-reflexive
spaces. In particular, we are interested in James spaces having norms presented
in [5] and [6]. Note that quasi-reflexive spaces have a different character from
L*-spaces and the spaces mentioned previously.

We use the following standard notation. We shall always regard a Banach
space X as a subspace of its second dual X** in the canonical way. A subspace
means a closed linear subspace. For a subset 4 of a Banach space X, 4+
denotes the annihilator of 4 in the dual X*. If 4 is a subset of a dual Banach
space X*, then 4 denotes the set of all elements in X annihilated by 4. For a
subset 4 of a Banach space X, [4] denotes the closed linear span of 4 in X,
and X = 4 ® B means that X is the direct sum of subspaces 4 and B.

The proof of our results is based on the following idea: If X is a Banach
space, then X*** = X1 ® X* where X* is norm 1 complemented in X***
That is, the projection from X*** onto X* associated with this decomposition
has norm 1. Thus a sufficient condition for X* to have a unique predual is that
X+ is the only norm 1 complement of X* in X***_ In order to show this, it is
sufficient to show that if ¢ € X*** and

1)l +«*[[ = [[x*| for all x* € X*
then ¢ € X+,

As an illustration of this method, we present a proof (different from the usual
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proof) that [* has a unique predual. If X = /!, then we have X* = [” and

X = XL @ X* = X1 ® " A straightforward argument, using the repre-
sentation X* = [ = C(8N) and

X** = C(BN)* = M(8N) = M(BN\N) @ M(N) = M(BN\N) ® X

where BN is the Stone Cech compactification of the set N of positive integers,
yields the fact that if x* € ¢, C I and ¢ € XL then

¥ + 2| = Max([[¥l], [lx*]).-

If o € X*** theny = ¢ — xo* wherey € X+tandx* € I = X* Proving that
inequality (1) implies ¢ € X1 is equivalent to showing that

2) ¥+ x*|] = |jxe* + «*|| for all x* € X*

implies x¢* = 0. Assume inequality (2), and let » be a positive integer. If
x* = ce,*, where ¢,* is the usual basis element of ¢y and ¢ is a complex number,
then we have

Y + x*| = Max(l[[, le]) = [lxo* + ce.*|| = [xo*(n) + cl.

Since this holds for every complex number ¢, x¢* (#) must be 0 for each » which
completes the proof.

The James space (J, ||-||) (|5]) is defined to be the space consisting of all
complex sequences x = (x(n)) such that

[|xf| = Sup(zlj‘;l |Zn€1},x(n)[2)1/2 < 4w

where the supremum is taken over all choices of disjoint finite intervals
I, I, ..., I; of positive integers.

We are interested in an equivalent norm on this space, first defined by
James [6]. The following is a slight modification of his norm.

l[| = sup( D51 | Doner; x(n)[2)172

where I ; are either intervals or complements of intervals in the space of positive

integers and the supremum is taken over all choices of disjoint I.,...,I. One
easily sees that for x € J,
| = =l = v2{1]].
1. (J, |[-]])- In this section, J will always stand for (J, [[-||). The space J
has the natural normalized basis {e,} ; forevery x € Jwe havex = Z;‘;l x(n)e,,
where e, = (e,(j)) = (8,,;) forn,j =1,2,.... Let {¢,*} be the biorthogonal

sequence with respect to {e,} and let ¥ be the closed linear span of {e,*}. Since
{e,} is a boundedly complete monotone basis of J, J is isometrically isomorphic
to the dual Y* of ¥ by the canonical mapping (see p. 91 of [2]). We introduce
the linear functionals ¢, on J by ¢, (x) = 22, x(j)forx € Jand #n = 1,2,....
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As proved in (5], {¢,} forms a normalized basis of /* and we have
J* =l ® V.

We define fy € J** as follows: f2(¢1) = 1 and f; annihilates V. Then we have
J*¥* = [f,] ® J. More generally, denote J"(n = 0,1, 2,...) as the »'th dual
of J, then we have

J=J'CcC/rC...CJ»™C..., and
J*=1CnrC...CJmC....
For n = 3, f, € J" is defined as follows: f,(f,—1) = 1 and f, annihilates J*~.

Thus the one dimensional space [f,] is a norm 1 complement of J*=? in J* and
we have

J'=[f)®J2 for =23, ....

Foreven n = 2, {fy, fa—2, - - -, f4, f2, €1, €3, . . .} forms a basis of J* and for odd
n = 3, {fus fu2s -« - J5, [3, 01, &%, 0¥, . . .} forms a basis of J*. The canonical
bilinear functional defined on the product of Uj— J2* and Uj-¢ J2**! will be
denoted by (x, y) for x € Usn-o J?" and y € Us_y J2*HL

The following lemma will be used many times.

LeMMA 1. For eachm = 1,2,.. .,
a)  fao=w* = lime, 2500 (= 1) oy + (= 1) ey in T
D) fansr = @ — lime 20500 (= 1) aag + (= 1) dn T2
Foreachk =1,2,...andn =2,3,...,
c) [[fon + &[] < sUPrcri<rs |[ (= 1) g, + (= 1), + x[|  (x € J2"72),
d) [ foner + || = supreiy<n |[(=1)" o, + (=1, + 3| (v € T,

Proof. For a) and b) simply evaluate both sides of the equation on basis
elements of J#*~! and J?" respectively.
c) Applying a) we have for x € J?*,

[fon 4[| S limpses [ 22520 (= 17 oy 4 (= 1) e, + 2]
= im0 || fonme + 20523 (= D)+ fopa; + (—1)" e, + x|
If x € J*~? we may apply a) again and we have
[[fon + 2| S limy e limg, e, [[(—=1)" ey, + (—1)"er, + x||
= SUPk<ri<i, [[(—1)" e, + (—1)", + x||.

d) is proven in a similar fashion to ¢) and we shall omit the proof.

LEMMA 2. a) ||fonpal| = 1 forn =1,2,3,...,
b) [Ifoll = 1 and ||fall = V2 form = 2,3,....
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Proof. a) From Lemma 1d)

U fonsa]] < SUPki<rs e — @l = 1.

On the other hand from standard duality arguments,

[ fona |78 = infrepen—z || fon + x]].
Applying Lemma 1la), for all x € J2-2

[ fon 4+ 2l S limg o || 22520 (= 1) o0y + (= 1) ey + x|,
Setting x = —»_ 421 (—1)7t!fs, »;, we have

o 4 &l £ limy o, [[(=1)"eif| = 1.

Thus ||f2.41]]7" £ 1 and the proof of a) is complete.
b) We have ||fso||7! = inf,ey ||e1 + ¥||, where V = [e/*, e*, .. .] C J*. For
yevy,

ler o1l 2 Kewer + )l =1 + (e, ) =1 asn— 0.

Thus we have ||fs|~! = inf,ey |[jer + ]| = 1.
Applying Lemma 1c), we have

= /2

||f271“ g SUDk; <k ||ek1 - ekﬁl
From standard duality arguments, we have

ol = infyepen-s || fur + 3.
Applying Lemma 1b), for y ¢ J¥—3

Hf?n—] + y” = ]_i_r__nl\n«)oo || Z’;;(}l _l)Hilf‘Zn‘ijl + (_l)n‘plx‘l =+ y“
Setting v = —3(2_"2 (—=1)"fs, 2,01 + (—1)"¢;) and applying Lemma 1b)
again, we have

Hf?n—l + yH g Limklsm ll%z,;;i —1)j+lf‘lrt~2j—l + (— 1)"90/\71 - }<_ 1)n‘PIH

= “Ll.klaoo liﬂk‘:%m H - %(_])"‘Pl + (_I)H‘PM + 7}‘(—“1)’14|¢1@||

= SUP1<k <ks %H(—% + <Pk1) -+ (@m - <sz)|| = \/5,/2.
The last inequality is true because for x € J,

[(x, —e1 + o0 + o0 — o) = | — Zlfl_lx(j) +E'ﬁ_1 x(7)]

S VI (G 4 2R (DD £ V2]

This completes the proof of the Lemma.

As a consequence of Lemma 2a), we have || fs, + x|| =2 1forallx € J**?and
n = 1,2,... which implies the following:

COROLLARY 1.

H ZZ=1 kazk + Zof):l Ole’;H = SUpPg, Hﬁkl, la]-H.
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TaEOREM 1. 1) (J, ||']|) has « unique isometric predual for alln = 0,1,2, . ...
2) Y, the unique predual of J, does not have any isometric predual.

Proof. 1a). J*~' has a unique isometric predual for alln = 1,2, .. ..
To show this it suffices to show that [ fs,41] is the unique norm 1 complement

of J#*=1 in J?*+!. In this case, this is equivalent to showing that if y, € J"~!
and

3) N1 + 3l = [lyvo + 3] forall y € S

then y, = 0. Let y, = Z’;“ Brfors1 + Ber + 27 ase* and assume inequality
(3). Given ¢, a complex number and /, a positive integer, set y = ce,*. Then by
Lemma 1d), we have

”f‘zn+1 + Cel*”

= sup << |lee® 4+ (= 1) ey, + (—=1)"ew|
S VP41
(use Schwartz’s inequality as in the end of the proof of Lemma 2b)).
On the other hand
[lyo + ce*|| Z [{er, yo + ce*)| = B+ a; + ¢

Thus |8+ a4+ ¢| = +/]¢|* + 1 for all complex numbers ¢ which implies
B+ a;, =0 for all / and we have 8 = a; = 0 for all /. Suppose 8, = 0 for
1=k <!l=mn—1.Applying Lemma 1d) two times, we have for each com-
plex number ¢

”f2n+1 + Cf2l+1“ = SUPk; <k» “(“I)HIQDM + (—l)nﬂ’v‘k: + Cf21+1||

= SUPky <ka<ka<ki ||(‘1)"H¢k1 + (=1 + c((—=1) ey,

+ (=Dl
< Ve + 1.
On the other hand, since [f2;41] is a norm 1 complement of J?/~' in J2/*! for all
7=1,2,..., we have

Hyo + Cf21+1|f = ||Zz;llﬂkf2k+l + Cf21+1|| = H(Bl + C)f21+1||
= [B:+ c||[fermi]] = [B:+ ¢|] (Lemma 2a)).

Thus |8, 4+ ¢| = +/|¢|* + 1for all complex numbers ¢ which implies that 8, = 0.
This completes the proof that y, = 0.

1b) J has « unique isometric predual.

In the beginning of this section, we noticed that J has an isometric predual ¥V
(this fact can be proven directly by showing that ||fs + || = ||x|| forallx € J
in a manner similar to the proof of Lemma 3 in Section 2). Let xo = Y 7 aye;
and assume

[lf: + x|| = ||xo + x|| forallx € J.
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Given /, then o, = ¢"|a;| and we set x = ce; — ¢, with ¢ > 0. Then applying
Lemma 1a) we have

lle= fs + ce; — €]

I\

limy ., [[ee; — erpr + e ]|

< Vet 4+ 2 (Definition of the norm in J).
On the other hand, we have
llemxy + cey — el Z [(em"x + ce; — e, e*)| = || + ¢

Thus |a)| 4+ ¢ < Ve + 2 for all ¢ > 0 which implies that a, = 0.
1c) J* has « unique isometric predual for all m = 1,2,....
Let xg = 2 ko1 Befor + 21 aje; and assume
[|fonse -+ x|| 2 [[xo + x|| for all x in J?".

i) Weclaima; =0forallj=1,2,....
As in 1b), we set a; = ¢¥|a,| and x = ce; — e;41 with ¢ > 0. Lemma 1c)
implies that

e onie + ce; — el = supipicri<n llcer — e + e ((—1)" 2y,
+ (—1)"*e,) || = Ve + 5 (Definition of the norm inJ).
On the other hand, we have
lle=%xy + cey — eyl = oy + ¢

Thus |a)] + ¢ £ /¢ + 5 for all ¢ > 0 which implies that «; = 0.
ii) We claim 8, = O forallk =1,2,...,n.
Suppose 8; = B = ... =8,_1 =0for1 =/ = n. Set

o= =2 (1) oy,
Then by Lemma 1a)
[ fonge + x|| < limy, [[(=1)" 2| = 1.
On the other hand the corollary to Lemma 2 implies that
o + xf[ Z |80+ (=1)"="1].
Consequently, we have
@) B+ (=D = L
Ifl =1,setx = (—1)"t'ce; with ¢ > 0. Then by Lemma 1c), we have

||f2n+2 + (- 1)"“66’1” =< SUP1<k; <ks ||<— 1)**lce; + (‘— 1)"+2ey,

+ (__l)rH—lekzl‘i
= SUPj1<ki<k2 |[CE1 — €x, + €| £ Vi + 2,
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and we have

||ZZ=1 ka?k + (_ 1)"“661“ = {<ZZ=1 ka‘lk -+ (_ 1)"+1C€1, <P1>I
= |81+ (= 1) cl.
Thus we have
(5) 1B+ (=) £ VT F+ 2 forallc > 0.
Ifl > 1,wesetx = (—1)"~'c > 12} (—=1)7!fy,_»; with ¢ > 0. Then by Lemma
1c), we have
Hf2n+3 + x” = SUPy; <k» H(__l)n—nckl + (_l)n'Hgk‘z + OCH
= SUPk; <k H("l)ﬂ_lcle—z + (—1)”"6253 (=1) sy sy
+ (=1)" 2, 4+ (= 1)" eyl
Applying Lemma 1la), we have

[ fonre + &[] £ sUPr cracrs | (1) 2, + (=1)"F ey, + (—1)""Fleey|

= SUDk1 <k2<k3 ’|€1\‘l — &+ (76/;3” = ¢+ 2

On the other hand,

o + xf| = sz"ﬂﬁkf‘“‘ + (=D ZJ’;} (= 1) o]
= [{xo + x, forn)] =18+ (—1)"c].

Note that we used the fact that || fy;—1|| = 1, which was proved in Lemma 2a).
Thus we have

6) 18,4+ (—=1)"c] £ e+ 2 forallc > 0.
The inequalities (4), (5) and (6) say that for all / with 1 = [ < n, we have
B+ (—1)=%1 £1 and (8, + (—1)""'c| £ V/c* + 2forallc > 0.

Therefore if n — [ is even, then |8, — 1| = 1 and |8, + ¢| = V¢ + 2 for all
¢ > 0 which implies |8, — 1| £ 1 and Re 8, £ 0. Thus we have 8, = 0. A
similar argument shows that when #» — / is odd, 8; = 0. This completes the
proof of 1).

2) To prove that Y has no isometric predual, we show that Y is not norm 1
complemented in J*. That is, if yo = Y %, ase;* ¢ ¥, then the condition
@) Mlev+vo + 3l 2 [yl forally e ¥V

leads to a contradiction. Assuming (7) and setting y = —y, — 2¢,*, we have

[ler — 2¢,*|| = ||—y0 — 2¢,*|| for each n.

If x = EO]LI Bie; € J, then
|<xv Y1 — 20n*>‘ = 'Zl_l Bj - 6n + ZZ’;I BJI
S VB B A 1B+ [0 8500172 < VB[]l

Thus ||¢1 — 2¢,*|| £ +/3 for each n. On the other hand, we have

[l=y0 — 2e,*|| = |{en, =0 — 2¢,%)| = |—a, — 2|.
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Thus we have /3 2 |a, + 2| for each n which is a contradiction since a,
approaches 0 as n — oo. This completes the proof of Theorem 1.

COROLLARY 2. If n # m Z —1, then J" is not isometrically isomorphic to

J™ where J71 =V, the unique predual of J. Furthermore, J is not isometrically
isomorphic to the second dual X** of any Banach space X.

2. (J, [lI-llh. In this section, J* will always stand for the n’th dual of
(J, III]l1) and we use the same basis as introduced in Section 1 for J".

LemMA 3. ||[fe — e1 + ||| = |||x]|] for all x € J.

Proof. Without loss of generality, we may assume that the given x € J hasa
finite expansion, ¥ = Y 1" a,e;. Then given ¢ > 0, there exists a finite set of

disjoint I,k =1,2 ..., msuch that

(200 | Zser a2 2 |llxl]] — e
Since x has a finite expansion, we may assume [; = {1, 2, ..., I} \U {l,
ls +1,...} with [} <y and I,, ..., I, are the usual finite intervals. Choose
B, B =1,2,...,msuch that

Zrln |ﬁk|2 =1 and 271" Bk(Z]‘eik aj) = (Z? |Zj€fk 0‘]‘|2)1/2
and define

y =2 Bk(Zink e;*) + Biler — El1<7’<12 e*).
Then for any z = Z‘f’ vie; € J, we have

[ = 1200 Be (D sein vs) + 61(2’11 vi+ 2% )l
T B2 (Dt | D eie vl 4 [ seis 74|22
L[]l

A TIA

Thus |||y]|| £ 1. Itisclear that (f — e;, ¥} = 0. Thus we have

Hxll] = e < (o0t [ 2o sene ) = (0, 9) = (fo — er + 2, 9)
S life — eo + &l Il = [If2 — e + ]I
Hence we can conclude that |||x]|| < |||f: — e1 + x]||.

Since the annihilator of fo — e; in J* is clearly the closed linear span
Z = [¢1, &%, e5*, .. .], we have

CoroLLARY 3. (J, |||'|I]) has an 1sometric predual, namely, (Z, |||-|I]).
THEOREM 2. (J, ||||||) and (J*, ||||||) have unique isometric preduals.

Proof. a) J has a unique tsometric predual.

We have observed in Corollary 3 that Z is a predual of J. We shall show that
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[f2 — e1] is the only norm 1 complement of J in J2. Letxy = »_ 7 aje; € J, and
assume

&) Mfe+ x|l = |llxo + x||| forallx e J.

We claim xy = e;. For n > 1, choose 6 so that a, = e¥|a,|. Set x = —e; + ce,
— e,41 with ¢ > 0. Then by Lemma 1la),
lle=*fs 4+ x| = limp,o [[[—e1 + cen — ewir + eV

However for 2 > n + 1,
l|—e1 + cen — €1 + e Y| < V2 +9 and
Ile=xo + x|[| = [[le= 227 ase; — ex + cen — ||l Z [l + ¢f.

Thus we have |a,| + ¢ £ V¢ 4+ 9 for all ¢ > 0 which implies @, = 0, and we

have x¢ = aje;. Thus inequality (8) becomes
9)  llfe + x[ll 2 [lleses + [l| for all x € J.
Ify = B 4 27 Bye* with [[[y[|| = 1, then
18+ 8. = [(ew 2l = lleall[ Iyl = 1 foralln =1,2,....

This implies that [(fs, ¥)| = [8] = lim,., [8 4 8. = 1.Since|||fs[|| = [If2l| = 1
(Lemma 2b)), we have |||f||| = 1. Thus inequality (9) implies 1 = |||f2||]| =
Hleweilll = |ea|. Setx = —e; + es — ce3 with ¢ > 0. Then by Lemma 1a),
f2 4+ *[l] < limg,o, [[|—e1 + ez — ces + el|| = v/ + 3, and
[[larer + x[l| = [|[(e1 — D)er + €2 — cesfl| Z lar — 1 — .

Hence (9) implies that @ — 1 — ¢| £ +/c® + 3 for all ¢ > 0, and we have
Re(a; — 1) = 0. Since |a;] = 1, we can conclude that a; = 1 which completes
the proof of a).

b) J* has « unique isometric predual.

We shall show that [f;] is the only norm 1 complement of J* in J?. Suppose
Yo = Beo1 + ZT Bje* € J* and

(13) lIfs + 3l = [llyo + yll| forall y € J*.

We claim y, = 0. If y = ce,* where ¢ is any complex number, Lemma 1b)
implies

[[lfs + cex*|l]
On the other hand,
|“y0 + Cen*m = ‘(em Yo + Cen*>l = IB + 6. + C[-

Thus, from (10) we have |8 + 8, + ¢| = V/|¢|?> + 1 for all complex numbers ¢
which implies 8 4+ 8, = 0 for each n. Thus 8 = 8, = 0 for all # since 8, — 0 as
n — 0. This completes the proof of the theorem:

limge,q, [[lee* + o[l = Ve|* + 1.

IIA
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Our norm |||-||| is a slight variant of the norm introduced in James [6]. We
present the following proof of his theorem for completeness.

THEOREM 3. (]ames) Ijx = ZT ae; € Jand Sx = alfg + chn Q1€ c ]**,
then S 1s an isometry from J onto J**.

Proof. 1t is sufficient to show that [||Sx||| = |||x||| for any x = D_} ae; with
finite expansion. For such an x, set 2, = a»e; + azes + . .. + a1 + are; for
k = n. Then, we have |[||z]|| = |||x||| for all # = % and by Lemma 1la)
w* — limy 2 = Sy in J**. Thus [[|Sx|]| < limy., |[lz/[] = [[|x][].

Choose vy = Be1 + 2.7 Bje,* € J* with [|[yol|| = 1 such that (z,, yo) =
Hzalll = [l If $0 = Ber + 247" Bje* + Buga, we can see that
(11) (2, d0) = (F,30) forallz =3 ¥ ve, € J,
where 3 = ) " ye; + (>_2 v,)e,. Thus we have

<Sx7 §/0> = linlkaoo <Zky }’A0> = lin]k—m') <€kv y(’> = lirnk—mo <Z71' y0>
G yo) = =l = [/l

which implies |||x[|| < [[ISx]|| |||$olll. However, since [||Z||| = |||5]|| for all
z € J, identity (11) implies |||o][| < |[lyoll| = 1, and we have [||x][| < |[Sx]]].
This completes the proof of theorem.

Note that Corollary 3 can be shown by using Theorem 3.
The following is a consequence of Theorems 2 and 3.

COROLLARY 4. For each positive integer n, the wn'th isometric predual of
J = (I, |I'lll) 1is uniquely defined (denoted by J="). In fact for each integer n
(positive or megalive) J" is isomelrically isomorphic fo J (if n is cven) or J*

(if n is odd).

Note that R. C. James | 7] proved that J and J* are not even isomorphic.

3. Remarks. 1. If a Banach space X has a unique isometric predual, then it
is not necessarily true that X* has a unique isometric predual. Such an example
is [°. Since (I”)* = ' @ (co)+ (the /'-direct sum), the /'-direct sum of /! and
(I")* is isometrically isomorphic to ({*)*. Therefore [* @ ¢, (the ["-direct sum)
is an isometric predual of ([”)*. J. Lindenstrauss [8] shows that any infinite
dimensional complemented subspace of [” is isomorphic to [”. Consequently
[” @ ¢y is not even isomorphic to [”.

2. As we have noticed in the introduction, a Banach space X has an isometric
predual if and only if X has a w*-closed norm 1 complement in X**. Suppose 4
is such a complement then the annihilator 4, of 4 in X* is an isometric predual
of X. Thus, in order to prove that X has a unique isometric predual it is
necessary to show that if B is another w*-closed norm 1 complement of X in
X** then A, is isometrically isomorphic to Bj. Therefore uniqueness of
w*-closed norm 1 complement of X in X** appears to be stronger than unique-
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ness of isometric preduals of X. Every known proof of uniqueness of isometric
preduals, as well as ours, shows this stronger condition.

Addendum. In a recent paper, GG. Godefroy (Iispaces de Banach: IZxistence et
unicité de certains préduax, Ann. Inst. Fourier, Grenoble, 28, no. 3 (1978),
87-105) showed that if the dual X* of a Banach space X does not contain
isomorphic copy of ! then X is the unique isometric predual of X*. Thus any
quasireflexive Banach space X (dim X**/X < 4 o) has a unique isometric
predual or no isometric predual. Our proofs for J” in this paper are direct and
use elementary properties of the norm of J. They also suggest a new notion of
unique predual which will be expanded upon in a subsequent paper.
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