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Yang–Mills theories

4.1 The Yang–Mills field

The successful and simple theory which unifies the weak and electromagnetic
interactions is based on the group SU(2) × U(1). We develop the theory in several
steps. First we describe, in this chapter, the main features of a gauge theory. Then we
will describe a theory containing only electrons and the corresponding neutrinos.
Finally, the theory is extended to incorporate hadrons.

The structure of a Yang–Mills theory is almost completely determined by the re-
quirement that the internal symmetry transformations of the fields can be carried out
independently at different space-time points. In other words, the theory is invariant
under local transformations. Let � be a multiplet of n Dirac fields. The multiplets
belong to representations of the group SU(N ). We define a transformation of the
fermion fields by

� −→ � ′ = U�,
(4.1)

�̄ −→ �̄ ′ = �̄U †,

with U a unitary matrix. We represent U by

U = eiα j λ j /2, (4.2)

with j = 1, 2, . . ., N 2 − 1, where λ j are the generators of the group with λ j = λ
†
j

and the α j are real. The generators are familiar in simple cases. When the fermions
belong to the fundamental representation of SU(2), the λ j are the Pauli matrices;
for SU(3) they are the Gell-Mann matrices. We distinguish two cases:

(i) when all α j are constant, we call it a global transformation;
(ii) when the α j = α j (x) are functions of xµ, we call it a local or gauge transformation.
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34 Yang–Mills theories

The free Dirac Lagrangian

L = i�̄(x)γµ∂µ�(x) = i�̄(x)/∂�(x) (4.3)

is invariant under global transformations.
If we allow α j to be a function of x, then (4.3) is no longer invariant. In fact, the

Lagrangian transforms into

L −→ L′ = �̄iγµ

[
∂µ + i

2
α

µ

j (x)λ j

]
�, (4.4)

with α
µ

j (x) = ∂α j (x)/∂xµ. Following Yang and Mills, we introduce a set of vector
fields Bµ

i (x) and couple them to the currents as follows:

L = �̄iγµ

[
∂µ + � j Bµ

j

]
� + LB, (4.5)

where � j is a set of matrices still to be determined and LB is a function of the
Bµ

j terms only. Each vector field is characterized by a Lorentz index µ and an
internal symmetry index j. We now demand that L remains invariant under the
transformations (4.2) with α j a function of x ; this will require that Bµ

j transforms

in such a way as to cancel out the additional term in (4.4). Let B̂µ

j be the transformed
vector field. Then, for L to remain invariant,

U+ ∂

∂xµ

U + U+�iU Bµ

i = �i B̂µ

i (4.6)

must hold (see Problem 1). Since the λ j terms form a complete set of N × N
traceless matrices, we can attempt to write

�k = i

2
eλk ; (4.7)

the imaginary i is there because the λk terms and the B terms are Hermitian.
Considering infinitesimal transformations,

U � 1 + i

2
α jλ j , (4.8)

with [
1

2
λi ,

1

2
λ j

]
= i fi jk

1

2
λk,

(4.9)
Tr[λiλ j ] = 2δi j ,
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4.1 The Yang–Mills field 35

and fi jk are the structure constants of the group. For the infinitesimal transformation
we can solve for B̂µ

j in (4.6). A convenient method is to rewrite (4.6) as

eλi B̂µ

i = U+eλiUBµ

i + λi
∂αi

∂xµ

(4.10)

and then expand the unitary matrices to first order in αi and use the relation in (4.9)
to obtain

B̂µ

k = Bµ

k + fi jkαi Bµ

j + 1

e

∂αk

∂xµ
. (4.11)

It is convenient to introduce a covariant derivative,

Dµ = ∂µ + i

2
eλ j Bµ

j , (4.12)

and rewrite the fermion part in (4.5) as

LF = i�̄ D/ � = i�̄γµ

(
∂µ + i

2
eλ j Bµ

j

)
�. (4.13)

Covariant derivatives are useful in generating gauge-invariant Lagrangians. A
Lagrangian invariant under global transformations becomes locally gauge-invariant
when all ordinary derivatives are replaced by covariant derivatives. In quantum elec-
trodynamics this replacement is the well-known minimal-substitution law.

Next we must construct LB. It must be Lorentz-invariant and invariant under
B → B̂. It must also contain the kinetic term of the Bµ fields. In analogy to the
procedure of obtaining gauge-invariant field strengths in electrodynamics, we define

Fµν

i = ∂ν Bµ

i − ∂µ Bν
i + e fi jk Bµ

j Bν
k . (4.14)

If we introduce the vector notation

�Bµ = (
Bµ

1 , Bµ

2 , . . ., Bµ

k

)
, (4.15)

where k = N 2 − 1 and

( �A × �B)i = fi jk A j Bk, (4.16)

we can write (4.11) and (4.14) as

�Fµν = ∂ν �Bµ − ∂µ �Bν + e �Bµ × �Bν. (4.17)

The last term in (4.17) does not occur in electrodynamics and is introduced to
assure that �Fµν transforms as a vector under gauge transformations. A reason for
introducing a generalized �Fµν is given in Problem 1; in the same problem we
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36 Yang–Mills theories

discuss the gauge invariance of LB. We can now build a scalar Lagrange function
for the �Bµ fields,

LB = −1

4
�Fµν �Fµν = −1

4
Fµν

i Fi,µν. (4.18)

A theory with LB alone is called a pure Yang–Mills theory.
For Lagrangians invariant under symmetries, we can also define currents of the

original Lagrangian, which are given by

Jµ
α (x) = ∂L

∂(∂µ�)

λα

2
� = i�̄(x)γ µ λα

2
�(x). (4.19)

The invariance of the theory implies that the currents are conserved. We note that
these are the same currents as those we introduced in Chapter 3.

To sum up, we constructed a theory that is invariant under gauge transformations.
The complete Lagrangian is

L = LF + LB.

We found that the invariance requirements are fulfilled by introducing vector fields
coupled to conserved currents.

Such a theory is a candidate for particle physics. It describes the interaction of
massless fermions with massless gauge bosons. It possesses a symmetry that can
be SU(2), SU(3), or a larger unitary group. The case of SU(3) is, in fact, realized in
Nature as the theory of strong interactions. There the vector bosons are the gluons
coupled to quarks and the symmetry is the SU(3)-color. The color symmetry remains
unbroken. The electroweak theory is more complicated because it contains masses
for the quarks and the gauge bosons. It is a broken symmetry, to be developed in
Chapters 5–7.

4.2 Gauge invariance in scalar electrodynamics

The electrodynamic field is described by the four-vector

Aµ(x) = (
	(x), �A(x)

)
, (4.20)

whose components are the standard scalar and vector potentials. The electric and
magnetic fields are now determined by

�E = −�∇ A0 − ∂ �A
∂t

, �B = �∇ × �A. (4.21)
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4.2 Gauge invariance in scalar electrodynamics 37

However, to one set of fields ( �E, �B) there correspond many potentials Aµ. The
primed potentials obtained by the gauge transformation

A′
µ(x) = Aµ(x) + ∂�(x)

∂xµ
, (4.22)

with �(x) an arbitrary scalar function, give the same �E and �B. If someone solves
a problem with Aµ(x) and somebody else does it with A′

µ(x), both should get the
same physical result. In general, only those quantities which are invariant under
gauge transformations have physical meaning. Gauge invariance has far-reaching
implications for the theories, as we discuss in the following chapters, and clever
choices of gauge lead to substantial simplifications of problems.

Here we use gauge invariance to discuss the degrees of freedom for the electro-
magnetic field. For the pure electromagnetic case

L = −1

4
Fµν Fµν, (4.23)

with

Fµν = ∂µ Aν − ∂ν Aµ. (4.24)

The equation of motion

∂µFµν = 0, (4.25)

when written in terms of Aµ, becomes

∂µ∂µ Aν − ∂ν∂
µ Aµ = 0. (4.26)

It is well known that the �E and the �B fields satisfy a wave equation, but Aµ does
not. In order to recover a wave equation from (4.26), we impose the condition

∂µ Aµ = 0 (Lorentz gauge). (4.27)

We used the gauge freedom to obtain this result, but still we did not exhaust all
possible gauge transformations, because any gauge function χ (x) that satisfies

∂µ∂µχ (x) = 0 (4.28)

is still consistent with (4.27). We take advantage of this freedom in order to show
that a photon has only two degrees of freedom.

A free photon is represented by a plane wave

Aµ(x) = εµe−ikx , (4.29)

https://doi.org/10.1017/9781009402378.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402378.005


38 Yang–Mills theories

where εµ is called the polarization vector. By substituting (4.29) into (4.26), we
find k2 = 0, or m = 0, and from (4.27) we find

kµεµ = 0 (Lorentz gauge). (4.30)

We choose a coordinate system with the z-axis along �k and decompose εµ into
longitudinal and transverse parts:

Aµ(x) = (
ε‖
µ + ε⊥

µ

)
e−ikx . (4.31)

From (4.30) we conclude that ε‖
µ is proportional to kµ. Instead of the electromagnetic

field Aµ(x), we can choose another one given through a gauge transformation with

χ (x) = ice−ikx , c = constant. (4.32)

The new field is

A′
µ(x) = (

ε‖
µ + ε⊥

µ

)
e−ikx + ckµe−ikx . (4.33)

By an appropriate choice of the constant c, we can eliminate kµ, i.e. we can gauge
away the longitudinal degrees of freedom. Therefore a free photon has only two
degrees of freedom.

The argument fails for a massive Aµ(x) field. The addition of a mass term
1
2 µ2 Aµ Aµ to Eq. (4.23) breaks the gauge invariance of the theory. In this case the
equation of motion

∂µFµν + µ2 Aν = 0 (4.34)

implies

µ2∂ν Aν = 0. (4.35)

For µ2 �= 0, Aµ satisfies the Lorentz condition, which again eliminates one degree
of freedom. But now we cannot repeat the steps between Eqs. (4.28) and (4.33).
Therefore a massive field has three degrees of freedom.

Next we study the interaction of a photon with a charged scalar field: scalar
electrodynamics. The Lagrangian is

L = −1

4
Fµν Fµν + (Dµφ)∗(Dµφ) − V (φ∗φ). (4.36)

Here Dµ = (∂µ + ieAµ) is the covariant derivative, in agreement with the rule of
replacing ordinary derivatives with covariant ones. We represent the field as

φ(x) = 1√
2

(φ1(x) + iφ2(x)) (4.37)

https://doi.org/10.1017/9781009402378.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402378.005


Problems for Chapter 4 39

and introduce the potential

V (φ∗φ) = −µ2φ∗φ + λ(φ∗φ)2. (4.38)

This Lagrangian is invariant under the local transformation

Aµ(x) −→ Aµ(x) + ∂µω(x),

φ(x) −→ e−iω(x)φ(x), (4.39)

φ∗(x) −→ eiω(x)φ∗(x),

where ω(x) is an arbitrary real function. The photon is again massless and
carries two independent degrees of freedom. This follows from the same argu-
ments as in the free-photon case. First we can go to the Lorentz gauge, which
again simplifies the equations of motion both for Aµ(x) and for the scalar field
φ(x). Then, since the photon is again massless, we can introduce a new gauge
transformation satisfying (4.28) and eliminate the longitudinal degrees of freedom.
In gauge theories, masses for the gauge bosons are introduced, not through the
ad-hoc procedure of the previous paragraph, but through spontaneous breaking of
the symmetry. We study this topic in Chapter 6 and return to scalar electrodynamics
in Section 5.3.

Problems for Chapter 4

1. Consider the fermion Lagrangian in Eq. (4.13).
(i) Show that invariance under the local transformation (4.2) requires that the covariant

derivative satisfies

D′
µ = U †DµU.

(ii) Show that this result, together with the definition of Dµ, implies the transformation
property for Bµ given in (4.6).

(iii) Show that the Hermitian quantity Fµν = −i[Dµ, Dν] is the field tensor whose
transformation under local transformations is

Fi ′
µν = U †Fi

µνU.

It is now easy to build an invariant term given by

LYM = 1

4
Tr

(
Fi

µν Fµν

i

)
.

2. Show that, under local transformations, the field-strength tensor Fi
µν transforms as a

vector on the index i . The result holds including terms linear in εi (x), i.e.

�F ′
µν = �Fµν − �ε × �Fµν + O(ε2).
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40 Yang–Mills theories

You may need the Jacobi identity

f ABm fmCα + fBCm fm Aα + fC Am fm Bα = 0,

which follows from[
λA

2
,

λB

2

]
= i f ABm

λm

2
and Tr(λAλB) = 2δAB .
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