
J. Fluid Mech. (2019), vol. 878, pp. 522–543. c© The Author(s) 2019
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is unaltered and is properly cited. The written permission of Cambridge University Press
must be obtained for commercial re-use or in order to create a derivative work.
doi:10.1017/jfm.2019.636

522

Stewartson-layer instability in a wide-gap
spherical Couette experiment:
Rossby number dependence

Michael Hoff1 and Uwe Harlander1,†
1Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology (BTU)

Cottbus – Senftenberg, D-03046 Cottbus, Germany

(Received 28 November 2018; revised 30 July 2019; accepted 31 July 2019;
first published online 17 September 2019)

Instabilities of a viscous fluid between two fast but differentially rotating concentric
spheres, the so-called spherical Couette flow, with a fixed radius ratio of η= ri/ro =

1/3 are studied, where ri is the inner and ro the outer radius of the spherical shell.
Of particular interest is the difference between cases where the Rossby number Ro=
(Ωi −Ωo)/Ωo > 0 and cases with Ro< 0, where Ωi and Ωo are the inner- and outer-
sphere angular velocities. The basic state in both situations is an axisymmetric shear
flow with a Stewartson layer situated on the tangent cylinder. The tangent cylinder is
given by a cylinder that touches the equator of the inner sphere with an axis parallel to
the axis of rotation. The experimental results presented fully confirm earlier numerical
results obtained by Hollerbach (J. Fluid Mech., vol. 492, 2003, pp. 289–302) showing
that for Ro> 0 a progression to higher azimuthal wavenumbers m can be seen as the
rotation rate Ω0 increases, but Ro< 0 gives m= 1 over a large range of rotation rates.
It is further found that in the former case the modes have spiral structures radiating
away from Stewartson layer towards the outer shell whereas for Ro < 0 the modes
are trapped in the vicinity of the Stewartson layer. Further, the mean flow excited
by inertial mode self-interaction and its correlation with the mode’s amplitudes are
investigated. The scaling of the critical Ro with Ekman number E= ν/(Ωo d2), where
ν is the kinematic viscosity and d the gap width, is well within the bounds that have
been established in a number of experimental studies using cylindrical geometries and
numerical studies using spherical cavities. However, the present work is the first that
experimentally examines Stewartson-layer instabilities as a function of the sign of Ro
for the true spherical-shell geometry.

Key words: rotating flows

1. Introduction
Many planetary bodies in our solar system consist of a solid inner and a liquid

outer core, surrounded by a solid shell. Planets, like the Earth, Mercury, Jupiter and
Saturn, as well as the Earth’s moon and the Galilean moons of Jupiter consist of
such a spherical-shell geometry (see e.g. Spohn 2007). One particular property of

† Email address for correspondence: uwe.harlander@b-tu.de
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planetary cores is that they show differential rotation. Hence the inner core and outer
shell rotate constantly but at different speeds. The Earth’s inner core, for instance,
rotates slightly faster than the Earth mantle (0.2◦–0.5◦ per year) and hence shows
a slight super-rotation. This happens due to a strong gravitational coupling between
mantle and inner core where small fluctuations of the mantle momentum have a strong
impact on the inner core’s rotation (Aldridge & Lumb 1987; Rieutord 1995). Recent
review articles about fluid motions in spheres, spherical gaps and spheroids are Le
Bars, Cébron & Le Gal (2015) and Le Bars (2016) and a recent book is Zhang &
Liao (2017).

Consider a fluid-filled rapidly rotating spherical gap where the inner sphere rotates
at Ωi and the outer at Ωo, with Ωi 6= Ωo and the Rossby number |Ro| = |(Ωi −

Ωo)/Ωo| � 1. Proudman (1956) found that a vertical cylinder, aligned tangentially
at the inner sphere’s equator (r = ri), named the tangent cylinder (T C), divides the
flow into two areas with different characteristics. Outside the T C, the fluid rotates
nearly in solid-body rotation with the outer shell Ωo. Inside the T C, the fluid rotates
almost rigidly at Ω= (Ωi+Ωo)/2 and the fluid’s angular velocity does not vary much
except of course close to the T C, i.e. for our experiment with a fixed radius ratio
η= ri/ro = 1/3 at r= ri.

Around the T C, a vertical detached shear layer, called the Stewartson layer, arises
(after Stewartson 1966), to compensate the angular-velocity differences. Stewartson
(1966) was the first to determine that the layer’s general structure can be split into
three different layers. The outer-layer thickness is E1/4 for r > ri and E2/7 for r < ri
and the inner-layer thickness is E1/3, where E = ν/(Ωo d2) is the Ekman number, ν
the kinematic viscosity of the fluid and d the gap width. An Ekman boundary layer
with thickness proportional to E1/2 arises around the inner sphere. At the equator, the
Ekman layer becomes vertical. In this region, its scaling breaks down and is replaced
by E2/5 with a singularity at the equator. The width of this region scales with
E1/5 (see Marcotte, Dormy & Soward (2016) for a recent review on the equatorial
Ekman layer). This process is called equatorial degeneracy (Stewartson 1966). In
real systems with finite viscosity, the singularity at the equator will be transferred
to a vertical Stewartson shear layer with frequency ω̂ = 0, where ω̂ = ω/Ωo is the
scaled non-dimensional frequency. In a sense, Stewartson-layer formation is similar
to the excitation of inertial-wave shear layers at critical points at the inner or outer
boundary of the spherical shell (see e.g. Kerswell 1995). For the stationary case with
ω̂ = 0, this process might also be seen as a consequence of the Taylor–Proudman
theorem (Greenspan 1968).

Since the width of the inner Stewartson layer scales with E1/3, the radial gradients
of the velocity become strong for small Ekman numbers or for large differential
rotation. This shear can eventually destabilise the flow due to a classical shear
instability (Busse 1968a; Schaeffer & Cardin 2005a; Le Bars et al. 2015). Usually,
the instability is a type of Kelvin–Helmholtz instability. That means, once a critical
shear is reached, e.g. when the differential rotation exceeds a certain threshold,
the Stewartson layer becomes unstable. Such shear flow instabilities are of general
geophysical interest.

Laboratory experiments on Stewartson-layer instabilities have previously been
performed in cylindrical cavities by Hide & Titman (1967), who used a differentially
rotating disk at half-height of the tank, and Früh & Read (1999), who used
differentially rotating disks in the top and bottom lids to excite Stewartson layers.
In case of super-rotation, where the disks are rotating faster than the cylinder, both
experiments exhibit an increasing azimuthal wavenumber m of the unstable modes
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with decreasing Ekman number. Früh & Read (1999) found the same for subrotation.
In contrast, Hide & Titman (1967) reported a ‘mysterious’ m= 1 mode that is nearly
independent of E.

Hollerbach (2003) presented numerical simulations on the Stewartson-layer
instability for a spherical rather than cylindrical geometry. Based on a rapidly rotating
spherical gap with imposed small differential rotation on the inner sphere, Hollerbach
(2003) systematically analysed the wavenumber of the instabilities depending on the
sign of Ro. He found a strong asymmetry between the cases for Ro< 0 and Ro> 0
and suggested that the discontinuity in potential vorticity at r = ri is responsible for
the differences between positive and negative Ro.

Based on the findings by Hollerbach (2003), Schaeffer & Cardin (2005a,b)
developed a quasi-geostrophic (QG) model to analyse so-called Rossby-wave
instabilities of the Stewartson layer. They introduced a β parameter, which depends
on the change of fluid depth measured in the direction of the radius r. For the
spherical-shell geometry, β is not a continuous function of r but is positive for r< ri
and negative for r > ri. Hence β has a singularity at r = ri. Such singularities were
found to have a profound impact on the flow (Hide & Titman 1967; Hollerbach
2003; Schaeffer & Cardin 2005a; Aguiar & Read 2006). Due to the opposite signs
of β in- and outside of the tangent cylinder, Schaeffer and Cardin suggested that
the instabilities travel in opposite directions inside and outside the tangent cylinder.
For Ro> 0 the instabilities trigger prograde propagating modes localised outside the
tangent cylinder in regions where |β| is small. In contrast, inside the tangent cylinder
the instability seems to have a different origin and trapped modes form according to
the numerical findings by Hollerbach (2003). In order to get a deeper insight into the
effects of the jump in fluid depth discussed by the previous authors, Aguiar & Read
(2006) modified the experimental set-up by Früh & Read (1999) including an inner
part of the upper disk that could be lowered or raised relative to the outer part in
an overall flat cylindrical container (see their figure 1). In general they could confirm
the strong asymmetry between the flows for positive and negative Ro and they found
a spiral structure similar to the one reported earlier by Schaeffer & Cardin (2005a).

Most recently, Wicht (2014) numerically explored several forms of instabilities
and flow regimes in a differentially rotating spherical gap depending on the rotation
rate Ω , the magnitude of differential rotation, as well as the sign of Ro. In the
fast-rotation regime, where Coriolis forces become strong, the Stewartson layer
was the main source of instabilities. In accordance with the numerical results by
Hollerbach (2003) and the experimental finding that will be reported here, Wicht
(2014) found strong differences in the azimuthal wavenumber between positive and
negative Ro. As already pointed out by Hollerbach (2003), for Ro< 0, the modes are
characterised by nearly z-invariant columnar patterns with a balance between pressure
gradient force and Coriolis force resulting in a slow drift. They were labelled Rossby
modes.

Over the last decade a number of studies on inertial-wave generation in spherical
Couette experiments have been published and we emphasise here the results deduced
from the large experiments at the University of Maryland. Kelley et al. (2007) and
Kelley et al. (2010) focused on the selection of particular inertial modes and the
role of critical layers in this selection process. Spectrograms have been shown and,
although somewhat blurred, asymmetries between positive and negative Ro have been
detected but were not further studied. Rieutord et al. (2012) show more details of the
inertial wave spectra but only for negative Ro. However, in these papers the main
issues we focus on in the present study have not been discussed. One is the dominance
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of fast inertial modes over slow geostrophic Rossby modes and why the latter occur
only for negative Ro. Also still unclear is why axially antisymmetric modes dominate
although the driving and the instabilities are symmetric with respect to the equator. To
shed more light on these observations is the goal of the present study.

Koch et al. (2013) and Hoff, Harlander & Egbers (2016a) studied inertial-wave
excitation under libration and hence for oscillating Ro. Typical features for Ro > 0
(spirals) and Ro < 0 (waves trapped at the Stewartson layer) could be observed,
however, in that case the modes have a strong transient character. An experimental
study closer to the present one was performed by Hoff, Harlander & Triana (2016b)
but focused on the stability of inertial modes. This experiment revealed that for a
critical Ro a strong amplification of the most dominant inertial mode occurs, leading
to a transition into small-scale disorder and secondary instabilities. Later, these
findings were verified numerically (Barik et al. 2018). However, the study was done
only for negative Ro and the asymmetry of the mode excitation for positive and
negative Ro was not discussed.

The goal of the present paper is therefore to experimentally verify the numerical
results by Hollerbach (2003) and Wicht (2014) on the strong asymmetry between the
flow for the two cases with Ro > 0 and Ro < 0. Although a number of theoretical
explanations for the differences exist and experiments have been done in a cylindrical
geometry, an experimental proof for the strong dependency of the mode excitation on
the sign of Ro for a spherical-shell geometry has been lacking until today. It should
be noted that this asymmetry strongly depends on the radius ratio of the shell, which
is 1/3 in our case. Hollerbach (2003) showed that the asymmetry cannot be found
for a full sphere and a shell with radius ratio 4/5. It seems that the asymmetry is
pronounced if there is a large jump in fluid depth across the tangent cylinder. In our
experiment, for technical reasons, we do not vary the radius ratio but keep the value
1/3 fix. The justification is that for this ratio we can expect to find a strong asymmetry
which is ultimately the goal of the experimental study.

The paper is organised as follows. In § 2 we briefly describe the experimental set-up
and parameters. In § 2 we discuss the mean structure of the Stewartson layer and the
route to instability for larger magnitudes of Ro, the scaling of critical Ro with the
Ekman number, the spatial patterns as a function of the sign of Ro and the interaction
of the inertial modes with the mean flow. Finally, in § 4, concluding remarks are given.

2. Experimental set-up and data processing
2.1. Experimental set-up

The experimental apparatus (figure 1) consists of two independently rotating
concentric spheres with inner radius ri = (40 ± 0.05) mm, outer radius
ro = (120 ± 0.05) mm and a corresponding gap width of d = (80 ± 0.1) mm.
From this follows a radius ratio of η = 1/3 that is similar to that of the Earth’s
inner and outer cores ηcore = 0.35 (Spohn 2007). The inner sphere is made of black
anodised aluminium suspended on a shaft of 14 mm diameter while the outer sphere
is made of acrylic glass with full optical access except at the equator where the two
hemispheres are connected. We used a silicone oil with viscosity νkin= 0.65 mm2 s−1

(±10 % tolerance) as working fluid in the gap. To avoid optical distortions and
keep the surrounding temperature uniform, the shell is immersed into a cubic tank
(60 cm × 60 cm × 60 cm) of de-ionised water (refraction indices: noil = 1.375 and
nwater = 1.337 for 532 nm). Since the refraction indices of water and oil are similar,
the curvature of the outer shell will not affect the path of the light and visualisations
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FIGURE 1. (Colour online) (a) Experimental apparatus. (b) Sketch of the spherical gap
including the PIV measuring set-up. The outer sphere is rotating counter-clockwise with
constant speed (as seen from top) around a vertical axis. The inner-sphere rotation is
variable. The tangent cylinder is marked by the T C. The general flow direction in the
laboratory frame of reference is marked by the thick curved arrow. The laser light sheet is
fixed in the laboratory frame of reference while the camera (GoPro Hero 4+) is rotating
at Ωo. The height of the laser plane is h = 4 cm above the equator for all horizontal
measurements.

are hence not much affected by optical distortions. Ideally, the surrounding medium
should be identical to the working fluid, however, water is a factor of 100 cheaper
than the silicone oil used. A refraction-index difference of ∼3 % provides almost
distortion-free optical measurements of the flow in the spherical gap. The outer- and
inner-sphere rotation is denoted by Ωo and Ωi, respectively. By using U= (Ωi−Ωo) d
as velocity scale, the gap width d as length scale and Ω =Ωo as the scale for the
angular velocity, a characteristic Rossby number of Ro = U/(Ωd) = (Ωi − Ωo)/Ωo
can be defined. The Ekman number E = νkin/(Ωod2) measures the ratio of viscosity
and Coriolis forces. With our apparatus, the lower limit for E is 1.52 × 10−5. For
the rest of the paper, the following additional notations are used: r is the cylindrical
radius aligned horizontally, φ the azimuthal angle and ω (ω̂) is the (scaled) frequency
of the inertial modes.

For visualisation in the meridional plane, the flow was seeded by Kalliroscope
tracer particles and illuminated using a vertical laser light sheet. Kalliroscope tracers
are plates of glimmer flakes (≈60 %) coated with titanium dioxide (≈40 %) and
have a typical size range of 4–32 µm. This enables a high reflectivity for laser
based measurement techniques. Because of their plate-like shape, they are aligned
in the shear flow, showing bright and dark regions of reflection to the observer’s
view. A camera recorded these reflections in the laboratory frame perpendicular to
the meridional laser sheet. In contrast, the flow in the horizontal plane has been
studied quantitatively with particle image velocimetry (PIV). Spherical hollow glass
spheres have been used as tracer particles. A GoPro Hero 4 camera, enabling wireless
high-resolution recordings, observed the motion in the frame at rest with the outer
shell. With the present set-up, the flow in approximately 40 % of a two-dimensional
(2-D) annular domain between the spheres can be observed.

Before the computation of velocity fields in physical units can be done, a reference
frame that defines the coordinate system is needed. Since we are measuring in a closed
system, that cannot easily be disassembled and assembled, we compromised setting
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FIGURE 2. (Colour online) Parameter space of the experimental parameters for the
Stewartson-layer instabilities; outer- and inner-sphere rotation as a function of Ω (a) and
the Rossby number as a function of the inner-sphere rotation (b). The experimental ramps
started in solid-body rotation (Ro= 0).

up the reference frame for MatPIV: we defined a coordinate system with six dots and
known distance and simulated the actual measurements by dipping the camera into
clear water (with a similar refraction index to silicon oil) looking perpendicularly onto
the coordinate system from the same distance as in the experiments. These coordinates
have then been transferred into the respective image projection matrix required for
PIV measurements. Here, we use a 2-D horizontal plane and a perpendicular aligned
camera to avoid in-plane camera distortions.

Note that we did not observe the flow in the meridional and horizontal planes
simultaneously but did the measurements consecutively.

2.2. Data and data processing
We recorded particular ramps changing the inner sphere’s rotation while keeping
the outer-sphere rotation rates at Ωo,set ≈ (30, 40, 50, 60) r.p.m. Each ramp started
in solid-body rotation (Ro = 0), where we let the apparatus run for approximately
15 min to avoid transient spin-up recirculation. Then, we increased (decreased) the
inner sphere’s rotation rate with increments of 1Ωi = ±1 r.p.m. until a Rossby
number of approximately Ro ≈ ±0.5 is reached. The covered parameter space in
Ω and Ro is depicted in figure 2. Note that the measured actual values of the
outer-sphere rotation rates and the setpoints in the LabView software are connected
via Ωo,actual = 1.0623Ωo,set, as obtained from the calibration of the outer-sphere
rotation rate. In figure 2 we use the actual values. For convenience, we write Ωo
for Ωo,set, however, whenever we perform the calculation with the rotation rate, we
use Ωo,actual.

At each particular step, we waited 5 min to ensure an equilibrium state. Note that
the spin-up time from rest (∼E−1/2Ω−1

o ) is of the order of 1–2 min. In the horizontal
plane we recorded the flow, seeded with PIV tracers, for 5 min at h = 4 cm above
the equator. Due to a fast discharging of the camera batteries, we were not able
to record the full ramps for Ωo ≈ (50, 60) r.p.m. without interruptions. That is, the
motors needed to be stopped and the batteries of the camera recharged. After that, the
ramp was started again in solid-body rotation (Ro= 0), followed by slowly increasing
(decreasing) Ro until the point where the measurement was interrupted. Note that we
also recorded the flow development in the meridional plane using Kalliroscope tracers
to qualitatively obtain a 3-D impression of the shear flow.
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The movies of the horizontal plane have been converted into grey scale images
and analysed by using the Matlab toolbox MatPIV v.1.6.1 (Sveen 2004). For the
present purpose, a spatial resolution of 1920 × 1080 pixels was sufficient to obtain
reliable velocity fields. For Ωo ≈ (30, 40, 50) r.p.m. a frame rate of 24 fps and for
Ωo≈ 60 r.p.m. a frame rate of 30 fps have been used. We applied three interrogation
steps from 128× 128 to 64× 64 to a final window size of 32× 32 with an overlap
of 0.5. A signal-to-noise filter, a peak height filter and a global filter that removes
vectors significantly larger or smaller than the majority of the vectors, have further
been applied (see Sveen & Cowen 2004, for further details). A Fourier analysis was
applied to the velocity components (u, v) to detect the dominant frequencies f of the
flow. For these frequencies, the corresponding flow patterns have been reconstructed
by a harmonic analysis, i.e. at each grid point the measured time series u(tn),
v(tn) (n= 1, 2, . . . , N, N being the length of the measurements) has been written as
u(tn) ≈ ū + A cos(2πftn) + B sin(2πftn), where the coefficients A and B (and hence
the amplitude and phase of the signal) are determined by the least-square method.
The harmonic analysis is a robust signal-demodulation technique in which the user
specifies wave frequencies to be analysed to find the unknown amplitudes and phases
of the waves. Having the amplitude and phase at each grid point, the velocity field
containing just the desired frequency can be reconstructed (for more details and
formulas, see e.g. Emery & Thomson 2001, chap. 5.5).

3. Results
3.1. The structure of the Stewartson layer

Before discussing the Stewartson-layer instabilities, we will first examine the structure
of the Stewartson layer itself. Figure 3 shows Kalliroscope visualisations in the
meridional plane for Ωo ≈ 40 r.p.m. (E = ν/(Ωod2) = 2.28 × 10−5). All images
represent a time average over 30 s and are located in the stable regime, without
Stewartson-layer instabilities. From left to right, |Ro| increases. Panels (a–d) show
the flow for Ro< 0 and panels (e–h) for Ro> 0. It can be seen that the Stewartson
layer, i.e. the vertical ‘line’ tangential to the inner sphere’s equator, appears already
close to solid-body rotation and becomes more prominent with increasing |Ro|. In
case of Ro < 0, the Stewartson layer is mainly separated into three parts; a dark
region in the centre surrounded by a bright region of reflection on either side. This
seems to confirm previous studies done by Proudman (1956), Stewartson (1966) and
Hollerbach (2003). However, it is not trivial to identify the width of nested layers
from these visualisations since we could not find any objective criterion to identify
the edges of the respective region. In contrast to Ro < 0, the Ro > 0 case looks
different. In the image at the left-most position, the Stewartson-layer excitation starts
close to the equatorial region in a form reminiscent of a ‘candle flame’. As Ro
increases, this pattern spreads along the vertical axis of the T C. For moderate Ro
(image at right-most position), the structure of the Stewartson layer looks much more
complex than for Ro < 0. Note that we observed very similar patterns also for the
other rotation rates.

The azimuthally and time-averaged radial profiles of the azimuthal velocity, vφ ,
inside and around the Stewartson layer, and the corresponding relative vorticity
field in the horizontal plane (4 cm above the equator) are shown in figure 4.
Panels (a,b) correspond to a negative Rossby number of Ro≈−0.1 and panels (c,d)
to a positive Rossby number of Ro ≈ 0.09. Note that the measurements have
been done in proximity to the inner sphere’s boundary so that the velocity
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(e) (f) (g) (h)

(a) (b) (c) (d)

FIGURE 3. Kalliroscope visualisations in the meridional plane for Ωo = 40 r.p.m.
Panels (a–d) from left to right: Ro = −(0.027, 0.051, 0.074, 0.098). Panels (e–h) from
left to right: Ro= (0.020, 0.044, 0.067, 0.091). The images show a 30 s time average.

profiles (especially for r/ro < 1/3) might differ from theoretically expected profiles
(e.g. Proudman 1956; Hollerbach 2003; Schaeffer & Cardin 2005a). At approximately
r = 4 cm, a well-developed azimuthally symmetric Stewartson layer occurs around
the T C. The velocity outside the T C is almost zero (i.e. in solid-body rotation
with the outer shell). Following Proudman (1956), we expect an angular velocity of
(Ωi −Ωo)/2≈ 0.157 rad s−1 inside the T C for the Rossby numbers in figure 4. For
example in figure 4(a,c) at r = 3 cm, which is inside the T C, we find a velocity of
vφ ≈ 4 mm s−1. This corresponds to an angular velocity of 0.133 rad s−1, showing
a deviation of approximately 15 % from the theoretical value. However, in view of
an error of approximately 10 %, the mismatch between the theoretical and measured
Stewartson-layer velocity profiles lies within the error range. For estimating the error
we did a simple solid-body rotation experiment and measured the velocity profile by
PIV. There we found deviations from the theoretical profile of the order of 10 %. This
error is due to the used set-up, i.e. remaining optical distortions and reflections but
also the usual PIV pixel errors. Note that Proudman’s approximation of the velocity
profile is only valid for |Ro| � 1, which is not strictly true for the examples shown.

Regarding the relative vorticity profiles, we see a sign reversal for Ro < 0 and
Ro> 0, respectively, which is due to the different flow directions. The sign of vorticity
is opposite inside and outside the T C, while the root seems to be situated directly on
the T C. This is the case for all analysed data sets as long as Ro is small. Figure 4
should be compared with figure 3 by Hollerbach (2003). It should be noted that the
plane considered by Hollerbach (2003) is at the half-distance between the pole of
the inner and the outer spheres whereas in our case it touches the pole of the inner
sphere and is hence partly within the Ekman layer. This might explain why we see a
somewhat more gentle slope in the radial velocity profile when crossing the tangent
cylinder.

Next we address the question of the dependency of the Stewartson-layer structure on
the Ekman and Rossby numbers. Figure 5 shows azimuthally averaged radial profiles
of the azimuthal time mean flow, vφ , for different Ekman and Rossby numbers. In (a)
Ro ≈ ±0.1 and in (b) Ro ≈ ±0.29. Positive values mean prograde motion (mainly
for Ro > 0) and negative values mean retrograde motion (mainly for Ro < 0). The
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FIGURE 4. (Colour online) (a,b) Azimuthally and time-averaged radial profile of the
azimuthal velocity, vφ , in mm s−1 (a) for Ωo = 30 r.p.m. and Ro ≈ −0.1 and the
corresponding relative vorticity field (b). (c,d) The same as (a,b) but for Ro ≈ 0.09.
For (a,c), negative velocity represents retrograde and positive velocity prograde motion.
The height of the horizontal plane is at h= 4 cm above the equator. x and y are the 2-D
Cartesian coordinates of the original field of view, while r=

√
x2 + y2 (see figure 1b).
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FIGURE 5. Azimuthally averaged radial profiles of the azimuthal mean flow, vφ , for
different Ekman numbers for Ro ≈ ±0.1 (a) and Ro ≈ ±0.29 (b). Positive values mean
prograde motion (mainly for Ro> 0) and negative values mean retrograde motion (mainly
for Ro< 0). The height of the horizontal plane is at h= 4 cm above the equator.

velocity is shown unscaled for the following reasons: starting with the case |Ro| ≈
0.1 (a) one can clearly see an increasing velocity magnitude with decreasing Ekman
number. Using Ωoro as the velocity scale and divide by Ro to exclude the Rossby
number dependency, we found a general tendency that the scaled velocity amplitude
around the T C becomes independent of E (not shown). However, more data need to
be analysed to find a definite scaling law. In the case of |Ro| ≈ 0.29 (b) the decrease
of velocity outside the T C is smoothed. Thus, a smaller amount of fluid in the bulk
(r> ri) is indeed rotating rigidly. Moreover, no uniform increase of the velocity with
decreasing E can be noticed. The reason is the appearance of waves, i.e. for |Ro| ≈
0.29 the flow is no longer stable.
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FIGURE 6. (Colour online) Azimuthal mean flow, vφ , as a function of the Rossby number
for Ωo= 30 r.p.m., E= 3.04× 10−5 (a) and for Ωo= 60 r.p.m., E= 1.52× 10−5 (b). The
colours show the velocity magnitude in mm s−1, blue means retrograde and red means
prograde motion. The height of the horizontal plane is at h = 4 cm above the equator.
The symbols mark the critical layers of the respective most dominant wave mode.

This observation is supported by figure 6. It shows a contour plot of the azimuthal
mean flow, vφ , as a function of the Rossby number for Ωo ≈ 30 r.p.m., E = 3.04×
10−5 (a) and for Ωo≈ 60 r.p.m., E= 1.52× 10−5 (b). First, by comparing the flow for
negative and positive Rossby numbers, it is conspicuous that the retrograde flow for
the former is smoother than the prograde flow for the latter, i.e. higher fluctuations
can be found in the prograde flow. Additionally, the spatial extent of the region with
strong flow is larger for positive Ro. Second, by comparing panels (a) and (b), the
fluctuations become more prominent for increasing Ekman numbers. We will see in
the next section that this is due to an increase of wave activity and turbulence. Further,
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FIGURE 7. (Colour online) Azimuthal velocity spectrogram taken from a ramp where
each inner-sphere rotation was kept constant for 10 min (including 5 min spin-up time).
(a) Ωo ≈ 30 r.p.m. and E = 3.04 × 10−5. (b) Ωo ≈ 60 r.p.m. and E = 1.52 × 10−5. The
height of the horizontal plane is at h= 4 cm above the equator. At each grid point in a
radial cross-section, a Fourier transform of the azimuthal velocity, vφ , has been computed,
where the velocities are averaged over 5 neighbouring grid points. Each column of the
spectrogram shows the average over all obtained single-sided amplitude spectra |X(ω̂)|/n,
where n is the length of the time series. The white bar marks the solid-body rotation
where no data are available. The arrows point to the frequencies of the modes with
the azimuthal wavenumbers, m, where m has been estimated by extending the respective
filtered single modes from the segment we observe onto the full 2π azimuth (see e.g.
figure 9a).

we will see that there is much more wave activity for positive Ro than for negative Ro.
We will also see later that most of the fluctuations in the prograde flow are closely
related to wave–mean flow interactions. That is, fluctuations can be enhanced when
the wave extracts energy from or restores energy to the mean flow.

3.2. Route to Stewartson-layer instability for increasing |Ro|
After describing the spatial structure of the Stewartson layer in the spherical-gap
experiment, the goal of the present section is to better understand the onset
of Stewartson-layer instabilities. For this, we discuss amplitude spectra of two
experimental ramps shown in figure 2. Figure 7 shows spectrograms of the azimuthal
velocity, vφ , for Ωo ≈ 30 r.p.m. and E = 3.04 × 10−5 (a) and Ωo ≈ 60 r.p.m. and
E = 1.52 × 10−5 (b). The ramps were separately sampled by starting at solid-body
rotation (Ro= 0), followed by a stepwise increase/decrease of Ωi (see figure 2). The
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data have been taken in the frame at rest with the outer shell. The spectrograms show
the single-sided amplitude spectra as a function of the dimensionless inertial-wave
frequency ω̂ = ω/Ωo in the range 0 6 ω̂ 6 1 versus the Rossby number, Ro. For
each value of Ro, a radius-averaged amplitude spectrum of a five minute time
series of the azimuthal velocity, vφ , was computed, where the velocity has been
smoothed by averaging over an interval of −0.6 cm 6 x 6 +0.6 cm (approximately
10 grid points). On the left-hand side of the white vertical bar the Rossby number
is negative (sub-rotation) and on the right-hand side the Rossby number is positive
(super-rotation).

Obviously, there are strong differences between positive and negative Ro. In general,
the background fluctuations for Ro < 0 are lower than that for Ro > 0. Further, for
Ro> 0 a much larger number of prominent peaks emerge with increasing Ro, while
for Ro< 0 just one dominant peak around ω̂= 0.08 can be observed. Therefore, the
turbulence level for Ro > 0 is much higher than for Ro < 0 implying that a faster
rotating inner sphere destabilises the flow more than a slower rotating inner sphere
(Wei & Hollerbach 2008). Further, by comparing figures 7 (a) and 7 (b), the amount
of small-scale fluctuation increases significantly with decreasing Ekman number.

In case of Ro < 0, the first instability of the Stewartson layer appears around
Ro = −0.25 (Ro = −0.18) at a frequency ω̂ = 0.08 (ω̂ = 0.07) for Ωo = 30 r.p.m.
(Ωo= 60 r.p.m.). The peak amplitude of this first instability increases with decreasing
Ro, while its frequency is nearly independent of Ro. For smaller Ro, a number of
higher harmonics (k ω̂, with k = 2, 3, 4, . . .) can be observed, for which the signal
amplitude decreases with increasing k. This feature is more significant in the case of
Ωo = 60 r.p.m. (figure 7b). As we will see later, the azimuthal wavenumber of
the unstable mode with frequency ω̂ = 0.08 (ω̂ = 0.07) is always m = 1. It is
axially homogeneous, is nearly geostrophic and follows the Taylor–Proudman
theorem (Greenspan 1968). We found that this mode is fundamental in a sub- or
counter-rotating spherical gap, since it persists over a wide range of Rossby numbers,
−2.5 < Ro < −0.2 (Hoff et al. 2016b). It interacts with other inertial modes of the
system, leading to triadic resonances as was discussed by Hoff et al. (2016b) and
Barik et al. (2018). In § 4 we will come back to this mode and will comment on its
‘mysterious’ nature (cf. Hide & Titman 1967; Hollerbach 2003).

In case of Ro> 0, the first (very weak) instability of the Stewartson layer appears
around Ro=0.123 (Ro=0.074) at frequency ω̂=0.127 (ω̂=0.102) for Ωo=30 r.p.m.
(Ωo = 60 r.p.m.). That is, instability sets in for much smaller |Ro| than for Ro < 0.
In contrast to Ro < 0, the peak amplitude and the frequency of the first instability
increases with increasing Ro. At Ro= 0.18 for Ωo = 30 r.p.m., the initial instability
vanishes and is replaced by a second mode of instability with a frequency of ω̂= 0.13.
This second unstable mode also increases in amplitude and frequency with increasing
Ro and is replaced again by a third mode of instability at Ro= 0.34 with a frequency
of ω̂ = 0.12. This consecutive formation of peak branches could be observed for
all measured data in the super-rotational case. For smaller E (see figure 7b), the
transitions between the instabilities become somewhat ambiguous, first, since different
prominent peaks are overlapping in the Rossby number space and, second, due to
the stronger fluctuations. However, it still seems to be true that one mode has to lose
dominance before the next one will appear. We will examine later that this feature
corresponds to a replacement of smaller-scale waves by larger-scale waves and is in
fact connected with changes in the mean flow.

Note that a bifurcation of frequencies seems to take place at Ro≈ 0.35 and always
within the m = 3 instability, nearly independent of the Ekman number. For both
branches the corresponding mode patterns exhibit azimuthal wavenumber m = 3 but
show differences in the radial structure.
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Source Geometry Scaling for Rounst E range η

Ro< 0 Ro> 0

Hide & Titman (1967) Cyl. + disks at H/2
(exp.)

E0.57 10−5–5× 10−4 0.13–0.4

Früh & Read (1999) Cyl. + disks at 0,H
(exp.)

E0.72 2× 10−5–10−3 1/2

Busse (1968a) Cyl. (asympt. theory) E0.75 — O(1/3)
Hollerbach (2003) Spherical gap (num.) E0.45 E0.65 2× 10−5–10−3.5 1/3
Schaeffer & Cardin
(2005a)

Sphere + polar caps
(num./exp.)

βE0.5 10−10–10−5 0.35

Wicht (2014) Spherical gap (num.) E0.45 E0.65 10−5–10−4 1/3
Present experiment Spherical gap (exp.) E0.55 E0.7 (3− 1.5)× 10−5 1/3

TABLE 1. Scaling laws of the first Stewartson-layer instability for the different signs of
Ro as found in the literature survey. The lower-most row corresponds to the scaling laws
that we found in the present experiments. Also given is the range of E used to determine
the scaling law as well as the aspect ratio η = ri/ro used. Note that in most studies the
latter was fixed and the β dependence was studied by Schaeffer & Cardin (2005a) only.
Note that the Rossby number sign dependence of the scaling depends on the geometry
(Hollerbach 2003).

3.3. Scaling law for the Stewartson-layer instability
Scaling laws are useful to validate numerical models, to reduce the number of
variables or to compare easily between laboratory and numerical experiments,
analytical solutions and the real world.

Concerning the onset of Stewartson-layer instabilities, several laboratory and
numerical experiments have been performed in the past decades. Hide & Titman
(1967) excited Stewartson layers in a rotating cylinder with a differentially rotating
disk at mid-depth. They determined the critical Rounst as a function of E and
found Rounst ∝ E0.6, interestingly independent of the sign of Ro, even if they
observed differences in the azimuthal wavenumbers. Früh & Read (1999) performed
experiments with the same set-up but with disks integrated in the top and bottom
lids. They obtained a Rounst ∝ E0.72, again, independent of the sign of Ro. Busse’s
linear stability analysis (Busse 1968b) predicted a scaling of Rounst ∝ E0.75. For the
spherical gap, Hollerbach (2003) numerically obtained Rounst ∝ E0.45 for Ro < 0 and
Rounst ∝ E0.65 for Ro > 0. With the QG model for a full sphere, Schaeffer & Cardin
(2005a) found that the β effect of the increasing/decreasing fluid depth plays an
important role in the onset of Stewartson-layer instabilities. They found Rounst ∝ βE0.5.
Most recently, Wicht (2014) performed three-dimensional numerical simulations in a
spherical gap and found a scaling that is consistent with that of Hollerbach (2003).
All scaling laws are summarised in table 1.

Figure 8 shows the scaling for the present experiments with a wide spherical gap.
The circles mark the critical Rossby numbers, |Rounst|, for negative Ro and the crosses
mark |Rounst| for positive Ro. All Rounst have been extracted from the single amplitude
spectra (figure 7 shows the synopsis of all spectra, where gaps are automatically filled
by the contour plot so that the onset of instability in those figures exhibit a certain
fuzziness not present when a single spectrum is considered). Starting with solid-body
rotation, when the first significant peak is observed, the respective mode has been
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FIGURE 8. (Colour online) Onset of Stewartson-layer instabilities, |Rounst|, as a function
of Ekman number. Ro> 0 is indicated by crosses and Ro< 0 by circles. The black dashed
lines denote a scaling fit. The uncertainty coming from the finite resolution of the Rossby
number (1Ro= 1 r.p.m./Ω0, Ω0 = 30, 40, 50, 60 r.p.m.) is shown by dashed red curves.

reconstructed by harmonic analysis. If we could detect a clear azimuthal wavenumber,
m, for the first time, the respective Rossby number marks the onset of the mode’s
first instability. It can be seen that the onset of instabilities for Ro < 0 is at larger
|Ro| compared with Ro > 0. The dashed lines show a proper possible scaling. For
Ro< 0, we find Rounst ∝ E0.55 and for Ro> 0, Rounst ∝ E0.7. However, note that due to
the finite resolution in Rossby number (1Ro= 1/60 for Ω0= 60 r.p.m., 1Ro= 1/30
for Ωo=30 r.p.m.) we cannot exactly determine the critical values Rounst. Nonetheless,
the linear fit to the observations for negative Rossby numbers is rather perfect, while
there are small deviations for positive Rossby numbers. However, in agreement with
the numerical results by Hollerbach (2003) and Wicht (2014), the scalings are different
for the different signs of Ro and their scaling exponents match fairly well with our
findings (see table 1).

3.4. Patterns of Stewartson-layer instability for Ro< 0 and Ro> 0
After we discussed spectra and scalings of Stewartson-layer instabilities, we will now
focus on their particular spatial characteristics. We distinguish between two classes of
patterns: (i) a low-frequency nearly geostrophic mode that occurs for Ro< 0, i.e. the
fundamental m= 1 instability together with its higher harmonics, and (ii) spiral-shaped
waves that occur for Ro> 0. All these waves are referred to as Rossby modes, having
particular properties in spherical shells.

3.4.1. Columnar patterns for Ro< 0
Two examples of patterns in the sub-rotation case are shown in figure 9. The images

are composites and have been constructed in the following way: first, the velocity
fields have been filtered by applying the harmonic analysis with the specific frequency
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ø̂ = 0.081, m = 1

(a) (b)

ø̂ = 0.162, m = 2

FIGURE 9. (Colour online) Stewartson-layer instability patterns for sub-rotation, Ro =
−0.33, and Ωo ≈ 60 r.p.m., E = 1.52 × 10−5. The height of the horizontal plane is at
h= 4 cm above the equator.

taken from the spectrogram (figure 7b, Ro < 0 part). This gives the spatial pattern
of the mode in the segment of the annulus we observe by PIV. To obtain the mode
over the full 2π azimuth we do an identification of space and time. This means we
construct a space–time diagram and with the knowledge of the period T of the camera
rotation we find the mode structure covering the full 2π azimuth by identifying the
interval on the time axis 0–T by the azimuthal angle 0–2π. Since the mode’s drift
speed is much slower than the rotation of the camera and the mode can be seen as
‘frozen’ during the rotation period, the result of this composition technique is very
satisfactory.

Figure 9(a) shows the velocity field of the fundamental m= 1 mode. The colours
represent the horizontal velocity magnitude. Numerical simulations showed that its
structure is nearly geostrophic (Wicht 2014; Barik et al. 2018), hence, we see a
columnar pattern (hereafter referred to as the ‘m = 1 fundamental Rossby mode’).
The axial homogeneity is a direct consequence of the Taylor–Proudman theorem for
low-frequency inertial modes (Greenspan 1968). The mode periodically accelerate and
decelerate the azimuthal flow over the entire fluid column. Confirming its fundamental
character, Hoff et al. (2016b) and Barik et al. (2018) showed that this mode persists
over a wide Rossby number range and takes part in many nonlinear wave–wave
interactions with other inertial modes. As we can also see in the spectrograms
(figure 7), it interacts nonlinearly with itself, generating higher harmonics with
frequencies m ω̂, with azimuthal wavenumbers m= 2, 3, 4, . . . . The one for m= 2 is
shown figure 9(b).

3.4.2. Spiral-wave patterns for Ro> 0
When the inner sphere rotates faster than the outer shell, i.e. Ro > 0, a second

class of patterns related to Stewartson-layer instabilities, so-called spiral Rossby
waves (cf. Schaeffer & Cardin 2005a,b), could be observed. Compared to negative
Ro, this case shows a richer dynamics. In the spherical gap, spiral waves have been
observed predominantly in classical spherical Taylor–Couette flow, where only the
inner sphere rotates (Egbers & Rath 1995). On the route to turbulence, different spiral
waves could be observed. Egbers & Rath (1995) found for low inner-sphere Reynolds
numbers, 1300 6 Rei = r2

iΩi/ν 6 1800 (E ≈ 10−3), corresponding to a 1Ω from 5
to 7 r.p.m. for our set-up, a high-wavenumber first instability. This first instability
was consecutively replaced by larger-scale instabilities (lower wavenumbers) as Re
increases. A similar behaviour was observed by Hollerbach et al. (2004) but again
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ø̂ = 0.127, m = 5

(a) (b)

ø̂ = 0.130, m = 4

(c)

ø̂ = 0.116, m = 3

FIGURE 10. (Colour online) Stewartson-layer instability patterns for super-rotation, Ro>0,
and Ωo ≈ 30 r.p.m., E= 3.04× 10−5. From (a–c) Ro= 0.12, Ro= 0.19, Ro= 0.31, taken
at the onset of the respective mode. The height of the horizontal plane is at h = 4 cm
above the equator.

for large Ekman numbers. A respective behaviour can also be found for the case
considered here with significantly smaller E.

Figure 10 shows three spiral-shaped waves with wavenumbers m= 5 (a), m= 4 (b),
m= 3 (c) according to the annotations in figure 7. For reconstruction, the frequencies,
ω̂ = (0.127, 0.130, 0.116), at Ro = (0.12, 0.19, 0.31) have been used, values close
to the onset of the respective instability. Each spiral pattern is characterised by well-
pronounced spiral arms, which are strongly stretched along the azimuth (large radial
wavenumber). The global velocity maximum is found to be inside the tangent cylinder.
Another local maximum can be detected close to the outer boundary. Especially for
m= 4 and m= 3, small vortices are embedded between the spiral arms. These vortices
are located outside the T C, which is consistent with findings by Schaeffer & Cardin
(2005a).

As we already noted in § 3.2, the frequency of a certain unstable mode increases
with increasing Ro until the mode is replaced by another one with a smaller m
(figure 7). This scenario was already described by Egbers & Rath (1995) based on
qualitative visualisations. The mode replacement has also been observed by Triana
(2011) and Rieutord et al. (2012) for the case of strong counter-rotating spheres
with Ro < −1 and E = 2.5 × 10−8, a regime we have not studied here and we
actually cannot reach with our experiment. The studies demonstrated that each mode
is replaced by a less-damped mode, which is most unstable at the respective Rossby
number due to the existence of critical layers. Critical layers are those locations in
the spherical gap where the drift speed, ω̂/m, of a particular inertial mode is equal to
the angular velocity somewhere in the Stewartson layer. Such critical layers that exist
for the spiral waves in our experiments are shown by the symbols in figure 6 (6 for
m= 6, × for m= 5, + for m= 4,@ for m= 3). Note that we display only the most
unstable modes with the strongest signal in the spectrograms. Obviously, the critical
layers are located close to the T C, i.e. at r/ro ≈ 1/3, implying some interference
between critical layers and the Stewartson layer.

Nonlinear processes might also explain the bifurcation detected in the spectrograms,
see figure 7, at Ro≈ 0.35. We found that the frequency of the m= 3 spiral wave splits
up into a wave with lower and higher frequency. The former consists of an m = 3
spiral wave as well (not shown), but the spiral arms are much more stretched along
the azimuth (larger radial wavenumber), while the latter remains almost unchanged
compared to the structure before the bifurcation. According to the ideas on inertial

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

63
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.636


538 M. Hoff and U. Harlander

ø̂ = 0.11 ø̂ = 0.13 ø̂ = 0.15 ø̂ = 0.16 ø̂ = 0.18

(a) (b) (c) (d) (e)

FIGURE 11. (Colour online) A series of five reconstructed patterns taken from the
m = 4 branch in figure 7(b) for Ωo = 60 r.p.m., E = 1.52 × 10−5. From (a–e),
Ro= (0.18, 0.22, 0.25, 0.28, 0.31) and |v|max = (2, 2.5, 2.3, 1.7, 1.8) mm s−1. The colours
show the absolute value of velocity magnitude (blue – zero, red – max). The colour bar
is scaled such that red is saturated in relation to the maximum velocity. The height of the
horizontal plane is at h= 4 cm above the equator.

mode excitation by critical layers formulated by Rieutord et al. (2012), the most
unstable mode, obviously corresponding to the higher frequency, dominates the
bifurcated state.

Another worthwhile question addresses the evolution of a particular spiral wave
when the Rossby number increases. With increasing Ro, the modal structure and
frequency of the spiral waves changes due to a change in the background flow.
Figure 11 depicts five reconstructed patterns taken from the m=4 branch in figure 7(b)
for Ωo = 60 r.p.m., E = 1.52 × 10−5. Over the Ro interval of the mode, 0.18 6
Ro 6 0.31, its frequency monotonically increases, ω̂ = (0.11, 0.13, 0.15, 0.16, 0.18).
Regarding the pattern evolution, figure 11 clearly shows that the structure of the
mode changes with increasing Ro. In the range where m = 4 is most unstable, the
radial wavenumber changes gradually. The tilt of the spiral arms becomes smaller and
the velocity maximum concentrates in the inner region around the T C. During this
‘raising’ process, the mode’s amplitude grows by approximately 50 %, especially for
the first half of the branch, where the change in tilt is the strongest. An explanation
for the growth might be that a faster rotating fluid around the T C decreases the shear
of the wave mode between the inner and outer region and causes a decrease of the
azimuthal stretch of the spiral arms. The increasing mean flow further explains the
increasing frequency due to Doppler shift (Hoff et al. 2016b).

3.5. Interactions between mean flow and spiral waves
In the foregoing paragraphs we stated that there are possible interactions between the
spiral-wave modes and the mean flow. This implies either that a mode draws energy
from the mean flow to grow or wave modes nonlinearly drive the mean flow by
momentum transfer. Mean flow suppression takes place for lower Ekman numbers,
as was discussed in the context of figure 6. To highlight a possible correlation
between wave and mean flow, we will focus on the somewhat simpler case with
Ωo = 30 r.p.m., E = 3.04 × 10−5, where a clear gradual mode evolution could be
observed (see figure 7a).

Figure 12 summarises specific elements of figures 6 and 7. It shows the azimuthal
velocity, vφ,m, in mm s−1 (blue axis, left) and the frequency, ω̂m (green axis, right)
of the respective modes, as a function of the positive Rossby number. The thick
black line corresponds to the mean flow at the T C, r/ro = 1/3, and the blue lines
correspond to the respective maximum wave amplitude, extracted from the data
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FIGURE 12. (Colour online) Azimuthal velocity, vφ,m, in mm s−1 (blue axis) and the
frequency, ω̂m (green axis) of the respective detected modes, as a function of the Rossby
number, Ro. The thick black line corresponds to the mean flow at the T C, r/ro= 1/3, and
the blue lines correspond to the respective wave amplitude, extracted with the help of the
harmonic analysis. The dotted vertical lines mark the onsets of the respective instability,
m= 5, m= 4 and m= 3.

with the help of harmonic analysis. The dashed vertical lines mark the onset of the
respective instability, m= 5, m= 4 and m= 3, as was previously discussed. First, we
notice a local maximum in the mean flow whenever a new mode is excited, except
for the first instability, which is very weak. Second, in the m = 3 region we notice
an anti-correlation between the mean flow and the wave amplitudes. This suggests
that the waves draw energy from the mean flow which supports the growth. Third,
the modes seem to reach a certain maximum saturation in amplitude, followed by a
subsequent weakening. Consequently, the mean flow continues growing in the absence
of strong wave activity.

We finally note that the process described above could be observed for all analysed
Ekman numbers. However, when the turbulence level increases, i.e. the flow is
dominated by strong wave activity, the mean flow experiences nonlinear saturation
that seems to be coupled with the fluctuations (compare figure 6(b) with figure 7a).

4. Discussion and conclusion

In the present paper, we discussed Stewartson-layer instabilities in a differentially
rotating spherical shell with a fixed radius ratio of η = 1/3 varying the Rossby
number in the range Ro ∈ [−0.5, 0.5]. In particular we focused on the differences of
the Stewartson-layer instabilities in the super-rotational (Ro > 0) and sub-rotational
(Ro < 0) regime. Although the dependency of the instabilities on the sign of Ro
have been reported in a number of numerical studies, a true understanding of the
differences in sub- and super-rotation instabilities is still missing (Wicht 2014). The
experimental results presented here fully confirm the numerical results obtained
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by Hollerbach (2003) showing that for Ro > 0 a progression to higher azimuthal
wavenumbers m can be seen as the rotation rate Ω0 increases, but Ro < 0 gives
m= 1 over a large range of rotation rates. As numerically predicted by Wicht (2014),
measurements in the meridional plane of the spherical shell showed that the structure
for 0.5>Ro> 0 are more complex than for −0.5<Ro< 0. Moreover, the experiments
confirmed that the prograde Stewartson layer (Ro > 0) became unstable at smaller
|Ro| than the retrograde counterpart.

Two types of instabilities could generally be found, first, more localised (trapped)
waves close to the T C, and second, spiral-shaped waves filling the whole gap. The
former trapped waves always propagate in a retrograde manner, i.e. against the rotation
of the outer shell, and occur only for Ro< 0. The spiral waves always propagate in a
prograde manner and occur only for Ro> 0. The study can be seen as a consecutive
addition to previous work, Hoff et al. (2016a), where we studied Stewartson-layer
instabilities excited by inner-sphere libration and hence for a time-dependent Ro. In
this study we found that libration-induced Stewartson-layer instabilities indeed exhibit
these Ro-dependent features that periodically occur in the libration cycle for Ro< 0
and Ro> 0.

Schaeffer & Cardin (2005a,b) allocated both types of patterns to a Rossby-wave
instability. Therefore, they suggested the conservation of potential vorticity and the
β-effect in a spherical gap as the underlying mechanism for the Stewartson-layer
instabilities. The negative (positive) sign of the β-parameter (Schaeffer & Cardin
2005a; Hoff et al. 2016a) leads to a prograde (retrograde) drift of the instabilities
outside (inside) the tangent cylinder.

Using potential vorticity, Hollerbach (2003) suggested that the discontinuity in
potential vorticity at r = ri could be the reason, first, for the onset of the trapped
waves, and second, for the wavenumber differences between Ro < 0 and Ro > 0. In
case of a spherical gap, perturbations can be amplified while moving away from the
Stewartson layer into shallower regions in- and outside of the tangent cylinder. For
Ro < 0 it could be shown that all perturbations moving away from the Stewartson
layer should be damped and hence must be trapped on the T C. In contrast, for Ro> 0
waves can propagate and might be amplified mainly outside the tangent cylinder since
there β is smaller (Schaeffer & Cardin 2005a). These theoretical findings agree well
with the prograde propagating spiral waves we observed for Ro> 0 and the trapped
waves we found for Ro< 0, propagating in a retrograde manner along the T C.

It should be noted that the m = 1 fundamental mode for sub-rotation (Ro < 0) is
not strictly trapped along the tangent cylinder and its existence is in fact not fully
understood. Several authors (e.g. Hide & Titman 1967; Hollerbach 2003) denoted the
m = 1 mode to be ‘mysterious’ since it is not fitting to any present theory to date.
First, we note that its structure resembles the prograde propagating (l = 5, m = 1)
columnar inertial mode in a full sphere (see e.g. Zhang et al. 2001) excited due to
resonance at low Rossby numbers. However, Wicht (2014) reported that this mode
is excited outside the T C and, hence, cannot be explained with the discontinuity
in potential vorticity. He rather proposed that the background flow might have a
significant influence on the structure and direction of the propagation of the m = 1
mode. Surprisingly, Wicht (2014) found numerically that for E = 10−6 only in a
rather small parameter range, the critical wavenumber of the first instability is indeed
m= 1 (see figure 21 in Wicht (2014)). Barik et al. (2018) pointed out that even for
much larger Ekman numbers it is difficult to clearly identify a m = 1 mode at the
transition since other modes are present as well even though weaker. For E < 10−5

the m = 2 mode seems to slightly precede the instability making the m = 1 mode
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Rossby-wave instability of Stewartson layers in spherical gap

Spirals
(prograde)

Onset Onset

Ro > 0

Ro £ +0.5 Ro £ -0.5

Ro < 0

‘Trapped’
(retrograde)

Differential rotation

E↘/m↗ E↘/E↗ E↘/E↗
‘m = 1’E↗/m↘

ø̂↘/m↘
ø̂↗/m↗

ø̂↘/m↘
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E↘/mmax↗
E↗/mmax↘ mmax £ const.

FIGURE 13. Flow chart illustrating all detected Stewartson-layer instabilities and their
wavenumber dependencies on the Ekman number and frequency. See text for more details.

an important secondary instability. In Hoff et al. (2016b), we have shown that the
m= 1 mode also contributes to numerous wave interactions in sub-rotating spherical
gaps, which emphasises the fundamental character of the corresponding instability.
This was recently numerically confirmed by Barik et al. (2018). However, up to now,
there seems to be no clear idea about the underlying instability for the m= 1 mode.

Regarding the spiral Rossby waves, we detected a mode replacement from smaller
scales to larger scales (large to small azimuthal wavenumber) for increasing Rossby
numbers. A similar behaviour was reported from the experiments by Triana (2011),
and Rieutord et al. (2012) suggesting that critical layers and over-reflection could be
responsible for the mode excitation. In case of super-rotation, we indeed see critical
layers situated almost perfectly on the tangent cylinder for the respective most unstable
wave modes. As a consequence, our experiments confirm the feasibility of the critical
layer excitation concept. Unfortunately, with the PIV technique we did not succeed in
experimentally resolving all the relevant processes involved at the critical levels.

The flow chart in figure 13 summarises the detected Stewartson-layer instabilities
and the relationship between wavenumber, Ekman number and wave frequency.
We see that for the spiral-wave case (Ro > 0), after the onset of instability the
wavenumber increases (decreases) for decreasing (increasing) Ekman number. For the
chosen Ekman number of Ro≈ 0.5, the wavenumber increases for increasing ω̂ and
decreases for decreasing ω̂. For trapped waves with Ro< 0 the onset mode is always
the Rossby mode with m= 1 and in fact all trapped waves form nearly geostrophic
(columnar) patterns. However, the m = 1 fundamental mode at onset exhibits a very
particular structure, which seems to be not absolutely trapped within the Stewartson
layer. For the chosen Ekman number of Ro ≈ −0.5, the maximum wavenumber is
independent of the Ekman number. However, the wavenumber decreases for decreasing
ω̂ and increases for increasing ω̂.

In conclusion, we found that whenever super-rotation is involved, spiral Rossby
waves develop, whenever sub-rotation is involved, trapped Rossby waves develop.
For Ro > 0, the very first instability is always a small-scale feature, which will
be replaced by larger-scale features for the subsequent instabilities. Once a set of
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instabilities is developed (usually around |Ro| & 0.5), higher harmonics occur. The
maximum wavenumber we detected in our experiments increases with decreasing
Ekman number, leading to a more turbulent flow.
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