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FIELDS COUNTABLY GENERATED OVER
A PROPER SUBFIELD

JAMES K. DEVENEY AND JOE YANIK

For an arbitrary field K there are two related questions that can

be asked:

(1) Is there a proper subfield, L , of K such that K

is countably generated over L ?

(2) Given a proper subfield M of K is there a proper

subfield, L , of K containing M such that K is

countably generated over L ?

We give an affirmative answer to (1) in characteristic p ^ 0

and provide counterexamples to (2) for arbitrary characteristic

t 2 .

Let L be a field and let if be a proper subfield of L . If L

is algebraically closed, then the only finite possibility for the dimension

of L over K is 2, and this can occur if and only if K is real closed.

In [I], it was shown that any algebraically closed field L has a proper

subfield K of countable codimension, that is, [L:K] < N . This leads

naturally to the question of when an arbitrary field L has a subfield of

countable codimension. If the characteristic of L is p > 0 , then L

must have a subfield of countable codimension (Theorem 1). The general

question for fields of characteristic 0 is still open.

This paper also examines the more general question: If L ^ K , does

L have a subfield of countable codimension which contains K . An example

is constructed for any characteristic p ? 2 of a separable algebraic

field extension L 3 K with no proper subfield of countable codimension
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containing K . This example is also used to gain information on the

lattice of intermediate fields of a field extension.

I

THEOREM 1. Let L be a non-prime field of characteristic p / 0 .
Then L has a sub field of countable codimension.

Proof. Suppose L is not perfect, that i s , L f If . Let B be

a p-basis for L ([2], p. 180), and let x e B . Then [L:lP(B\ {x}) ] = p

and L has a subfield of f inite codimension. Thus we may assume L is

perfect. If L is algebraic over i ts prime subfield F , then L i s

countable and hence F i s of countable codimension. Thus let X f 0 be

a transcendence basis for L over F and let x € X . Let

-n
L = F({yP | y S X\ [x] ,n S N) ,x) . Then L is algebraic over L

and [L -iK] = p . Let L be the separable algebraic closure of L

in L . Then [L :ZT] = p and L i s purely inseparable over L .

-n
Thus L = L ({of | n G Z}) and L- is a subfield of countable

codimension.

LEMMA 2. Assume L is separable normal algebraic over K and G
is the Galois group of L over K . Then L is covntably generated
over K if and only if G has countably many closed normal subgroups of
finite index in G .

Proof. Suppose L/K is countably generated, say L = K{{x. \ i 6 N}) .

The set of finite subsets of N is countable and, for each finite subset

S of N , the set of normal extensions of K contained in K({x. | i SS})

is f ini te. Since each finite normal extension of K is contained in

K({x. \ i £ 5}) for some finite 5 C N , the set of finite normal

extensions of K in L is countable, and hence G has countably many

closed normal subgroups of finite index in G .

Conversely, suppose there are countably many closed normal subgroups

of finite index in G . Then there are countably many finite normal

extensions of K in L , each generated by a finite number of elements.
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But every element of L is in some finite normal extension of K and

hence L is countably generated over K .

It follows from Lemma 2 that any field L which has an automorphism

o and is algebraic over the fixed field of a has a subfield of countable

codimension.

COROLLARY 3. Let L C K be a separable algebraic field extension.
L is countably generated over K if and only if there are at most a
cowntable number of finite extensions of K in L .

Proof. If L/K is countably generated, then the normal closure, L ,

of L is countably generated over K . By Lemma 2, there are at most a

countable number of finite extensions of K in £ , hence certainly of

K in L . Conversely, let {a. | i e N} be a set of primitive elements
If

for the f i n i t e e x t e n s i o n of K in L . Then L = K({a- \ i G N}) .

The fo l lowing r e s u l t i s a g e n e r a l i z a t i o n of some i d e a s in [ / ] .

PROPOSITION 4. Let L be an algebraic extension of K . If there is
a cowxtably generated separable algebraic extension F of L and a
K-automorphism a of F which does not leave L elementwise fixed, then
L has a proper subfield of countable codimension which contains K .

Proof. Let F = £({x. | i 6 N}) . By adjoining a l l the conjugates of

{x. | i S N] we may assume F i s normal over L . Let G be the

Galois group of F over K and le t H be the Galois group of F over

L . The fixed field of H i s L and the fixed field of G , F* , is

a proper subfield of L which contains K . If L i s normal over F ,

le t 6 be an f^-automorphism of L with 6 f id . If H is the group

generated by 6 , Lemma 2 shows L is countably generated over L

If L/F*1 i s not normal, then E is not normal in G . Let H be

a conjugate of H in G . By Lemma 2, H and H both have countably

many closed normal subgroups of finite index. Let H = <H' U H' > . We

claim H has countably many closed normal subgroups of finite index.

This follows since a closed normal subgroup of f inite index corresponds

to the kernel of a continuous homomorphism of H onto a finite group G .
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But a homomorphism is completely determined by i t s restriction to H

and H . Thus by Lemma 2 and Corollary 3, L is countably generated

over IT .

COROLLARY 5. Let L 2. K be fields with L/K not purely inseparable.
If L , the algebraic closure of L , is countably generated over L
then L has a proper subfield of countable codimension which contains K .

Proof. Since L ~3_ K , L has a proper subfield containing K over

which L is algebraic. Thus we may assume L is algebraic over K .

Thus there is an isomorphism a •? id of L over K into L . Since L

i s algebraically closed, 0 can be extended to an automorphism of L .

Proposition 4 now gives the desired result.

II

In this section we construct an example of a field L with a proper

subfield K such that , for any field M , K C M C L , the codimension

of M in L is uncountable.

Let S be an uncountable set. For each positive integer J define

GO

J . = S x S x . . . x 5 the product taken j times. Let I = U I . .
3 3=1 °

We define a map I . •*• I . by a = (a , . . . ,a .) -*• a. = (a , . . . ,a ._ ) .
0 3 ~ ̂ - -̂  J 3 -̂

Let k be an a rb i t r a ry f ie ld with char k f 2 .

Define K = k({x \ a 6 J}) (s) where the x and z are algebraical ly

independent.

We define recursively s for a e I by

z = x + fz for a G J,
a a 1

= x + /sT for a e I n > 1 .
a a n

Let L = K({z I a G J}) .a

LEMMA 6. L = k({w \ a e I}) (u) where w = /T~ , w = /z and the

set ({w | a £ I ) u {w} is algebraically independent over k . (Hence
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L is a pure transcendental extension of k ) .

Proof. Note that x = W - W- where, i f a G Jn , we make the
a a a 1

convention that W- = W . So clearly L = k({w | a G I})(W) . The fact
a a

that they are algebraically independent follows readily from the fact that

the x ' s are algebraical ly independent.

Thus, L does have a subfield of countable codimension. In fact ,

[L:M] = 2 where M = k{{w | « 6 I } ) (U2) . However, K<^M .

LEMMA 7. Let M be a field with K CM c L and suppose JiT ? M ,

but z e M . Let 3 and y be such that 6 = y = a , but 6 ̂  Y •
a

Then M(Sz7) ^ M(fz~) . (Hence, there are uncountably many distinct

finite extensions of M ) .

Proof. Suppose JzZ = IxD + iz~ £ M /x + /z~ . Then
p v p a ^ ' Y a )

Ix. + iz~ = a + b fx + Jz~ for some a,b G M(fz~)

x. + fz~ = a + 2ab I x + fz~ + b (x + /z~ ) .
P a / Y a Y a

If

If

If

ab

b =

a =

¥ o

0

0

, then

then

then I

-J

A
A
X +
y

+ sr -
a

r—
a c

ST
a

/ x + /F

x + Jz~
x + Jz~ G M(T/Z~) or / — -

Y a x + /T
•J y a

We claim that both are impossible.

a'

Suppose /xo + >/3^~ = e + dfz~ tor some c,d G M . Then

4 2
0 = 4e - 4x_,e + s

8 a

https://doi.org/10.1017/S0004972700003087 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003087


224 James K. Deveney and Joe Yanik

I 2
Such a c could exist only if /16a:. - 163 6 M (by the quadratic

P oi

formula) . Recall tha t xo = wo - W , z = W
p p ct ot a

So /xo ~ z = /wa ~ 2 U R W ? k({ug| <5£j}) (U) f hence i s cer ta in ly not

in M .

yx + /z
= a + d</z~ for some a,d £ M . Then

x + /T
y a

a;. + /z~ = (c x + dx z + 2cdz ) + (a + az + 2cdx ) Jz~
6 a y Y a a a ya

2 ,2
iC- . — C tC i * c i i C S "T*

1 = e + a s + 2edx
a Y

B̂ " xySolving simultaneously we get d = 5— which when substituted into
2c (z -x )

a Y

the equation above yields, after simplifying.

As before, there could be a solution in M only if

2 2 2Substituting x. = W. - U , x = w - U , s =U , and simplifying we8 B a y Y a a a e * -a

get

- w . u -w +w -w ] [wn - w . u -w +w -w -2w i/o+2w w*
B Y

 a Y a p B Y a y a o B a Y

But one can easily check that the term under the radical is not a square in

L . (For example the first term is of degree 2 in W but is clearly

not the square of a linear polynomial. Furthermore, the terms are

2 2
relatively prime since their difference is 2W (WD -W ) and neither

a H Y
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W , w. - W , or w. + W are factors of either term).
a p Y p Y

Hence, there is no solution in M and M(fz^) f M(Jz~) .

Note that , similarly, if Jz ^ M and (3 ,Y e I. , with B / y then

M(Jz~W M(Jz~) . The proof is identical.
B Y

THEOREM 8. Let K and L be as described above. Suppose M is

a field with K ĉ  M £ L . Then the codimension of M in L is

uncountable.

Proof. Since M £ L , fz~ ̂  M for some a £ J . Let

n = inf{j G N | /z~ ^ U for some a S J .} and le t a e J be such that

/z~ ^ M . Then, either n = 1 and /s" ̂  M or 3Q S M , by the

minimality of n . By Lemma 7 or the remark after Lemma 7 there are

uncountably many dis t inct finite extensions of M . By Corollary 3, the

codimension is not countable.

I l l

The previous example is also interesting from the point of view of

the lattice of intermediate fields. Let L 3 K be an algebraic field

extension. If there is a unique minimal intermediate field properly

containing K , what can be said concerning the lattice of intermediate

fields? Such fields naturally occur as follows. Let a £ I\K . By

Zorn's Lemma there are subfields M of L containing K and maximal

with respect to not containing a . Then L/M has a unique minimal

intermediate field, namely M[a) .

If L/K has a unique proper minimal intermediate field and L/K is

separable algebraic normal, then the intermediate fields of L/K must be

chained. To see this , one can first reduce to where L/K is finite

dimensional normal. If K{a) is the unique minimal field, and a(a) f a ,

then the fixed field of a is a subfield of L which does not contain

a , that i s , is K . Then the Galois group is cyclic and the intermediate

fields are chained. However, if L/K is not normal, the intermediate

fields need not be chained. For example, let L and K be as in

section 2 and let M be an intermediate field that contains z but that
a
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i s maximal with respect to not containing rz~ . Then L/M has a

unique minimal subfield of dimension 2 over M , namely M(Jz ) , and

yet there are uncountably many distinct subfields of dimension 4 over M
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