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FIELDS COUNTABLY GENERATED OVER
A PROPER SUBFIELD

James K, DeEvenNey AnD JoE YANIK

For an arbitrary field KX there are two related questions that can
be asked:

(1) Is there a proper subfield, L , of K such that X
is countably generated over L ?

(2) Given a proper subfield M of K 1is there a proper
subfield, L , of K containing M such that K is
countably generated over L ?

We give an affirmative answer to (1) in characteristic p # O
and provide counterexamples to (2) for arbitrary characteristic

#£2 .

et L be a field and let K be a proper subfield of L . If L
is algebraically closed, then the only finite possibility for the dimension
of L over K 1is 2, and this can occur if and only if K 1is real closed.
In [1], it was shown that any algebraically closed field L has a proper
subfield X of countable codimension, that is, [(L:X] SSNO. This leads
naturally to the guestion of when an arbitrary field L has a subfield of
countable codimension. If the characteristic of L is p > 0 , then L
must have a subfield of countable codimension (Theorem 1). The general

question for fields of characteristic 0 is still open.

This paper also examines the more general question: If L 2 K , does
L have a subfield of countable codimension which contains K . BAn example
is constructed for any characteristic p # 2 of a separable algebraic

field extension L 2 K with no proper subfield of countable codimension
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containing X . This example is also used to gain information on the

lattice of intermediate fields of a field extension.
1

THEOREM 1. Let L be a non-prime field of characteristic p # 0 .
Then L has a subfield of countable codimension.

Proof. suppose [ is not perfect, that is, L # P . 1et B be
a p-basis for L (2], p. 180), and let z € B . Then (L:IP(B\{ah] = p
and L has a subfield of finite codimension. Thus we may assume L is
perfect. If L is algebraic over its prime subfield F , then L is

countable and hence F is of countable codimension. Thus let X # @ be

a transcendence basis for L over F and let £ € X . Let

-1
L = F({yz | Yy € N{x}n € N},z) . Then L is algebraic over L,

and [Ll:L€] =p . Let L2 be the separable algebraic closure of Ll

in L . Then [L2:L§] =p and L is purely inseparable over L2

-n
Thus L = Lz({xp | n € 2}) ang L, is a subfield of countable
codimension.

LEMMA 2. Asswme L is separable normal algebraic over K and G
is the Galois group of L over K. Then L <is countably generated
over K 1if and only if G has countably many closed normal subgroups of

finite index in G .
Proof. suppose L/K is countably generated, say L = K({xi | € W),

The set of finite subsets of N 1is countable and, for each finite subset

S5 of N , the set of normal extensions of K contained in K({xi |Z€sh

is finite. Since each finite normal extension of K 1is contained in

K({xi Ii € S}) for some finite S C N , the set of finite normal

extensions of K in L 1is countable, and hence G has countably many

closed normal subgroups of finite index in G .

Conversely, suppose there are countably many closed normal subgroups
of finite index in G . Then there are countably many finite normal

extensions of K in L , each generated by a finite number of elements.

https://doi.org/10.1017/50004972700003087 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003087

Countably generated fields 221

But every element of L is in some finite normal extension of K and

hence L is countably generated over KX .

It follows from Lemma 2 that any field L which has an automorphism
0 and is algebraic over the fixed field of ¢ has a subfield of countable

codimension.

COROLLARY 3. Let L[ € KX be a separable algebraic field extension.

L is countably generated over K 1if and only if there are at most a

countable number of finite extensions of K in L .

~

Proof. 1f L/K is countably generated, then the normal closure, L ,
of L 1is countably generated over K . By lLemma 2, there are at most a
countable number of finite extensions of XK in L , hence certainly of

K in L . Conversely, let {ai |2 € N} be a set of primitive elements

for the finite extension of XK in L . Then L = K({ai | €n)) .

The following result is a generalization of some ideas in [7].

PROPOSITION 4. Let L be an algebraic extension of K . If there is
a countably generated separable algebraic extension F of L and a
K-automorphism o of F which does not leave L elementwise fized, then

L has a proper subfield of countable codimension which contains X .

Proof. 1Let F = L({xi | Z € N}) . By adjoining all the conjugates of
{a% Ii € N} we may assume F is normal over L . Iet G be the
Galois group of F over K and let Hl be the Galois group of F over
L . The fixed field of Hl is L and the fixed field of G , FG , is

a proper subfield of L which contains K . If L 1is normal over FG ’
let 6 be an FG-automorphism of L with 0 # 2d . 1If H is the group
H
generated by 6 , Lemma 2 shows L 1is countably generated over L .
If L/FG is not normal, then Hl is not normal in G . Let H2 be
a conjugate of Hl in ¢ . By lLemma 2, Hl and H2 both have countably
many closed normal subgroups of finite index. let H = (Hl U H2) . We

claim H has countably many closed normal subgroups of finite index.
This follows since a closed normal subgroup of finite index corresponds

to the kernel of a continuous homomorphism of H onto a finite group GO.
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But a homomorphism is completely determined by its restriction to Hl

and H2 . Thus by Lemma 2 and Corollary 3, L 1is countably generated

over FH .

COROLLARY 5. ILet L 2K be fields with L/K not purely inseparable.
If L, the algebraic closure of L , is countably generated over L

then L has a proper subfield of countable codimension which contains K.

Proof. since L 2K , L has a proper subfield containing X over
which L is algebraic. Thus we may assume L 1is algebraic over X .
Thus there is an isomorphism o # id of L[ over K into L . Since L
is algebraically closed, ¢ can be extended to an automorphism of L.

Proposition 4 now gives the desired result.
IT

In this section we construct an example of a field L with a proper
subfield K such that, for any field ¥, XC MC L , the codimension

of M in L is uncountable.

Let S be an uncountable set. For each positive integer Jj define

Ij =8 x 8§ x...x S the product taken j times. Let I

0
I'c 8
-

We define a map Ij > 7,

i-1 by a = (al,...,aj) > q = (al,...,a. )

J-1
let K be an arbitrary field with cha/r k#2 .
Define K = k({xu Ia € I} (z) where the x, and 2 are algebraically
independent.

We define recursively 2, for a € I by

z =x + V2 for o« €1
[+ a 1

x + Vz- for a€I1I_ , n>1.
o a n

let L=K({za|a€I}) .

LEMMA 6. L=k({wa|a€I})(w) where wa=fz:,w=/z_ and the

set ({wu |a € It U {w} 1is algebraically independent over k . (Hence
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L 1is a pure transcendental extension of k ).

Proof. Note that x, = wi - wg where, if a € I1 , we make the
convention that wg =w . So clearly L= k({wa |a € I}) w) . The fact
that they are algebraically independent follows readily from the fact that
the xa's are algebraically independent.

Thus, L does have a subfield of countable codimension. 1In fact,
[L:M) = 2 where M=k(lw_|a€Ih@’) . However, KZM .

LEMMA 7. Let M be a field with KC MC L and suppose /EZQ M,
but zaEM. Let B and vy be such that B=y =o , but B #y .
Then M(/z—B) # M(/z_Y) . (Hence, there are uncountably many distinct

finite extensions of M ).

Proof. suppose vz, = fx, + V2 €M | /x + vz |. Then
B 8 o Y o
fx +Vz =a+b fx + Vz for some a,b € M(Vz )
B o Y a a
x, + vz =a2+2ab fx + vz +b2(x + vz )
[ o Y a Y o

If ab#0 , then fx + V2 € M(Yz) = Jx_ + Yz_ € M(Vz)
Y a a B o a

S0

If b =0 then /x6+\/z_;=a€M(/z.:)

x6+/z—a
If a=0 then | =—— "€ M(Vz )

x + vz ¢

Y a

xB+/z—
So either [z + Vz. € M(Vz) or |——2 € mM(/z)
Y o o acy+/z—a @

We claim that both are impossible.

Suppose zg + v’za =c + dv’za for some c¢,d € M . Then

0= 404 - 4z 02 +'za

8
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Such a ¢ could exist only if ¢16x§ - lea € M (by the quadratic

formula). Recall that =x, = wz -w , 2 = w2 .
B B a a o

So /a? -z = /w4 - 2w2w & k({w | €I} w) hence is certainly not

8 a B B a [ ’

in M.

x + V3
8 ]
Now suppose that ———— =¢ +d/z for some e,d € M . Then

xY + /za ¢

X, + Yz = (02x +de 2+ 2edz ) + (c2 + dzz + 2edx ) Vz
8 o Y Y a a a v “a
or

x, = czx + d2x 2 + 2cdz
Y Y a o

1= 02 + dzz + 2ecdx
o Y

x, - x
d=—P__ Y

Zc(za—xY)

Solving simultaneously we get which when substituted into

the equation above yields, after simplifying,
2.2 4 2 2.2, 2 2
0 =4(z -x ¢ + 4[(x, ~x 2 =-x )x - (B8 _-X ¢ + (x, -X 2
( o Y) [( 8 Y)( a Y) Y ( o Y) ] ( 8 Y) o

As before, there could be a solution in M only if

_.2 _ _ _ 2742 _ 2
4(za xY) /[(xB xY)xY (za mY)] (x6 xY) 2, EM

. . 2 2 . . .
Substituting xs = wB - wa , xY = mY - wa , za = wa , and simplifying we

get

2

- - + - 1 - - W -w - w2+2w w
/[wB wa w w w 1 [MB ZA)BZIJ w W -w -2w 8 oy

2
Y
But one can easily check that the term under the radical is not a square in

L. (For example the first term is of degree 2 in wa but is clearly

not the square of a linear polynomial. Furthermore, the terms are

2 _ 2

relatively prime since their difference is 2wa(w6 wY) and neither
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W, - W or w, + W are factors of either term).
Ya ' ¥g Yy ' B Y

Hence, there is no solution in M and M(/Eg) # M(VE;) .

Note that, similarly, if vz ¢ M and B,y € I, , with B #y then

M(/%)# M(/z?) . The proof is identical.

THEOREM 8. Let K and L be as described above. Suppose M is
a field with K C MG L . Then the codimension of M in L is

wicountable.

Proof. since MG L, /.{QEM for some o € I . let
n = inf{j €N I/E;'¢ M for some a € Ij} and let o € I be such that
/E;'¢ M . Then, either n=1 and vz § M or z, € M , by the

minimality of 7 . By Lemma 7 or the remark after Lemma 7 there are
uncountably many distinct finite extensions of M . By Corollary 3, the

codimension is not countable.
III

The previous example is also interesting from the point of view of
the lattice of intermediate fields. Let L 2 K be an algebraic field
extension. If there is a unique minimal intermediate field properly
containing KX , what can be said concerning the lattice of intermediate
fields? Such fields naturally occur as follows. Let o € INK . By
Zoxrmn's Lemma there are subfields M of L containing X and maximal
with respect to not containing & . Then L/M has a unigue minimal

intermediate field, namely M(a)

If L/K has a unique proper minimal intermediate field and L/K is
separable algebraic normal, then the intermediate fields of L/K must be
chained. To see this, one can first reduce to where L/K is finite
dimensional normal. If K(a) is the unique minimal field, and o(a) # a ,
then the fixed field of o 1is a subfield of [ which does not contain
a , that is, is K . Then the Galois group is cyclic and the intermediate
fields are chained. However, if L/K is not normal, the intermediate
fields need not be chained. For example, let [ and K be as in

section 2 and let M be an intermediate field that contains zcl but that
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is maximal with respect to not containing Vza . Then L/M has a
unique minimal subfield of dimension 2 over M , namely M(Vza) , and

yet there are uncountably many distinct subfields of dimension 4 over M .

References

[7] A. Bialynicki-Birula, "On subfields of countable codimension",
Proc. Amer. Math. Soe. 35 (1972), 354-356.

{Z] N. Jacobson, Lectures in abstract algebra, Vol. 1II. Theory of
fields and Galois theory, (Von Nostrand, Princeton, N.J., 1964).

Department of Mathematical Sciences,
Virginia Commonwealth University,
Richmond, Virginia 23284.

U.S.A.

https://doi.org/10.1017/50004972700003087 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003087

