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SUMMARY

Methicillin-resistant Staphylococcus aureus (MRSA) transmission in hospital wards is associated
with adverse outcomes for patients and increased costs for hospitals. The transmission process is
inherently stochastic and the randomness emphasized by the small population sizes involved. As
such, a stochastic model was proposed to describe the MRSA transmission process, taking into
account the related contribution and modelling of the associated microbiological environmental
contamination. The model was used to evaluate the performance of five common interventions
and their combinations on six potential outcome measures of interest under two hypothetical
disease burden settings. The model showed that the optimal intervention combination varied
depending on the outcome measure and burden setting. In particular, it was found that certain
outcomes only required a small subset of targeted interventions to control the outcome measure,
while other outcomes still reported reduction in the outcome distribution with up to all five
interventions included. This study describes a new stochastic model for MRSA transmission
within a ward and highlights the use of the generalized Mann–Whitney statistic to compare the
distribution of the outcome measures under different intervention combinations to assist in
planning future interventions in hospital wards under different potential outcome measures and
disease burden.
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INTRODUCTION

Healthcare associated infections (HAIs) are adverse
events that can arise during hospitalization.

Multidrug-resistant organisms (MDROs), for example
methicillin-resistant Staphylococcus aureus (MRSA),
are common causes of these HAIs with patients
typically becoming colonized with the organism
prior to developing an infection. Treatment options
for MDROs are becoming increasingly limited due
to the relative scarcity in development of new treat-
ments compared to the rate of resistance acquisition
[1]. As such, the role of routine infection control and
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prevention (ICP) practices are of great importance in
reducing the occurrence of HAIs.

Intervention studies which typically investigate the
effects of one or a combination of interventions in
reducing HAIs provide a good first line of evidence
for particular interventions to be incorporated into
routine ICP practices. These studies also assist in
building mathematical model representations of the
healthcare setting. Such models then allow for further
probing of the effects of the interventions which may
not have been feasible or potentially ethical to investi-
gate in a clinical setting but could prove useful in
assisting decision-making, particularly when hospital
resources are severely limited. The model findings
could also provide recommendations for future inter-
vention studies.

Susceptible patients are typically modelled to be
colonized (a state which precedes an infection)
through a forcing term (referred to as the force of
infection) which is a function of the number of colo-
nized patients currently present in the ward as well
as the colonized hospital staff in the ward at the
time and also contact frequency. As hospital staff
are not routinely screened for pathogen colonization
[2], obtaining high-quality data on hospital staff has
proven difficult.

That said, the most mathematical models consider
vector-based cross-transmission between patients
and transiently contaminated healthcare workers
(HCWs) to be the dominant transmission mechanism
for MDROs such as MRSA [3]. Only a small number
of papers have considered alternative transmission
routes typically by incorporating a constant source
(such as in [4]). Even fewer have explicitly modelled
environmental contamination as an alternative trans-
mission route [5–10]. However, such models only cali-
brated the parameter estimates related to the
environmental contamination to match observed
patient incidence rather than using environmental
contamination data.

This paper presents a stochastic model for ward
MDRO transmission based on patient dynamics, as
patient data are typically more readily available com-
pared to hospital staff, coupled with a time-series
model of environmental contamination which was
parametrized by environmental contamination data.
Due to the low reported prevalence of HCW carriage
[11], the small proportion of nosocomial outbreaks
attributable to HCWs [2] and the few adverse out-
comes reported for HCWs [11], we assumed that
transmission is implicitly facilitated by HCWs, who

are temporarily contaminated with MRSA through
contact with an MRSA-positive patient or environ-
mental contamination, due to the limited mobility of
patients, as is also common practice in similar model-
ling studies [4, 10, 12, 13]. Inclusion of HCWs typic-
ally involves substantial simplification of realistic
HCW dynamics [8, 14] or substantial additional
data collection to account for the heterogeneity
between HCWs [15–19] beyond the scope of this
study.

The model was run under two settings; the first is
based on MRSA dynamics in a developed country
(UK [12] and Switzerland [36] study estimates were
used here) where MRSA data and parameters are
more easily readily sourced, and the second is for a
hypothetical scenario where the pathogen is more
readily transmitted and not as easy to detect. The
second setting could be representative of a novel
pathogen in the healthcare setting, a new strain of
MRSA that is more virulent than existing strains or
perhaps reflective of a resource-poor setting such as
in low-income countries [13] where such modelling
studies could be of great benefit. The impact of five
common healthcare interventions [3] and their various
combinations were investigated for six potential out-
come measures under both settings separately.
Limitations and future directions in model develop-
ment are provided in the Discussion.

METHODS

Model formulation

The model proposed is for a single ward setting and
comprises of: (i) a ward-level patient arrival process;
(ii) an individual-based model for patient transitions
in the ward; and (iii) a time-series model for the
level of environmental contamination.

At any time t, patients in the ward are categorized
based on their MRSA status where they can be in
the susceptible group [S(t)], the undetected MRSA
colonized group [Cxd(t)], the detected with MRSA col-
onization and undergoing appropriate treatment
group [Cd(t)], the undetected MRSA infected group
[Ixd(t)], or the detected with MRSA infection and
undergoing appropriate treatment group [Id(t)]. A
schematic illustration of the model is provided in
Figure 1 with E(t) representing the ward environmen-
tal contamination levels.

The model is an example of Discrete Event
Simulation (DES), a technique that is widely used in
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healthcare research [20–22]. While perhaps more com-
monly used in scheduling problems, DES has also
been applied to investigate pathogen transmission
[21]. DES provides a flexible modelling approach to
represent individual patient transitions during their
hospitalization episode, allowing for the inclusion of
stochastic variability (important for small population
studies such as in a hospital ward) and effects of indi-
vidual patient information.

Patient admissions into the ward are modelled as
a right-censored (at ward capacity M) Poisson process
[A t( ) � Po λ( )] with a binomial variable to separate
arrivals to either susceptibles [AS(t)] or colonized
(but not detected, i.e.Cxd) [AC(t)]. It is assumed that
patients cannot be infected on admission (as infected
patients are typically isolated or cohorted to reduce
transmission risk to other patients). Excess arrivals,
beyond the ward capacity M, are assumed to be allo-
cated to a separate ward thus creating the right-cen-
soring in the arrival process.

The likelihood for the admissions at time t can
therefore be written as:

P(A t( ) = i, AS t( ) = j, AC t( ) = i − j |Y t− 1( )) =
λi

i!
exp −λ{ } i

j

( )
ϑj 1− ϑ( )i−j 0 ≤ i , Y t− 1( )

∑1
l=Y t−1( )

λl

l!
exp −λ{ } l

j

( )
ϑj 1− ϑ( )l−j i = Y t− 1( ),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
where Y(t) is the number of empty beds in the ward at
time t andϑ is the proportion of admissions that arrive
susceptible.

The admissions at time t will then be assigned to the
empty beds in the ward but will not undergo the indi-
vidual patient transitions until the next time point.

The individual-based model, which is for patient
transitions in the ward, processes each patient present
in the ward at each time point based on the patient’s
current MRSA status. The following assumptions
were used to formulate the individual-based model
patient transitions:

(1) Each patient can only undergo one transition
(discharge, colonization, infection, recovery,
detection) per time period.

(2) Susceptible patients have to be colonized before
developing an infection.

(3) Patient colonization will always be undetected
when first colonized.

(4) Colonized patients will not return to the suscep-
tible state.

(5) Undetected colonized patients cannot transition
directly to the detected infected state as it counts
as two transitions (detection and infection).

(6) Detected colonized and infected patients cannot
return to the undetected state.

(7) Detected colonized patients are placed under the
decolonisation treatment and cannot develop an
infection.

(8) Infected patients only recover to the colonized
state, and not to the susceptible state.

(9) Detected infected patients are placed under an
appropriate treatment which increases their
probability of recovery over their infection
duration.

(10) Undetected infected patients cannot recover as
they have not received appropriate treatment yet.

At each time point t, each susceptible patient S can
either leave the ward as susceptible with probability
pL, become colonized (but not detected) with

Fig. 1. Compartmental diagram for the MRSA
transmission model incorporating environmental
contamination. The solid black lines represent patient
transitions between the different states as well as
admissions and discharges [only for the S(t) and Cxd(t)
compartments]. The red dashed lines denote the
contribution from the various compartments to the
colonization process while the black dashed lines show
the compartments contributing to the evolution of the E(t)
compartment.
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probability pC, or remain susceptible with probability
ps such that pL+ pC+ ps= 1.

The probability of being colonized is modelled as
pC = fE(1− pL), where fE is an increasing function of
E(t), Cxd(t− 1), Cd(t− 1), Ixd(t− 1) and Id(t− 1).
Specifically, the following form for fE was used

fE t( ) = 1− exp −ν t( )Δt{ },
where ν(t) = β0 + β1Cxd(t− 1) + β2Cd(t− 1) + β3Ixd
(t− 1) + β4Id(t− 1) + β5E(t) is the instantaneous haz-
ard of being colonized, or also known as the force
of infection for this model, and 0 ≤ fE t( ) , 1 ∀ t.
Last, pS = (1− fE)(1− pL).

Each undetected colonized patient Cxd is detected
with probability ρ (assumed to be the screening test
sensitivity). Otherwise, the undetected colonized
patient can either leave the ward with probability
qL, develop an infection with probability qI, or remain
colonized in the ward with probability qC such that qL
+ qI + qC= 1. No additional structure is imposed on
these probabilities values as it is assumed that each
colonized patients will have the same probability
values.

Each detected colonized patient Cd can either leave
the ward with probability qL or remain colonized and
detected with probability 1− qL. Due to a lack of
information to differentiate the probability of leaving
for undetected and detected colonized patients, these
were assumed to be same. One of the interventions
considered (DECOL) increases the probability of leav-
ing for just the detected colonized patients.

Each undetected infected patient Ixd can either be
detected with probability ρ or remain undetected
with probability 1− ρ.

Each detected infected patient Id will have a prob-
ability rC of recovering (transitioning to Cd) where

rC t|ψ, tik
( ) = 1− exp −ψ t− tik( ){ }

,

is an increasing function of the difference of the cur-
rent time (t) and the time the individual k became
infected (tik). In other words, it is assumed that the
longer a patient is infected, the more likely the patient
will recover at the next time point. An infected patient
remains infected with probability 1− rC.

By definition, only the (approximate) date that a
patient is detected to be colonized or infected is avail-
able from hospital surveillance databases. The transi-
tion times from susceptible to undetected with MRSA
colonization (tck), and subsequently undetected infec-
tion (tik) are typically imputed from a range of plaus-
ible values between the patient’s admission date (ak)

and first positive screening test date (dk) where the
full conditional for (tck, tik) can be written as

1− ρ
( )NF tik( )

exp
∑
b

log ν tb( ) −
∑
d

S td( )ν td( ) td+1 − td
( ){ }

× qIexp − qI tik − tck( ){ }
,

where tck< tik, NF(tik) is the number of false-negative
screening test results for patient k given tik, the b sub-
script indexes time points where a susceptible patient
becomes colonized between tck to patient k’s discharge
and the d subscript indexes the time points where v(t)
changes between ak and tck. The expression can be
evaluated for all potential (tck, tik) values to obtain
a discrete distribution to be used in a Metropolis–
Hastings step within a Markov chain Monte Carlo
algorithm to impute these unobserved quantities and
estimate the remaining model parameters [4, 14, 23].

An autoregressive-moving average time series
model with exogenous covariates (ARMAX) [24] is
used to describe the environmental contamination
levels E(t). The exogenous covariates assumed to be
contributing to the levels of environmental contami-
nation at time t are the Cxd and Ixd patients in the
ward at time t− 1. It is assumed that detected (colo-
nized and infected) MRSA patients undergo the
decolonization treatment which halts shedding from
the patient to the environment. The orders of the
ARMAX model are determined using the auto.
arima() function in the R package forecast [25].

Parameter values

The model parameter values used for the normal bur-
den setting simulations are summarized in Table 1.
Additional details of the parametrization are provided
in the Supplementary material. The normal burden
setting is reflective of MRSA burden in a typical hos-
pital ward in a developed country. These parameters
values are also used in the high burden setting simula-
tions with the following modifications:

(1) there is an additional factor of two multiplying ν(t);
(2) the probability of a colonized patient developing

an infection qI is doubled and qC is reduced
accordingly to ensure qL+ qI + qc= 1;

(3) there is decreased sensitivity in the screening test,
ρ= 0·6;

that is, we assumed that in this setting, the hypothet-
ical pathogen is more likely to colonize susceptible
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patients, colonized patients more readily develop an
infection and it is harder to detect the presence of
the pathogen. The high burden setting attempts to
mimic either the MRSA dynamics in a developing
country [26] or a novel strain of pathogen that is
more virulent and less readily detected by routine
surveillance.

There was no available source to estimate the para-
meter ω which represents the difference between
colonized and infected patients on the force of infec-
tion. The ω value in the Results section was 1 as a
reflection of the lack of information on the parameter.
Alternative values of 0·1 and 1·9 were also investigated
in the parameter sensitivity analysis (provided in the
Supplementary material). We found that the AR, Cxd

and Cd outcomes (defined below) were particularly sen-
sitive to a low value of ω (giving a stronger influence to
colonized patients) in both normal and high burden set-
tings. Distributions of AR outcome for the different
values of ω are provided in Figure 2. Similar plots
for the other outcomes and parameters are provided
in the Supplementary material.

Interventions

Five common intervention strategies were considered
in the model investigation below:

(1) Not colonized on admission (COA) (ϑ = 1), where
all patients who are colonized on admission are

Table 1. Parameter values for the stochastic model describing multidrug-resistant organisms’ transmission in a
hospital ward

Symbol Definition Value Source*

M Maximum ward capacity (M= S(t) +C(t) + I(t) +A(t)) 20 Data
λ Daily admission rate to ward 5 Data
ϑ Probability of being susceptible on admission 0·95 [12]
pL Probability of leaving the ward as a susceptible patient 0·1155 [36]
qL Probability of leaving the ward as a colonized patient 0·053 [36]
qI Probability of a colonized patient developing an infection 0·047 [12]
qC Probability of a colonized patient remaining colonized 1− qL− qI≈ 0·900
ψ Parameter in functional form for probability of recovering from infection

to colonized state rC
0·020 [36]

ρ Screening test sensitivity 0·8 Assumption
β0 Intercept term associated with fE (×105) 190 Unpublished

observations
β1 Undetected colonized patients related parameter in expression for fE (×105) 660× 2

ω+ 1
Unpublished
observations

β2 Detected colonized patients related parameter in expression for fE (×105) 48× 2
ω+ 1

Unpublished
observations

β3 Undetected infected patients related parameter in expression for fE ω β1 Unpublished
observations

β4 Detected infected patients related parameter in expression for fE ω β2 Unpublished
observations

β5 Environmental contamination related parameter inexpression for fE ( × 105) 2·7 Unpublished
observations

ω Ratio difference between effects of colonized and infected patients in fE 1 Assumption
a1 AR(1) coefficient 1·40 (0·08) Data
a2 AR(2) coefficient −0·48 (0·08) Data
b1 MA(1) coefficient 0·34 (0·09) Data
b0 MA(2) coefficient 0·30 (0·06) Data
α1 Time-series time-constant mean parameter 60 (5) Data
α2 Time-series coefficient for Cxd at previous time period −0·07 (0·4) Data
α3 Time-series coefficient for Ixd at previous time period 0·06 (0·3) Data
α4 Time-series coefficient for intervention −0·10 (3·7) Data
σ2 White noise variance 24·5 Data

AR, Autoregressive; MA, moving average.
* Unpublished observations are estimates obtained from fitting a non-homogeneous Poisson process to the data. More details
provided in the supplementary material.
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assumed to be detected on admission and isolated
elsewhere, i.e. universal screening [27].

(2) Improved environmental cleaning (ENV), which
halved the intercept term in the environmental
time-series model (α1) [28].

(3) Improved contact precaution practices (CP),
which decreases ν by a factor of ξ where ξ was
set to 0·75 [29].

(4) Perfect screening test sensitivity (SENS), where
test sensitivity ρ was set to 1 [14].

(5) Improved decolonization treatment for colonized
patients (DECOL) where the probability for a
Cd patient leaving the ward is now qL+ Δ (with
the probability of staying adjusted accordingly)
[14].

We considered six outcome measures for the investiga-
tions. They are the attack rate (AR) defined as the
average of the force of infection ν(t) [14] as well as
the cumulative numbers of

. patients who were colonized on admission (AC),

. patients who were colonized but not detected (Cxd),

. detected, colonized patients (Cd),

. patients who were infected but not detected (Ixd),

. detected, infected patients (Id).

Note that there is a slight abuse of notation where Cxd,
Cd, Ixd and Id refer to the cumulative number of

patients in each group for the outcome measures,
but the time-varying prevalence of the groups in the
model.

Due to the stochastic model formulation, each
intervention setting was simulated 1000 times and
we compared the distributional differences of the
outcomes rather than just point estimates of the
outcomes.

Pairs of distributions (denoted generally by X
and Y here) were assessed using the generalized
Mann–Whitney statistic which estimates the para-
meter

θ = P Y . X( ) + 1
2 P Y = X( ) using θ̂ = U

mn
,

where U = ∑m
i=1

∑n
j=1 1 Yj . Xi

( )+ 1
2
1 Yj = Xi
( )

with {Yj ; j = 1,. . ., n} and {Xi ; i = 1,. . ., m} being sam-
ples from the Y and X distributions, respectively.
Confidence intervals (CIs) for θ̂ were computed
based on method 5 of Newcombe [30].

Following the definition above, values of θ larger
than 0·5 indicate that the Y is stochastically larger
than X and, conversely, values of θ less than 0·5 indi-
cate X is stochastically larger than Y. For the results
below, θ values between 0 and 0·2 (and similarly
between 0·8 and 1) are considered strong evidence
that the two distributions are substantially different.

Fig. 2. Attack rate outcome for normal burden (left plot) and high burden (right plot) settings. The x-axis denotes the
baseline, low ω value and high ω value (moving from left to right).
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Intermediate θ values between 0·2 and 0·4 (or 0·6 and
0·8) are assumed to provide weak evidence of a differ-
ence between the distributions. Values of θ close to 0·5
(between 0·4 and 0·6) indicate that there is no evidence
that the two distributions being compared are
dissimilar.

RESULTS

The results for the normal burden setting (Table 2 and
Table 3) and high burden setting (Table 4 and Table
5) are summarized below. More detailed comparisons
of the interventions combinations for all outcome
measures using the generalized Mann–Whitney statis-
tic are provided in the Supplementary material.

The results for the AC, Ixd and Id outcomes were
similar for both the normal and high burden settings,
and discussed together here. Results for the AR, Cxd

and Cd outcomes are discussed separately for the nor-
mal burden setting and high burden setting.

The most important intervention for the AC out-
come was the COA intervention which eliminates
the possibility of colonized patients being admitted.
As such, the COA intervention (and any other inter-
vention combinations which include COA) greatly
outperforms interventions of any size which do not
include the COA intervention in both settings. Any
intervention combination which includes the COA
intervention achieved 0 AC, whereas intervention
combinations without the COA intervention produced
AC distributions with 95% intervals that do not
include 0.

The performance of the interventions on the Id out-
come was very similar to that for Ixd since the only
transition to Id is through Ixd, i.e. eliminating Ixd
would also eliminate the Id population. As such,
only the results for the Ixd results are discussed for
brevity as identical inferences apply to the Ixd out-
come. The SENS intervention was the most important
intervention for the Ixd outcome as having perfect sen-
sitivity would allow detection of all colonized patients
prior to infection developing. As such, the best per-
forming intervention of any size will include the
SENS intervention.

However, it should also be noted that the Ixd out-
come is generally small for the normal burden setting
with even the baseline Ixd having a 95% CI of 0–2
(Table 2).

In contrast with the normal burden setting, the
SENS intervention (or any combination which
includes the SENS intervention) was substantially

more favourable in the high burden setting
(Table 5). The SENS intervention substantially out-
performed all intervention combinations which
excluded the SENS intervention here.

Normal burden setting

Table 2 provides the numerical summary of the six
outcome measures under the baseline and the various
combinations of the five interventions investigated and
Table 3 lists the θ comparisons for optimal interven-
tions of different sizes. The baseline scenario refers
to the case without any interventions.

There were great improvements in reducing the AR
outcome when increasing the number of interventions
by up to three with the optimal triplet being {COA,
ENV, CP} [2·66 (2·20−3·31) × 10−3] (values in paren-
theses are 95% confidence intervals). This triplet out-
performed the best single intervention [CP with AR
of 4·32 (3·69−5·05) × 10−3] and intervention pair
[{COA, CP} with AR of 3·35 (2·88−4·01) × 10−3].
The addition of one extra intervention (either
DECOL or SENS) did not seem to have a marked
effect on the AR distribution [2·50 (2·13−3·02) ×
10−3 and 2·53 (2·19−2·92) × 10−3, respectively].
However, there is a benefit in implementing all five
interventions [AR = 2·39 (2·11−2·71) × 10−3] com-
pared to just the best three interventions.

For the Cxd outcome, the two best performing pairs
[{ENV, CP} and {COA, CP} with Cxd of 17·59 (10–
27) and 17·60 (9–28), respectively] performed slightly
better compared with the best single intervention
[CP with Cxd of 20·78 (12–31)]. A similar performance
gain was noted when comparing the best intervention
triplet [{COA, ENV, CP} with Cxd = 14·29 (6–24)] to
both the best performing pairs. There does not appear
to be substantial changes in the Cxd difference when
comparing across the best performing triplet, quartets
[{COA, ENV, CP, SENS} and {COA, ENV, CP,
DECOL} with Cxd of 13·65 (6–23) and 13·94 (6–23),
respectively] and the combination of all interventions
[13·44 (6–22)], indicating that there is little gain from
considering anything beyond the best performing trip-
let in reducing the distributional outcome of Cxd for
this scenario.

Comparing across different intervention sizes for
the Cd outcome, there are notable reductions in sup-
port for considering additional numbers of interven-
tions up to the best performing intervention triplet
[{COA, ENV, CP} with Cd of 13·96 (6–24)]. The
best performing single intervention for the Cd
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outcome was COA [24·22 (14–36)] and the best per-
forming intervention pair was {COA, CP} (17·21
(9·5–27). There are no discernible differences in the
Cd outcome distributions in implementing all five
interventions [Cd= 13·43 (6–22)] or either of the two
best performing quartets identified [{COA, ENV,
CP, DECOL} and {COA, ENV, CP, SENS} with
Cd of 13·32 (6–22) and 13·95 (6–23), respectively]
compared to having just the best performing interven-
tion triplet (with θ estimates ranging from 0·46 to
0·50).

High burden setting

The mean and 95% CIs for the six outcome measures
across the different intervention combinations consid-
ered are listed in Table 4. Compared to the baseline

scenario in the normal burden setting (Table 2), we
see notable increases in the average AR, Cxd, Cd, Ixd
and Id outcomes but a slight reduction in the AC out-
come likely due to the decreased number of admis-
sions overall as colonized and infected patients stay
in the ward longer. The comparisons across optimal
interventions of different sizes are provided in Table
5 for the high burden setting.

For the AR outcome in the high burden setting,
there is evidence to consider implementing the
maximum number of interventions possible (subject
to resource constraint) beginning with the CP inter-
vention [12·44 (10·14− 14·83) × 10−3], followed by
the SENS intervention [{CP, SENS} with AR of
9·50 (8·35− 10·79) × 10−3], either the COA or ENV
intervention [{COA, CP, SENS} with AR of 7·88
(6·77− 9·14) × 10−3 or {ENV, CP, SENS} with AR

Table 2. Numerical summaries of output measures for normal burden setting

AR × 103 AC Cxd Cd Ixd Id

Baseline 6·14 (5·15–7·17) 20·91 (12·50–30) 28·53 (17–41·5) 48·24 (34–63) 0·56 (0–2) 0·56 (0–2)
COA 4·82 (4·04–5·71) 0 24·79 (14–37) 24·22 (14–36) 0·27 (0–2) 0·27 (0–2)
ENV 5·14 (4·30–6·22) 21·22 (13–30) 24·10 (13–35) 44·26 (31–58) 0·51 (0–2) 0·50 (0–2)
CP 4·32 (3·69–5·05) 21·52 (13–30) 20·78 (12–31) 41·29 (30–55) 0·47 (0–2) 0·47 (0–2)
SENS 5·69 (4·98–6·43) 22·07 (14–31) 27·13 (17–40) 49·20 (36–64) 0 0
DECOL 5·57 (4·79–6·61) 23·57 (15–34) 27·57 (16–41) 49·91 (36–66) 0·59 (0–2) 0·58 (0–2)
COA, ENV 3·84 (3·13–4·76) 0 19·94 (10–32) 19·44 (10–30) 0·23 (0–1) 0·23 (0–1)
COA, CP 3·35 (2·88–4·01) 0 17·59 (10–27) 17·21 (9·5–27) 0·18 (0–1) 0·18 (0–1)
COA, SENS 4·58 (3·95–5·35) 0 23·98 (13–37) 23·98 (13–37) 0 0
COA, DECOL 4·50 (3·88–5·32) 0 24·26 (13·5–36) 23·70 (13–35) 0·27 (0–2) 0·27 (0–2)
ENV, CP 3·64 (3·00–4·37) 21·76 (13·5–31) 17·60 (9–28) 38·37 (26–51) 0·47 (0–2) 0·46 (0–2)
ENV, SENS 4·77 (4·08–5·52) 22·43 (14–31) 23·33 (13–35) 45·76 (32–61) 0 0
ENV, DECOL 4·65 (3·84–5·55) 23·74 (15–33) 23·37 (13–35) 45·98 (32–61) 0·55 (0–2) 0·55 (0–2)
CP, SENS 4·05 (3·56–4·57) 22·80 (14–32) 19·83 (11–30) 42·63 (30–57) 0 0
CP, DECOL 3·98 (3·42–4·67) 23·97 (14·5–33·5) 20·37 (11–31) 43·25 (30–58) 0·58 (0–2) 0·58 (0–2)
SENS, DECOL 5·12 (4·55–5·72) 24·77 (16–35) 26·34 (16–38) 51·11 (36–66) 0 0
COA, ENV, CP 2·66 (2·20–3·31) 0 14·29 (6–24) 13·96 (6–24) 0·15 (0–1) 0·16 (0–1)
COA, ENV, SENS 3·59 (3·04–4·25) 0 18·91 (10–30) 18·91 (10–30) 0 0
COA, ENV, DECOL 3·54 (2·98–4·35) 0 19·02 (10–29) 18·57 (10–28) 0·20 (0–1) 0·20 (0–1)
COA, CP, SENS 3·22 (2·82–3·67) 0 17·47 (9–28) 17·48 (9–28) 0 0
COA, CP, DECOL 3·18 (2·77–3·79) 0 17·33 (8–28) 16·90 (8–27) 0·19 (0–1) 0·19 (0–1)
COA, SENS, DECOL 4·24 (3·81–4·71) 0 23·12 (13–34) 23·14 (13–34) 0 0
ENV, CP, SENS 3·38 (2·88–3·92) 22·62 (14–31·50) 16·82 (8–27) 39·45 (26·50–53) 0 0
ENV, CP, DECOL 3·30 (2·80–3·95) 23·76 (15–33) 16·96 (8–27) 39·72 (27–54) 0·48 (0–2) 0·48 (0–2)
ENV, SENS, DECOL 4·21 (3·65–4·79) 24·70 (15–35) 21·71 (12–33) 46·38 (31–63·5) 0 0
CP, SENS, DECOL 3·67 (3·26–4·08) 24·58 (16–34) 19·12 (10–29) 43·70 (31–59) 0 0
COA, ENV, CP, SENS 2·53 (2·19–2·92) 0 13·94 (6–23) 13·95 (6–23) 0 0
COA, ENV, CP, DECOL 2·50 (2·13–3·02) 0 13·65 (6–23) 13·32 (6–22) 0·15 (0–1) 0·14 (0–1)
COA, ENV, SENS, DECOL 3·34 (2·91–3·81) 0 18·57 (9–29·5) 18·57 (9–29·5) 0 0
COA, CP, SENS, DECOL 3·04 (2·73–3·38) 0 16·88 (9–27) 16·87 (9–27) 0 0
ENV, CP, SENS, DECOL 3·02 (2·66–3·41) 24·96 (16–35·5) 15·88 (9–25) 40·84 (28–56) 0 0
All 2·39 (2·11–2·71) 0 13·44 (6–22) 13·43 (6–22) 0 0

For explanation of abbreviations in column 1 see ‘Interventions’ section in main text. Values in parentheses are 95% confi-
dence intervals.
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7·97 (6·71− 9·24) × 10−3] or both [{COA, ENV, CP,
SENS} with AR 6·25 (5·10, 7·53) × 10−3], up to
all five interventions [5·55 (4·73, 6·46) × 10−3]. The
reduction in the AR distribution when moving from
the best performing quartet to all intervention was
not as marked as the other increases in intervention
sizes.

Only small gains were obtained from increasing the
size of the intervention combinations sequentially for
the Cxd outcome. More notable reductions were
obtained by moving from the best performing single
intervention [CP with Cxd of 45·46 (30–61)] to at
least one of the best performing triplets [{ENV, CP,
SENS}, {COA, ENV, CP} or {COA, CP, SENS}
with Cxds of 36·57 (23–50), 37·24 (22–53) and 39·21
(26–55), respectively], and similarly from one of the
best performing intervention pairs [{ENV, CP},
{CP, SENS} or {COA, CP} with Cxds of 40·95 (28–
55·5), 42·70 (29·5–58) and 43·56 (28–60), respectively]
to either the {COA, ENV, CP, SENS} quartet [32·02
(19–46)] or all five interventions [29·95 (17–45)].

For the Cd outcome measure, the results obtained
suggest it would be beneficial to consider up to the
best performing triplet of interventions [{COA,
ENV, CP} with Cd 33·85 (20–49)] subject to resource
constraints. The best performing single interventions
were COA [53·96 (39–72·5)] and CP [55·58 (39–74)],
and the best performing intervention pair was
{COA, CP} [39·72 (26–55)]. There was only a slight
gain in moving from the best performing triplet to
the combination of all interventions [29·95 (17–45)].
The two best performing intervention quartets
[{COA, ENV, CP, SENS} and {COA, ENV, CP,
DECOL} with Cd’s of 32·02 (19–46) and 32·80 (19–
49), respectively, did not yield Cd distributions sub-
stantially different from the best performing triplet.

DISCUSSION

The results obtained from the proposed stochastic
model showed that there are differences in the optimal
set of interventions depending on the outcome

Table 3. Summary of intervention combination comparisons for the normal burden setting

Outcome Comparison θ̂ (95% CI)

AR CP vs. baseline 0·00 (0·00–0·00)
{COA, CP} vs. CP 0·02 (0·01–0·03)
{COA, ENV, CP} vs. {COA, CP} 0·04 (0·04–0·06)
{COA, ENV, CP, DECOL} vs. {COA, ENV, CP} 0·33 (0·30–0·35)
{COA, ENV, CP, SENS} vs. {COA, ENV, CP} 0·38 (0·35–0·40)
All vs. {COA, ENV, CP} 0·20 (0·18–0·22)
All vs. {COA, ENV, CP, DECOL} 0·35 (0·33–0·38)
All vs. {COA, ENV, CP, SENS} 0·28 (0·26–0·30)

Cxd CP vs. baseline 0·17 (0·15–0·19)
{COA, CP} vs. CP 0·32 (0·30–0·35)
{ENV, CP} vs. CP 0·33 (0·30–0·35)
{COA, ENV, CP} vs. {COA, CP} 0·30 (0·28–0·33)
{COA, ENV, CP} vs. {ENV, CP} 0·31 (0·29–0·33)
{COA, ENV, CP, DECOL} vs. {COA, ENV, CP} 0·46 (0·44–0·49)
{COA, ENV, CP, SENS} vs. {COA, ENV, CP} 0·48 (0·46–0·51)
All vs. {COA, ENV, CP} 0·45 (0·42–0·47)
All vs. {COA, ENV, CP, DECOL} 0·49 (0·46–0·51)
All vs. {COA, ENV, CP, SENS} 0·47 (0·44–0·49)

Cd COA vs. baseline 0·01 (0·00–0·01)
{COA, CP} vs. COA 0·17 (0·15–0·19)
{COA, ENV, CP} vs. {COA, CP} 0·31 (0·28–0·33)
{COA, ENV, CP, DECOL} vs. {COA, ENV, CP} 0·46 (0·44–0·49)
{COA, ENV, CP, SENS} vs. {COA, ENV, CP} 0·50 (0·48–0·53)
All vs. {COA, ENV, CP} 0·47 (0·44–0·49)
All vs. {COA, ENV, CP, DECOL} 0·51 (0·48–0·53)
All vs. {COA, ENV, CP, SENS} 0·47 (0·44–0·49)

CI, Confidence interval.
For explanation of abbreviations in Comparison column see ‘Interventions’ section in main text.
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Table 4. Numerical summaries of output measures for high burden setting

AR × 103 AC Cxd Cd Ixd Id

Baseline 18·63 (15·63–21·56) 13·83 (6–23) 60·73 (45–78) 68·07 (49–88) 4·20 (1–8) 4·20 (1–8)
COA 16·22 (12·55–19·76) 0 59·22 (43·5–78) 53·96 (39–72·5) 3·41 (0–8) 3·41 (0–8)
ENV 16·42 (13·16–19·59) 14·32 (6–24) 55·39 (39·5–72) 63·52 (47–82) 3·97 (1–8) 3·97 (1–8)
CP 12·44 (10·14–14·83) 15·57 (7–25) 45·46 (30–61) 55·58 (39–74) 3·52 (0–7) 3·52 (0–7)
SENS 14·00 (12·17–15·92) 20·20 (13–29) 58·57 (42–75) 78·79 (61–98) 0 0
DECOL 17·61 (14·26–20·91) 16·44 (7–27) 63·51 (45–82) 72·99 (52–96) 4·52 (1–9) 4·51 (1–9)
COA, ENV 13·70 (9·91–17·42) 0 52·63 (34–70·5) 47·98 (31·5–65) 3·04 (0–7) 3·05 (0–7)
COA, CP 10·33 (7·94–13·11) 0 43·56 (28–60) 39·72 (26–55) 2·45 (0–6) 2·44 (0–6)
COA, SENS 11·85 (10·13–13·83) 0 54·80 (37–73·5) 54·81 (37–73) 0 0
COA, DECOL 14·85 (11·32–18·85) 0 61·01 (43–80·5) 55·65 (38–74) 3·33 (0–7·5) 3·33 (0–8)
ENV, CP 10·82 (8·63–13·19) 16·12 (8–25) 40·95 (28–55·5) 52·04 (37–68) 3·26 (0–7) 3·26 (0–7)
ENV, SENS 11·90 (10·05–13·81) 20·70 (12–30) 51·55 (36–69) 72·25 (54–93) 0 0
ENV, DECOL 15·33 (11·98–18·64) 17·20 (8–27) 57·71 (41–77) 68·36 (49·5–88) 4·22 (1–8) 4·23 (1–8)
CP, SENS 9·50 (8·35–10·79) 21·33 (13–30) 42·70 (29·5–58) 64·05 (48–81) 0 0
CP, DECOL 11·66 (9·34–14·13) 18·35 (9–28) 46·70 (32·5–63) 59·37 (43–79) 3·65 (1–8) 3·66 (1–8)
SENS, DECOL 12·22 (10·71–13·81) 24·48 (16–34) 58·48 (41·5–79) 82·98 (63–105) 0 0
COA, ENV, CP 8·51 (6·09–11·46) 0 37·24 (22–53) 33·85 (20–49) 2·23 (0–6) 2·23 (0–6)
COA, ENV, SENS 9·56 (7·72–11·62) 0 45·56 (27·5–63) 45·53 (27·5–63) 0 0
COA, ENV, DECOL 12·44 (8·80–16·63) 0 52·54 (35–72) 47·73 (32–66·5) 3·10 (0–7) 3·08 (0–7)
COA, CP, SENS 7·88 (6·77–9·14) 0 39·21 (26–55) 39·22 (26–55) 0 0
COA, CP, DECOL 9·55 (7·30–12·11) 0 43·19 (28–59) 39·34 (26–54·5) 2·47 (0–6) 2·48 (0–6)
COA, SENS, DECOL 10·33 (8·89–11·77) 0 52·55 (34–71) 52·52 (34–71·5) 0 0
ENV, CP, SENS 7·97 (6·71–9·24) 21·55 (14–30) 36·57 (23–50) 58·10 (42–74) 0 0
ENV, CP, DECOL 10·11 (7·72–12·68) 18·54 (9–29) 41·32 (27–57) 54·60 (39–72·5) 3·43 (0–7) 3·42 (0–7)
ENV, SENS, DECOL 10·14 (8·65–11·60) 24·76 (15–35) 49·23 (33–66·5) 73·98 (53–94) 0 0
CP, SENS, DECOL 8·38 (7·40–9·38) 24·59 (15–34) 41·43 (28–56) 65·97 (49–84) 0 0
COA, ENV, CP, SENS 6·26 (5·10–7·53) 0 32·02 (19–46) 32·02 (19–46) 0 0
COA, ENV, CP, DECOL 7·71 (5·51–10·51) 0 36·02 (20–53) 32·80 (19–49) 2·08 (0–5·5) 2·08 (0–5·5)
COA, ENV, SENS, DECOL 8·18 (6·90–9·61) 0 42·35 (25·5–60·5) 42·37 (26–60·5) 0 0
COA, CP, SENS, DECOL 7·03 (6·26–7·93) 0 37·21 (24–53) 37·22 (24–53) 0 0
ENV, CP, SENS, DECOL 6·92 (5·96–7·96) 24·59 (15–35) 34·80 (22–50) 59·40 (41–78·5) 0 0
All 5·55 (4·73–6·46) 0 29·95 (17–45) 29·95 (17–45) 0 0

For explanation of abbreviations in column 1 see ‘Interventions’ section in main text.Values in parentheses are 95% confidence intervals.
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measure of interest as well as the burden setting of the
pathogen (as summarized in Table 6).

For the AC outcome, Ixd and Id outcome measures
where one of the interventions considered eradicated

the respective outcome measure (COA for the AC out-
come and SENS for both Ixd and Id), only that par-
ticular intervention was required. This finding,
particular for the Ixd and Id outcome measures, may

Table 5. Summary of intervention combination comparisons for the normal burden setting

Outcome Comparison θ̂ (95% CI)

AR CP vs. baseline 0·00 (0·00–0·00)
{CP, SENS} vs. CP 0·01 (0·01–0·02)
{COA, CP, SENS} vs. {CP, SENS} 0·03 (0·02–0·04)
{ENV, CP, SENS} vs. {CP, SENS} 0·04 (0·04–0·05)
{COA, ENV, CP, SENS} vs. {COA, CP, SENS} 0·03 (0·02–0·04)
{COA, ENV, CP, SENS} vs. {ENV, CP, SENS} 0·03 (0·02–0·04)
All vs. {COA, ENV, CP, SENS} 0·16 (0·15–0·18)

Cxd CP vs. baseline 0·09 (0·08–0·10)
{ENV, CP} vs. CP 0·33 (0·31–0·36)
{CP, SENS} vs. CP 0·39 (0·37–0·42)
{COA, CP} vs. CP 0·43 (0·40–0·45)
{ENV, CP, SENS} vs. CP 0·19 (0·18–0·21)
{COA, ENV, CP} vs. CP 0·22 (0·20–0·24)
{COA, CP, SENS} vs. CP 0·27 (0·25–0·30)
{ENV, CP, SENS} vs. {ENV, CP} 0·33 (0·31–0·36)
{COA, ENV, CP} vs. {ENV, CP} 0·36 (0·34–0·38)
{COA, CP, SENS} vs. {ENV, CP} 0·43 (0·40–0·45)
{ENV, CP, SENS} vs. {CP, SENS} 0·27 (0·25–0·30)
{COA, ENV, CP} vs. {CP, SENS} 0·30 (0·28–0·33)
{COA, CP, SENS} vs. {CP, SENS} 0·37 (0·34–0·39)
{ENV, CP, SENS} vs. {COA, CP} 0·25 (0·23–0·27)
{COA, ENV, CP} vs. {COA, CP} 0·28 (0·26–0·30)
{COA, CP, SENS} vs. {COA, CP} 0·34 (0·32–0·36)
{COA, ENV, CP, SENS} vs. {ENV, CP} 0·19 (0·17–0·21)
{COA, ENV, CP, SENS} vs. {CP, SENS} 0·15 (0·13–0·17)
{COA, ENV, CP, SENS} vs. {COA, CP} 0·14 (0·12–0·16)
{COA, ENV, CP, SENS} vs. {ENV, CP, SENS} 0·33 (0·30–0·35)
{COA, ENV, CP, SENS} vs. {COA, ENV, CP} 0·32 (0·29–0·34)
{COA, ENV, CP, SENS} vs. {COA, CP, SENS} 0·25 (0·23–0·27)
All vs. {ENV, CP} 0·13 (0·12–0·15)
All vs. {CP, SENS} 0·10 (0·09–0·12)
All vs. {COA, CP} 0·10 (0·08–0·11)
All vs. {ENV, CP, SENS} 0·25 (0·23–0·27)
All vs. {COA, ENV, CP} 0·24 (0·22–0·26)
All vs. {COA, CP, SENS} 0·18 (0·16–0·20)
All vs. {COA, ENV, CP, SENS} 0·42 (0·39–0·44)

Cd COA vs. baseline 0·14 (0·12–0·15)
{COA, CP} vs. COA 0·10 (0·09–0·11)
{COA, ENV, CP} vs. COA 0·03 (0·03–0·04)
{COA, ENV, CP} vs. {COA, CP} 0·28 (0·26–0·30)
{COA, ENV, CP, SENS} vs. {COA, CP} 0·23 (0·21–0·25)
{COA, ENV, CP, DECOL} vs. {COA, CP} 0·25 (0·23–0·27)
{COA, ENV, CP, SENS} vs. {COA, ENV, CP} 0·43 (0·41–0·46)
{COA, ENV, CP, DECOL} vs. {COA, ENV, CP} 0·46 (0·43–0·48)
All vs. {COA, CP} 0·16 (0·15–0·18)
All vs. {COA, ENV, CP} 0·35 (0·32–0·37)
All vs. {COA, ENV, CP, SENS} 0·42 (0·39–0·44)
All vs. {COA, ENV, CP, DECOL} 0·39 (0·37–0·41)

CI, Confidence interval.
For explanation of abbreviations in Comparison column see ‘Interventions’ section in main text.
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not be very realistic given that there is always some
amount of delay between sample collection and the
corresponding action based on the screening results.
However, the θ performance measure still showed
that in the normal burden setting, eradication of Ixd
and Id was only a slight improvement compared
with the other intervention combinations and the
baseline on the account of the already low baseline
Ixd and Id prevalence. This is not the case in the
high burden setting where eradication of the Ixd and
Id outcomes with the SENS intervention was mark-
edly different from the other intervention combina-
tions which exclude SENS and the baseline scenario.
The addition of the aforementioned small delay
would have affected all scenarios considered equally
and would unlikely have changed the finding in the
normal burden setting. It is also unlikely to change
the findings in the high burden setting unless the
delay was substantive (of the order of days).

The model presented used parameter estimates
combined from multiple sources. While it would be
ideal if the model parameters were all obtained from
one source, this is frequently not the case in such mod-
elling studies where the hypothetical investigations
considered typically require some form of data colla-
tion from multiple sources in order to fully paramet-
rize the model [5–10]. It could also be argued that
this provides such modelling studies with a level of
flexibility that could not be obtained from clinical

intervention studies. The lack of additional individual
patient data for this study also precluded demonstra-
tion of the full utility of the individual-based patient
transition component in the model. For this applica-
tion, only the patient transition from Id to Cd was
based on their individual infection times (see expres-
sion for rC). However, the model can readily include
individual-specific covariates into other transition
probabilities in the model as well.

There are a number of extensions to the stochastic
model proposed here that were not considered. Most
of these extensions also involve additional data struc-
tures that are not readily available.

One such extension is to generalize the force of
infection term such that the colonization threshold is
no longer constant [23]. Under the current model for-
mulation, the probability of a patient being colonized
is only a function of the current force of infection.
However, the generalization proposed in Streftaris &
Gibson [23] allows for this transition to also depend
on the accumulation of the force of infection terms
from a patient’s admission date to their colonization
date. This quantity is known as the colonization
threshold and requires prior knowledge or imputation
of the colonization date in order to compute it. This
extension is another approach to incorporate patient
heterogeneity into the model, specifically related to
patient susceptibility.

Another potential extension is to extend the one
ward model to a multi-ward model using one of the
meta-population models [31, 32] such as the multi-
patch models (where each patch represents a ward)
or more generally, temporal network models taking
into account the fact that the edges between nodes
change quite frequently with staff shift changes, and
patient admissions and discharges, making the tem-
poral element of the network more important [33,
34]. The high-frequency contact data required for
such models have only recently started to be collected
[35] and could prove to be a promising research
avenue in providing a realistic, detailed representation
of hospital pathogen transmission in a ward.

The inclusion of explicit representations of HCWs’
roles in the pathogen transmission could be considered
in extensions of the model presented here. While hav-
ing explicit representation of HCWs allows for more
realistic investigation of HCW-related interventions,
this extension requires either incorporation of add-
itional model assumptions on the HCWs’ behaviours,
or substantial additional data collection as HCWs are
known to be highly heterogeneous population with

Table 6. Overall order of importance for the five
interventions considered under the normal and high
burden setting

Outcome Normal burden setting High burden setting

AR CP, COA, ENV,
DECOL ↔ SENS

CP, SENS, COA ↔
ENV, DECOL

AC COA || COA || .
Cxd CP, COA ↔ ENV ||

DECOL ↔ SENS
CP, ENV ↔ COA ↔
SENS || DECOL

Cd COA, CP, ENV ||
DECOL ↔ SENS

COA ↔ CP, ENV ||
SENS ↔ DECOL

Ixd SENS || SENS ||
Id SENS || SENS ||

For explanation of abbreviations in last two columns see
‘Interventions’ section in main text.
↔ Denotes exchangeability in the order of the interventions
and || denotes the optimal sized interventions, i.e. addition of
interventions to the right of the || symbol would not affect
the associated outcome measure.
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different HCW categories (e.g. nurses, physicians,
technicians) having differing patient contact rates,
compliance levels to infection control and prevention
practices, and work schedules [15–19]. Moreover,
due to the low carriage rates in HCW reported [11],
frequent screening of HCWs would be required in
order to accurately quantify the temporary contamin-
ation status of HCWs, which is associated with high
cost and staff time. It is also likely that this extension
would require the aforementioned multi-ward exten-
sion to realistically capture the impact of HCWs in
MRSA transmission as HCWs tend to work across
multiple wards.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit https://doi.org/10.1017/S0950268816002880.
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