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COMPARISON OF MEASURES OF
TOTALLY POSITIVE POLYNOMIALS
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Abstract

In this paper, explicit auxiliary functions are used to get upper and lower bounds for the Mahler measure
of monic irreducible totally positive polynomials with integer coefficients. These bounds involve the
length and the trace of the polynomial.

1. Introduction

Let P = a0xd + a1xd−1 + · · · + ad = a0(x − α1) · · · (x − αd) be a polynomial with
complex coefficients.

We define:
• the trace of P as trace(P) =

∑d
i=1 αi;

• the length of P as L(P) =
∑d

i=0 |ai|;
• the Mahler measure of P as M(P) = |a0|

∏d
i=1 max{1, |αi|}.

We have the well-known inequality 2−d L(P) ≤M(P) ≤ L(P). (For more details,
see [Mi].)

Now we consider a polynomial P which is monic and totally positive (that is, its
roots are all positive real numbers). In this case, L(P) = |P(−1)| =

∏d
i=1(1 + αi). Then

we have the basic inequality log L(P) ≤ trace(P).
In this paper, we prove the following results.

T 1.1. If P is a totally positive monic irreducible polynomial of degree d with
integer coefficients, different from x, x − 1, x2 − 3x + 1, x4 − 7x3 + 13x2 − 7x + 1, x2 −

4x + 1, x6 − 12x5 + 44x4 − 67x3 + 44x2 − 12x + 1 and x8 − 15x7 + 83x6 − 220x5 +

303x4 − 220x3 + 83x2 − 15x + 1, then

max{2−d L(P), 1.058358d L(P)0.562454} ≤M(P) ≤min{L(P), 0.379128d L(P)1.803995}.
(1.1)

T 1.2. If P is a totally positive monic irreducible polynomial of degree d with
integer coefficients, different from x − 1, x − 2, x − 3, x2 − 3x + 1, x3 − 5x2 + 6x − 1
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and x3 − 5x2 + 5x + 1, then

log L(P)1/d ≤min
{1

d
trace(P), 0.051012 + 0.472699

1
d

trace(P)
}
. (1.2)

T 1.3. If P is a totally positive monic irreducible polynomial of degree d with
integer coefficients and with all roots in [0, 1000], different from x and x − 1, then

log L(P)1/d ≥ 0.801729 + 0.001990
1
d

trace(P). (1.3)

The proofs of these theorems use the principle of explicit auxiliary functions that
was introduced by Smyth [Sm1]. The method is based on the fact that the resultant of
two polynomials in Z[X] with no common roots is a nonzero integer.

For example, to obtain the lower bound in (1.1), we use the auxiliary function

f (x) = log max{1, x} − c0 log(x + 1) −
∑

1≤ j≤J

c j log |Q j(x)| ≥ m for x > 0, (1.4)

where the c j are positive real numbers and the polynomials Q j are nonzero elements
of Z[X]. Then

d∑
i=1

f (αi) ≥ md,

that is,

log M(P) ≥ md + c0 log L(P) +
∑

1≤ j≤J

c j log
∣∣∣∣∣ d∏

i=1

Q j(αi)
∣∣∣∣∣.

We assume that P does not divide any Q j. Then
∏d

i=1 Q j(αi) is a nonzero integer
because it is the resultant of P and Q j.

Therefore, if P does not divide any Q j, then

M(P) ≥ emd L(P)c0 .

To get the upper bound for M(P), we use the auxiliary function

f (x) = −log max{1, x} + c0 log(x + 1) −
∑

1≤ j≤J

c j log |Q j(x)| ≥ m for x > 0.

The upper bound in (1.2) is obtained with the auxiliary function

f (x) = −log(x + 1) + c0x −
∑

1≤ j≤J

c j log |Q j(x)| ≥ m for x > 0.

In general, it is not possible to get a lower bound for L(P) involving trace(P) with
an auxiliary function. But, if we assume that the polynomial P has all its roots in an
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interval that is not too large, for instance [0, 1000], then we can get a result of the
type (1.3) with the auxiliary function

f (x) = log(x + 1) − c0x −
∑

1≤ j≤J

c j log |Q j(x)| ≥ m for x ∈ [0, 1000].

Usually, the main problem is then to find a good list of polynomials Q j which gives
a value of m as large as possible. This is feasible by an inductive version of Wu’s
algorithm (for details, see [F2]) and it can happen that a great number of polynomials
are useful (for example, 35 to get a lower bound for the trace; see [F2]). Here, we want
to have only a few exceptional polynomials so that we stop the algorithm fairly quickly
and thus we accept that our m is not the best possible, but is nonetheless sufficiently
large to give good inequalities.

In Section 2 we explain how to construct the auxiliary function (1.4). The same
method works for the other auxiliary functions. We also give a table of all polynomials
involved in the different auxiliary functions and their coefficients. In Section 3, we give
numerical examples for a particular family of polynomials. All the computations are
done on a MacBook Pro Macintosh with the languages Pascal and Pari [Pari].

2. Construction of the explicit auxiliary function

2.1. Rewriting the auxiliary function. In the auxiliary function (1.4) we replace
the numbers c j by rational numbers.

So we may write

f (x) = log max{1, x} − c0 log(x + 1) −
t
r

log |Q(x)| ≥ m for x > 0, (2.1)

where Q ∈ Z[X] is of degree r and t is a positive real number. We want to obtain
a function f whose minimum m on (0,∞) is sufficiently large. Thus we seek a
polynomial Q ∈ Z[X] such that

sup
x>0
|Q(x)|t/r

max{1, x}
(x + 1)c0

≤ e−m.

If we suppose that t is fixed, we need to get an effective upper bound for the quantity

tZ,ϕ([0,∞)) = lim inf
r→+∞

inf
P∈Z[x]

deg(P)=r

sup
x>0
|P(x)|t/rϕ(x),

in which we use the weight ϕ(x) = max{1, x}/(x + 1)c0 .
It is clear that this quantity is closely related to the usual integer transfinite diameter

of an interval I = [a, b], which is defined as

tZ(I) = lim inf
n→+∞

inf
P∈Z[x]

deg(P)=n

|P|1/n
∞,I ,

where |P|∞,I = supt∈I |P(t)| for all P ∈ Z[x].
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2.2. How to find the polynomials Q j. Consider the auxiliary function

f (x) = log max{1, x} − c0 log(x + 1) −
∑

1≤ j≤J

c j log |Q j(x)| ≥ m for x > 0.

The main idea is to find the polynomials Q j by induction. We first optimise the
auxiliary function f1 = log max{1, x} − c0 log(1 + x) − c1 log x. Then we take t =

c0 deg(x + 1) + c1 deg(x). Suppose that we have Q1, . . . , QJ and an optimal function
f for this set of polynomials in the form (2.1) with t =

∑J
j=0 c j deg(Q j). We seek a

polynomial R(x) =
∑k

l=0 alxl ∈ Z[x] of degree k (k = 10, for example) such that

sup
x∈I
|Q(x)R(x)|t/(r+k) (1 + x)c0

max{1, x}
≤ e−m,

that is, such that

sup
x∈I
|Q(x)R(x)|

( (1 + x)c0

max{1, x}

)(r+k)/t

is as small as possible. We apply LLL to the linear forms in the unknown coefficients
al,

Q(xi)R(xi)
( (1 + xi)c0

max{1, xi}

)(r+k)/t

.

The numbers xi are suitable points in I = [0, 50] here, including the points where
f has its least local minima. We get a polynomial R whose irreducible factors R j are
good candidates to enlarge the set of polynomials (Q1, . . . , QJ). We only keep the
polynomials R j which have a nonzero coefficient c j in the new optimised auxiliary
function f . After optimisation, some previous polynomials Q j may have a zero
coefficient and are removed.

2.3. Optimisation of the c j. For the optimisation of the auxiliary function we use
the semi-infinite linear programming method due to Smyth [Sm1]. We recall it briefly.
We define by induction a sequence of finite sets Xn, n ≥ 0, with Xn ⊂ [0,∞). We start
with an arbitrary set of points X0 of cardinality greater than J. At each step n ≥ 0,
we compute the best values for c j by linear programming on the set Xn. We obtain a
function fn whose minimum mn = minx∈Xn fn(x) is greater than m′n = minx>0 fn(x). We
add to Xn the points of [0,∞) where fn has a local minimum smaller than mn + εn,
where (εn)n≥0 is a decreasing sequence of positive numbers tending to 0 when n is
increasing and chosen such that the set Xn does not increase too quickly. We stop for
instance when mn − m′n < 10−6. If k steps are necessary, we take m = m′k.
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T 1. Polynomials Q j and their coefficients c j, 1 ≤ j ≤ J, the coefficient c0 and the value of m for each
inequality of Theorems 1.1, 1.2 and 1.3.

Theorem Q j c j c0 m

Theorem 1.1 Q1 Q2 Q5 0.026208 0.271988 0.023069 0.562454 1.058358
left hand-side Q9 Q10 Q11 0.008883 0.000895 0.003261
Theorem 1.1 Q1 Q6 0.371232 0.030766 1.803995 0.379128
right hand-side
Theorem 1.2 Q2 Q3 Q4 0.134876 0.062529 0.004051 0.472699 −0.051012

Q5 Q7 Q8 0.046880 0.001968 0.018628
Theorem 1.3 Q1 Q2 0.399387 0.196606 0.001990 0.801729

2.4. Numerical results. The polynomials used in the different auxiliary functions
are:

Q1 = x,

Q2 = x − 1,

Q3 = x − 2,

Q4 = x − 3,

Q5 = x2 − 3x + 1,

Q6 = x2 − 4x + 1,

Q7 = x3 − 5x2 + 5x + 1,

Q8 = x3 − 5x2 + 6x − 1,

Q9 = x4 − 7x3 + 13x2 − 7x + 1,

Q10 = x6 − 12x5 + 44x4 − 67x3 + 44x2 − 12x + 1,

Q11 = x8 − 15x7 + 83x6 − 220x5 + 303x4 − 220x3 + 83x2 − 15x + 1.

Table 1 gives for each inequality of the different theorems the polynomials Q j and their
coefficients c j, 1 ≤ j ≤ J, the coefficient c0 and the value of m.

3. Numerical example

The Gorshkov–Wirsing polynomials are defined as follows:

P0(X) = X − 1 and Pn(X) = Xdeg(Pn−1)Pn−1

(
X +

1
X
− 2

)
for n ≥ 1.

Smyth [Sm2] showed that the sequence (M(Pn)1/deg(Pn))n≥0 has a limit point l =

1.727305 . . . . The author [F3] proved that the sequence (L(Pn)1/deg(Pn))n≥0 has a limit
point l′ = 2.376841 . . . . It is easy to see that the sequence ((1/deg(Pn)) trace(Pn))n≥0

has a limit point l′′ = 2.
Previously, the author [F1] obtained, without explicit auxiliary functions, the

following theorem.
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T 3.1. Let P be a totally positive monic irreducible polynomial of degree d with
integer coefficients and not divisible by x and x − 1. Then(1 +

√
5

2

)d(L(P)
5d/2

)(5−
√

5)/2

≤M(P) ≤
(1 +

√
5

2

)d(L(P)
5d/2

)√5

.

For the family of polynomials (Pn)n≥0, this gives

1.687734 < lim
n→∞

M(Pn)1/deg(Pn) = 1.727305 . . . < 1.854643,

whereas, by Theorem 1.1, we obtain the better inequalities

1.722326 < lim
n→∞

M(Pn)1/deg(Pn) = 1.727305 . . . < 1.807488.

By Theorems 1.2 and 1.3,

0.851529 < lim
n→∞

log L(Pn)1/deg(Pn) = 0.8657723 . . . < 0.99641.

Thus, we see that for this particular family of polynomials the inequalities are quite
good.
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