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EXISTENCE OF AN ORDER-PRESERVING FUNCTION

ON NORMALLY PREORDERED SPACES

GHANSHYAM MEHTA

The object of this paper is to generalize the classic theorems

of Eilenberg and Debreu on the existence of continuous order-

preserving transformations on ordered topological spaces and to

prove them in a different way. The proof of the theorems is

based on Nachbin's generalization to ordered topological spaces

of Urysohn's separation theorem in normal topological spaces.

Introduction.

Eilenberg [2] has proved the existence of a continuous order-

preserving transformation on a connected and topologically separable

ordered topological space. Debreu [J] has proved the existence of a

continuous order-preserving transformation on a second countable ordered

topological space.

The object of this paper is to prove a theorem which generalizes

the theorems of Eilenberg and Debreu and to deduce these classic theorems

as corollaries. The proof of this theorem is based on Nachbin's

generalization to ordered topological spaces of Urysohn's separation
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theorem in normal topological spaces and is different from the proofs

given by Eilenberg and Debreu, It will be proved that a partially

preordered space which is normally preordered and order-separable, has a

continuous order-preserving representation. Such a space need not be

connected or second countable.

In a related paper (see Mehta [4]) it has been proved that this

theorem can also be used to extend Fleischer's theorem [3] and to prove

it in a different way.

Preliminaries.

A preorder < on a topological space X is a reflexive transitive

binary relation on X . We say x < y if and only if x < y and not

y < x . The preorder < is said to be decisive or complete if for two

elements x , y belonging to X , either x •£ y or y < x . It is

said to be continuous if the sets {x e X: x 1 y} and {x e X: y •£ x]

are closed for every y in X . A topology in which sets of the form

{x e X: x •£ y} and {x e X: y •£ x} are closed for y in X , is said

to be a natural topology for X .

A subset E of X is said to be decreasing if b e E , a < b

imply that a e E . Each subset E of X determines uniquely a smallest

decreasing subset d(E) containing E . Similarly, one defines the

concept of an increasing set and the smallest increasing subset i(E)

containing E.

A topological space equipped with a preorder is said to be normally

preordered, if, for every two disjoint closed subsets F and F of

X , F being decreasing and F^ increasing, there exist two disjoint

open subsets /}. and ,4 such that A. contains F. and is decreasing

and A- contains -F, and is increasing.

A preordered topological space (X3 <J is said to be order-

separable if there exists a countable subset Z such that if t , j

belong to X and x < y then there exists a z in Z such that

x < z < y .

Let Xj y be two elements such that x < y . This pair is said to

be a jump if (x3 y)={aeX:x<a<y} is empty.
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Let i?- and E. be two preordered sets. A function / on E^ to

E is said to be increasing if x , y in E and x < y imply

f(x) S f(y) . A function f on E to E is said to be order-preserv-

ing if i t is increasing and x < y implies f(x) < f(y) .

Order-preserving functions.

Before proving the main theorem, we consider the following

proposition.

PROPOSITION 1. Let (X, <) be a preordered topolog-iaal spaae.

Assume that the preorder is decisive and continuous. Then (X, <)

is normally preordered.

Proof. Let Fn and F be two disjoint closed subsets of X ,

with F decreasing and F increasing. If F and F exhaust X

then F and F. are open and X is normally preordered. If they do

not exhaust X there is a point d not in F or F . Since the

preorder is decisive, a < d < b for every a in F and b in F1 .

Hence, {x e X: x < d] and {x e X: d < x} are the required decreasing

and increasing open sets containing F. and F respectively. Thus

(X, <) is normally preordered. D

We now prove the main result of this paper.

THEOREM 1. Let (X, <) be a normally preordered topological

space and suppose that the preorder < is continuous. Then if (X, <)

is order-separable there exists a continuous order-preserving real

function on (X, <) .

Proof. Since the preorder < is continuous, it follows that

d(x) = {y: y S x} and i(x) = {y: x < y] are closed in X for every x

in X . Hence, for every x , d(x) is a closed decreasing set, and

i(x) is a closed increasing set. Now if x < y , d(x) is a closed

decreasing set containing x and i(y) is a closed increasing set

containing y . Clearly, d(x) and i(y) are disjoint.
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Consequently, by Nachbin's separation theorem [5, p. 30] there is

an increasing continuous real valued function f on X to the unit

interval LO, 11 such that / is zero on d(x) and one on Hy) .

Let Z be a countable order-dense subset of X . Such a set exists

since X is assumed to be order-separable. Then apply Nachbin's theorem

to each pair (z., z .), z., z. belonging to Z with z. < z. to obtain

an increasing continuous function /. . on X to the unit interval 10, 11

such that f..(d(z.)) = 0 and f..(i(z.)) = 1 . Let S be the subset of
JV3 1- 13 3

all pairs of points (z ., z .) belonging to Z such that z . < z . .

Then S is countable, and we may suppose that S is equal to the set of

positive integers N .

Define fix) = Z fyix) ~T" • Then f is an increasing continuous

function on X . If x < y , there exist z . and z . belonging to Z

such that x < z. < z . < y . It follows that x < y implies fix) < f(y).
^ 3

Hence, / is the required order-preserving function. Q

Remark 1. In the above theorem it has not been assumed that the

preorder is decisive. If we assume that the preorder is decisive then

the above theorem gives the result that I < j if and only if fix) S fiy).

Remark 2. In the above theorem, it has not been assumed that X is

second countable or that it is connected. All that has been assumed is

that X is normally preordered and order-separable. As an example,

consider the real line with the discrete topology and the natural ordering.

Then it is easy to check that this space is not connected and does not

satisfy the second axiom of countability (it is not a Lindelof space).

However, it is order-separable and normally preordered. Hence, it has a

continuous order-preserving representation by Theorem 1, a fact that

cannot be deduced from the Eilenberg-Debreu theorems.

The theorems of Eilehberg and Debreu will now be shown to be

consequences of Theorem 1.

COROLLARY 1. (Eileriberg) Let (X3s) be a decisively preordered

connected and separable topological space. If the preorder is continuous,

then there exists a continuous order-reserving real-valued function on X .
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Proof. Since the preorder is decisive and continuous, Proposition 1

implies that X is normally preordered.

Since X is topologically separable, it has a countable dense

subset Z . Let x < y . The sets d(x) and i(y) are closed because

the preorder is continuous. They are clearly non-empty and disjoint.

The sets d(x) and i(y) do not exhaust X because X is connected.

Hence the set K={keX:x<k<y] is non-empty. It is also open

since the preorder is continuous. Consequently, there exists 2 in Z

such that x < 3 < y . This proves that X is order-separable.

Eilenberg's theorem now follows from Theorem 1. D

COROLLARY 2. (Debreu) Let (X3s>) be a decisively preordered

topological space satisfying the second axiom of coimtability. If the

preorder is continuousy then there exists a continuous order-preserving

real-valued function on X .

Proof. The proof of Corollary 2 is accomplished by constructing a

certain quotient space Y from X , embedding Y in a larger space Y'

and then by applying theorem 1 to ¥' .

We start by defining a relation on X as follows: x ~ y if

and only if x < y and y < x . It is easily verified that ~ is an

equivalence relation on X . Denote an equivalence class of an element

a e X by [a] . Let Y = X/~ be the set of equivalence classes. Endow

Y with the quotient topology relative to the canonical projection P of

X onto Y .

The relation < on X induces a relation <' on Y as follows:

[a] <' [£>] if and only if x e [a] , y e [b] and x < y . We can now

define a new relation <" on Y by saying that [a] <' [fc] if and only

if either [a] = [2?] or if Lai <' Lbl . Clearly <' is a decisive

preorder on Y . Furthermore, since Y has the quotient topology relative

to X and the canonical projection P , it follows that <' is a contin-

uous preorder on Y .

We prove next that (Y, <•') has at most denumerably many jumps.

To this end, let 5 = {Sn, S., ...} be a countable base for the topology

of X . Suppose that (Lx~\ , [j/]J and C[p] , Lql) are two distinct

jumps in Y . Since the preorder on Y is decisive only two cases can
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arise. Either Or] <' lyl <' [p] <' Lqi or [p] <' [q] <' [a;] <' [2/] .

In the f i rs t case, there exists x e [a;] and y e [j/] such that

x e {a e X : a < y) , an open set because the preorder < is decisive

and continuous. Since S is a base, there exists an i such that

xeS.c_{aeX:a<y} . Hence, x e S. and y £ S. . A s i m i l a r

a r g u m e n t s h o w s t h a t t h e r e i s a j s u c h t h a t p e S . c _ { a e X : a < q ]
a

and q / S . , where p e [p] and q e [q] . Now y / 5. implies that

p ̂  S. by transitivity of the preorder. Since p e 5. it follows that

5. ̂  S. . The argument in the second case is analogous. Hence, there is
1- 0

an injection from the set of jumps of Y to the countable set S and we

may conclude that 7 has at most denumerably many jumps.

The main idea of the rest of the proof is to extend the space Y

so that it satisfies the conditions of theorem 1, Suppose, first, that

there are only finitely many jumps (\.a.~\, Lb .1). i = 1, •••, n , in Y.
lr If

Interpose between the endpoints of each jump a copy of the open real

interval (i, i+1), i = 1, ...j n with its usual preorder. If there are

countably infinite jumps, interpose between the endpoints of each jump

(La ]j [b 1), n = 1, 2, ... , a copy of the open real interval (n, n+1)_,

n = 1, 2, ...3 with its usual preorder. Call this enlarged space 7' .

The preorder on 7* is obtained in a natural manner from the preorder on

7 and the usual preorder of the real numbers. The topology on 7" is

the natural topology on the disjoint union of two topological spaces.

The preorder on 7' is clearly decisive and continuous. So again

by Proposition 1 we may conclude that 7' is normally preordered.

It remains to be proved that 7" is order-separable. Since X is

second countable, it has a countable topologically dense subset B . Let

Z = {[s] e 7 : b e [s] for some b e 3} . Then, clearly, Z is countable.

If 7 has finitely many jumps (la.l, Lb.l), i = 1, ..., n, let Z' be
tr If

the set of all non-negative non-integral rational numbers smaller than

n+1 . If 7 has countably infinite jumps, let Z' be the set of all

non-negative, non-integral rational numbers. Then it is easily verified

that Z u Z' is order-dense in 7' , so that 7' is order-separable.
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Hence, all the conditions of Theorem 1 are satisfied for the space

Y' and we may conclude that there exists a continuous order-preserving

function T on Y' .

Finally, we define a real-valued function / on X by

fix) = T(LPix)l) , where P ; X -s- Y is the natural projection. The

function f is continuous as a composition of continuous functions.

If x ~ y, LPix)] = LP(y)l and f(x) = f (y). If x < y, lP(x)1 <' [Piy)~\

and f(x) < f(y) since T is order-preserving. Thus / is the required

continuous order-preserving function. Q

Remark 1. Observe that Theorem 1 is a common generalization of the

theorems of Eilenberg and Debreu.

Remark 2. The proofs of the Eilenberg and Debreu theorems given

above are based on Nachbin's separation theorem and are different from

the original proofs.

Remark 3. Fleischer [3] has proved that a linearly ordered set

that is separable in its order topology and has countably many jumps is

order-isomorphic to a subset of the real numbers. It is shown in Mehta

[4] that Theorem 1 can be used to extend Fleischer's theorem to partially

preordered spaces and to prove it in a different way.
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