ON SIMPLICES AND LATTICE POINTS

P. R. SCOTT
(Received 21 March 1980)
Communicated by A. J. van der Poorten

Abstract

Let S be a simplex in E^{n} which is homothetic to a given simplex S^{*}, which contains no point of the integral lattice in its interior, and which has maximal volume $V(S)$. We conjecture that $V(S)>$ $n^{n} / n!$, and establish the conjecture for $n<3$.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 52 A 20, 52 A 43; secondary 10 E 05.

1. Introduction

The problem considered here is analogous to a problem proposed by Mordell [2], in which a lower bound is sought for the volumes of certain specified parallelopipeds centred at the origin. Mordell's conjecture is established for $n=2,3$ by Szekeres [4], [5] and Ko [1].

Two simplices in euclidean n-space, E^{n}, are said to be homothetic if they are similar and similarly placed. Let S^{*} be any given simplex. We say that S is a maximal simplex if S is homothetic to S^{*}, S contains no points of the integral lattice Γ_{n} in its interior, and $V(S)$ is maximal.

Confecture. If S is a maximal simplex in E^{n}, then

$$
V(S) \geqslant n^{n} / n!,
$$

and this lower bound is best possible.

[^0]We notice that this bound is attained for the simplex with vertices $0,(n, 0, \ldots, 0), \ldots,(0, \ldots, 0, n)$. Since the interior of this simplex is defined by $x_{i}>0(1 \leqslant i \leqslant n), \sum_{i=1}^{n} x_{i}<n$, it is clear that no point of Γ_{n} lies in the interior.

The conjecture is trivially true for $n=1$. We shall establish it for $n=2,3$.

2. The question of existence

Let S be a maximal simplex in E^{n}. We ask if there exists a real positive number κ_{n} such that $V(S) \geqslant \kappa_{n}$. If the existence of κ_{n} can be established for each n, then the conjecture is easily proved. We show here that κ_{2}, κ_{3} exist. However, as in Mordell's problem, for $n>3$ the problem of existence seems to be intractable.

If S is a maximal simplex homothetic to a given simplex S^{*}, then clearly each ($n-1$)-dimensional face of S must contain a lattice point in its relative interior. For if not, the face can be translated outwards without introducing any lattice points into the interior of S, and S is not maximal.

The Case $n=2$. Let A, B, C be lattice points on the edges of a maximal triangle S. Since A, B, C cannot be collinear, they form the vertices of a lattice triangle which has area not less than $\frac{1}{2}$, and which is contained in S. Hence $V(S)>\frac{1}{2}$, and we may take $\kappa_{2}=\frac{1}{2}$.

The Case $n=3$. Let A, B, C, D be lattice points in the relative interiors of the faces of a maximal tetrahedron S. If A, B, C, D are not coplanar, then they form the vertices of a lattice tetrahedron of volume not less than $\frac{1}{6}$, and we obtain $V(S) \geqslant \frac{1}{6}$.

Suppose then that A, B, C, D are coplanar. By suitable integral unimodular transformation of S (and S^{*}) we may assume these points lie in the $x y$-plane. Now S cannot lie in the region $|z|<\frac{1}{2}$, for then we could obtain a homothetic simplex S^{\prime} of larger volume and containing no lattice points in its interior by translating S into the region $0<z<1$ and then enlarging. Hence we may assume without loss of generality that there is a point P of S in the plane $z=\frac{1}{2}$. Since S is convex, points A, B, C are not collinear, and A, B, C, P form the vertices of a proper tetrahedron contained in S. As the volume of this tetrahedron is not less than $\frac{1}{12}$, we have $V(S) \geqslant \frac{1}{12}$.

Hence we may take $\kappa_{3}=\frac{1}{12}$. Alternatively, we can obtain $\kappa_{3} \geqslant \frac{1}{3}$ by suitably dissecting the parallelopiped considered by Szekeres [5].

3. Two preliminary lemmas

We shall need the following two results.
Lemma 1. If the centre of gravity of each face of a simplex S in E^{n} is a point of Γ_{n}, then so is each vertex of S. Further, $V(S) \geqslant n^{n} / n!$.

Proof. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n+1}$ denote the vertices of S, and let c_{i} denote the centre of gravity of the $(n-1)$-dimensional face not containing $\mathbf{v}_{i}(1<i \leqslant$ $n+1)$.

Then

$$
n \mathbf{c}_{i}=\sum_{k=1}^{n+1} \mathbf{v}_{k}-\mathbf{v}_{i} \quad(1 \leqslant i \leqslant n+1)
$$

Solving these equations for $\mathbf{v}_{\boldsymbol{i}}$ gives

$$
\mathbf{v}_{i}=\sum_{k=1}^{n+1} \mathbf{c}_{k}-n \mathbf{c}_{i} \quad(1 \leqslant i \leqslant n+1)
$$

Hence if $\mathbf{c}_{1}, \ldots, \mathbf{c}_{n+1}$ are points of Γ_{n}, then so are the vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n+1}$.
Further,

$$
\mathbf{v}_{i}-\mathbf{v}_{j}=-n\left(\mathbf{c}_{i}-\mathbf{c}_{j}\right)
$$

Hence the simplex S is homothetic to the lattice simplex L having vertices $\mathbf{c}_{1}, \ldots, \mathbf{c}_{n+1}$, and n times as large. Since $V(L) \geqslant 1 / n!$, we deduce that $V(S) \geqslant$ $n^{n} / n!$.

Lemma 2. Let T be an $(n-1)$-dimensional simplex in E^{n} having centre of gravity \mathbf{t}. Let F be an $(n-2)$-dimensional flat intersecting T and separating it into subsets U, W. Let T be rotated about F. Then
(i) U, W sweep out equal volumes if and only if \mathbf{t} lies in F;
(ii) U sweeps out a larger volume than W if and only if F strictly separates \mathbf{t} from W (in the hyperplane of T).

Proof. (i) Let U, W have centres of gravity u, w respectively, and let $|U|,|W|$ denote the $(n-1)$-dimensional volumes of U, W. Without loss of generality, let the reference system be chosen such that
(a) the distance of each point $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of T from F is given by $\left|x_{1}\right|$
(b) if $x \in U, x_{1} \geqslant 0$, and if $x \in W, x_{1} \leqslant 0$. Now since t is the centre of gravity of T,

$$
(|U|+|W|) \cdot t_{1}=|U| \cdot u_{1}+|W| \cdot w_{1} .
$$

Also, according to the extended version of Pappus' Theorem (see for example [3]), the volume of revolution generated by U is given by the product of $|U|$ and the length of the path of the centre of gravity \mathbf{u}. Hence if T is rotated about F through angle $\theta(>0)$, the volume generated by U is $|U| \cdot u_{1} \cdot \theta$. Similarly, noting that $w_{1}<0$, the volume generated by W is $|W| \cdot\left(-w_{1}\right) \cdot \theta$. These generated volumes are equal if and only if

$$
|U| \cdot u_{1}+|W| \cdot w_{1}=0 .
$$

But this is precisely the condition for t to lie on F.
(ii) Suppose now that $|U| \cdot u_{1} \cdot \theta>|W| \cdot\left(-w_{1}\right) \cdot \theta$. This occurs when and only when $|U| \cdot u_{1}+|W| \cdot w_{1}>0$. But this is the condition that $t_{1}>0$, and F strictly separates \mathbf{t} from W as required.

4. Proof of the conjecture, assuming existence

Let us assume the existence of a maximal simplex S of smallest volume in E^{n}. We have seen that each ($n-1$)-dimensional face T of S contains at least one interior lattice point. Suppose T contains a lattice point in its relative interior, but not at its centre of gravity t. Then we can choose a lattice point p interior to T, and an $(n-2)$-dimensional face R of T, such that p is closer to R than t, and at least as close to R as any other lattice point interior to T. Choose an ($n-2$)-dimensional axis (flat) F through p and parallel to R. Now there exists a small rotation of T about F which introduces no new lattice points into the interior of S, and which by Lemma 2 decreases the volume of S. Hence S does not have smallest volume.

We deduce that each face of S contains just one lattice point at its centre of gravity. But now by Lemma 1, each vertex of S is a lattice point, and $V(S) \geqslant n^{n} / n!$.

Thus the conjecture has been established, providing a maximal simplex of smallest volume exists in E^{n}. It is certainly true for $n \leqslant 3$.

References

[1] C. Ko, 'Note on the lattice points in a parallelopiped', J. London Math. Soc. 12 (1936), 40-47.
[2] L. J. Mordell, 'Note on an arithmetical problem on linear forms', J. London Math. Soc. 12 (1936), 34-36.
[3] D. M. Y. Sommerville, An introduction to the geometry of n dimensions (Methuen, London, 1929).
[4] G. Szekeres, 'On a problem of the lattice plane', J. London Math. Soc. 12 (1937), 88-93.
[5] G. Szekeres, 'Note on lattice points within a parallelopiped', J. London Math. Soc. 12 (1937), 36-39.

Department of Pure Mathematics
University of Adelaide
Adelaide
South Australia

[^0]: ©Copyright Australian Mathematical Society 1981

