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ON THE SELECTION OF COMPACT SUBSETS 
OF POSITIVE MEASURE FROM ANALYTIC 

SETS OF POSITIVE MEASURE 

D. G. LARMAN 

An impor tan t bu t seemingly difficult problem is to decide whether or not 
an analyt ic set A of positive /^-measure, for some continuous Hausdorff 
function h, contains a compact subset C of positive /^-measure, in every 
complete separable metric space 12. 

By extending some earlier work of R. O. Davies [1], M. Sion and D. Sjerve 
[8] proved t h a t 

(i) the selection of the set C is always possible in a ^-compact metric 
space 12. 

More recently Davies [2] has shown t h a t it is always possible to select C 
(ii) when h(t) = ts, t ^ 0, for some fixed positive number s, 

(iii) when 12 is finite dimensional in the sense of [4], 
(iv) when A has (j-finite /^-measure, and 
(v) when 12 is an ul tra metric space. 

T h e purpose of this article is to prove a common generalization (Theorem 1) 
of (i), (iii), (iv) and also to prove (Theorem 2) t ha t if A is really large in t h a t 
it has infinite generalized Hausdorff dimension, i.e., Ah(A) = +oo for all 
Hausdorff functions h (see P . R. Goodey [3]), then for each Hausdorff function 
h, A contains c disjoint compact subsets, each of non-o--finite /^-measure. Th is 
second theorem related to another unsolved problem of Hausdorff measure 
theory, namely: Does every compact (analytic) set of non-cr-finite /^-measure 
contain c disjoint compact subsets each of non-o--finite /^-measure? (See 
C. A. Rogers [6, pp . 123-27].) 

Definition. Let E be a subset of a complete separable metric space 12 and let 
h be a continuous Hausdorff function. We say t ha t E is /^-compact if A8

h(E) 
is finite for all positive numbers d. We say t ha t E is o--/z-compact if 

E = \JEt 

and each set Et is /^-compact. 

T H E O R E M 1. Let A be a a-h-compact analytic subset of a complete separable 
metric space 12 and let A have positive h-measure. Then A contains a compact 
subset of positive h-measure. 
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666 D. G. LARMAN 

THEOREM 2. Let A be an analytic subset, of infinite generalized Hausdorff 
dimension, of a complete separable metric space Q. Then, for each Hausdorff 
function h, A contains c disjoint compact subsets each of non-a-finite h-measure. 

For the proofs of these theorems we shall draw freely on the techniques 
available in [l]-[6] and, in particular, those of [2]. We prove Theorem 1 by 
proving the increasing sets lemma (see [6, p. 90]), for an /^-compact subset of 
a complete separable metric space £2. 

LEMMA 1. Let E be an h-compact subset of a complete separable metric space 2 
for some continuous Hausdorff function h and let 8, e, rj, 8 < rj be positive numbers. 
Let E = Um=i ^m> where £ i C £2 C • . • • Then, if 

(1) A,*(Em) £ I < (1 + e)-iAf(E), m = 1, 2, . . . , 

there exists a subset F of E such that 

A*h(Em\F) S I - (1 + O^A/C/O < (1 + e)^A»(E\F), 

m = 1, 2, . . . , and 0 < Av
h(F) < +00. 

Proof. We shall write h(d(F)) = h(F) for all subsets F of Œ. Let 
E = U?=i Fn

r, where 8 ^ d(Fn
l) ^ d(Fn

2) ^ . . . and 

00 

X) h(Fn
r) -> X = lim A8

h(Em) < I as n -> 00 . 
r=\ ra-^oo 

By picking subsequences if necessary, we may suppose that d(Fn
l) —> di ^ 0 

as n -> 00. If di = 0 then it follows that A8*
h(Em) ^ / for all Ô* > 0. Conse

quently Ah(Em) ^ I and so Ah(E) ^ / which contradicts Av
h(E) > I. So 

di > 0. Also, as 

00 00 

A,*(£.) < A . V . 1 ) + £ A (F,*) < £ *(*".') 

we conclude, letting n —> 00 , that As*(7V) —» &(di) as w -> 00. 
By choosing subsequences if necessary we may suppose that 

(1 + e)~i/%(d1) < Ad
h(Fni), n = l,2,..., 

and 

d(Fni) <dr + d 

where 

0 < 6 < min(<5, §(77 - 8)) and h(dx + 30) < (1 + e)1/2/K^i). 

As E is /^-compact, Aeh(E) < +00. So there exists a partition {G*} <=i of E 
into sets of diameter less than 6 such that 

£ MGO < + » . 
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Hence there exists N such that 

£ h(G{) < ((1 + e)-1/3 - (1 + e)-1/2)^(ix). 
i=N+l 

We may suppose, by choosing subsequences if necessary, that there exists 
a partition R, S of {1, . . . , N} such that 

F^riGt = 0, ies, 

n = 1, 2, . . . .Let 

F = U G«. 

Then J (F) < di + 3d and consequently 

A(F) < (1 + e)1/2A(di). 

Hence 

A,»(70 < (1 + e)1/2A(di). 

Also, as 

F . ' C F U U G„ 
iV+1 

A,*(i0 > A.V»1) - Z A(G«) > (1 + «r1/2Â(^i) > 0, 
2V+1 

and consequently Av
h(F) > 0. Further 

Em\FC ( £ m W ) U 1 U G«f. 
V N+l J 

Now DT=i h(Fm*) -> X ^ Z as m ^ oo and A ^ 1 ) > (1 + e)-1/8A(rfi). Conse
quently, for m sufficiently large, and hence always, 

oo oo 

A/(£m\^) < E * ( 0 + Z * (GO 

< / - (i + «r171*^) + ((i + «r1/3 - (i + e)-1 '2)/^) 
- i a 

< / - (1 + 0_1A,*(F), 

which proves the left hand side of (1). The right hand side of (1) follows 
immediately from the observation that 

A,*(£) =S A,»(£V0 + AV"(F). 

LEMMA 2. Let E be an h-cornpact subset of a complete separable metric space O 
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for some Hansdorff function h, and let d, rj, ô < r\ be positive numbers. Then if 
E = Um=i Emj Ei C E2 . . . 

(2) A / ( £ ) < lim A/(£ m ) < A8
h(E). 

Remark. We may interpret Lemma 2 as proving the increasing sets lemma 
for /^-compact sets. Although we shall not use the fact, it is perhaps worth 
noting that in view of [2, Theorem 3], the lemma also holds for c-^-compact 
subsets, and with b = 77. 

Proof of Lemma 2. Only the left hand side of (2) is non-trivial. If 

lim A,*(£m) < A,*(£) 
m->co 

then there exists /, e > 0 such that 

lim A8
h(Em) < / , 1(1 + e) < Av

h(E). 
ra->oo 

By Lemma 1, there exists Fly 0 < A^( JFI ) < +00 such that for all m 

(3) A,*(£TO\^i) ^ / - (1 + e)-1A,h(F1) < (1 + e)^Av
h(E\Fx). 

We may repeat this process until the inequalities similar to (3) cease to be 
true, producing disjoint subsets {Fa}a<^, a, /3 countable ordinals, of E such that 

0 < Av
h(Fa) < + 0 0 

and 

(4) A5
h(Em\ U Fa)< I - (1 + e)-1 £ A,h(Fa) 

< (1 + e)-1 AV"(E\U Fa). 
a</3 

Since Ea < / 3 Av
h(Fa) ^ / ( l + e), and A„*(Fa) > 0 for a < /3, it follows that 

the process must terminate at some countable limit ordinal /30. As the left hand 
side of (4) will still be true at /30, it follows that 

(1 + e)"1 / A / ( £ \ U Fa)< I - (1 + a)"1 £ A/(F a ) . 
a</3 0 «</3o 

But then 

(1 + € ) -%*(£) < (1 + e)"1 A,*(£\ U /?«) + (1 + e)-1 £ A,*(F«) < I 
a<0o a<0Q 

which contradicts (1 + e^A^CE) > /. 
So we conclude that the left hand side of (2) is true which completes the 

proof of Lemma 2. 

Proof of Theorem 1. If A is a ^ - c o m p a c t analytic subset of 12, we first show 
that A is representable as 

00 

A = \J A.my 
ra=l 
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where Am C Am+ll m = 1 , 2 , . . . and each set Am is an /^-compact analytic 
subset of 12. 

Now A = Um=i Em, where Em C Em+u ™> = 1 , 2 , . . . and each Em is an 
^-compact subset of 12. As A / is GVregular, and each Borel set in a complete 
separable metric space is analytic, we can choose an analytic subset Am

n of A 
such that Em C Am

n and 

-A-i/n \Em) = Ai/W (ylm
w). 

Then , if 

oo 

Am = u n *̂" 

^4W C ^4m+i, m = 1, 2, . . . , Um=i ^m = A and each ylw is /^-compact and 
analytic. 

Now, if A has positive /^-measure then there exists m such that Am has 
positive /^-measure. By Lemma 2, the increasing sets lemma holds for Am. 
Consequently, by standard arguments, see for example C. A. Rogers [6, 
Theorem 48], A m, and hence A, contains a compact subset of positive ^-measure. 
This completes the proof of Theorem 1. 

LEMMA 3. Let E be a subset of a complete separable metric space 12 and let 
E = UST=i Em, where Ex C E2 C . • • . Then if ô > 0 and h is a Hausdorff 
function such that 

Ah(E) = +oo 
and 

0 < lim As
h (EJ < I < + oo 

then there exists a subset W of E such that for all n 

Ab
h(En\W) £l-h(d)/2 

where 0 < d S d(W) < 6d ^ 6<5. 

Proof. For each n we write 

oo 

En = U Vn
r 

r=l 

where 

5 > diV.1) > d(Vn
2) >..., 

and 
oo 

lim X h{Vn
r) < /. 

Also, by choosing subsequences if necessary, we may suppose that d(Vn
l) —> d 

as n —> co. If d = 0 then, as in Lemma 1, it follows that Ah(E) ^ / which 
contradicts Ah(E) = +oo. 
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For any two non-empty subsets A, B of 0 write 

X(A,B)= inf p{à,b) 

where p is the metric of 12. 
By Ramsey's theorem either there exists an infinite subsequence N such 

that 
x(Vn\ Vm1) ^2d, n,m <E N.n^m 

or 
x(Vn\ VJ) ^2d, n,m£N. 

If the former is true then clearly it follows that 

lim A8
h(En) = + o o , 

7M>oo 

which is not true. 
Consequently we must have 

x(Vn\ Vm
l) S 2d, n,m£N. 

As in Lemma 1, A^F» 1 ) -+h(d) as w - • oo. Hence, as A^F» 1 ) ^ h(Vn
l) if 

^(F^1) ^ 6, we can suppose that 

h(Vni) ^ h(d)/2, d(Vni) <2d, ne N. 

Let W = U»€iNT TV. Then 0 < J S d(W) < M and 

A8\En\W) < £ A(Fn
r) 

oo 

< / - %h(d), n = 1,2, . . . , 

which completes the proof of Lemma 3. 

LEMMA 4. Le£ Ebea subset of a complete separable metric and let E = Un=i En, 
where E\ C Ei C . . . . Then if 5 > 0 and h is a Hausdorff function such that 

0 < lim A5
h(En) < / < + o o , 

W->co 

there exists a cover {Wr}°?=i of E by sets Wr, with d(Wr) S 65 and d(Wr) —> 0 
as r —> oo. 

Proo/. If A*(E) is finite then, given ô > 0, there exists a covering { IF^ j^ i 
of E such that 

£ Wr*) < +00, 
r = l 

and d ( W ) ^ Ô < 60, r = 1, 2, . . . . Then diW/) - > 0 a s r - ^ o o and conse
quently {PPVj^Li satisfy Lemma 4. 
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Otherwise Ah(E) = +co. So, by Lemma 3, there exists a subset Wi2 of E 
such that 

Aa*GE»Wi2) ^ / - A(di)/2 for all », 

where 0 < dx ^ d ( W ) < 6di ^ 65. 
If Ah(E\Wi2) — +°o we may repeat this process. Consequently we choose 

a possibly transfinite sequence of disjoint sets Wa
2, a < fi such that 

0 < A5
h(En\ U Wa*)< I - E *(<*«), » = 1, 2, . . . 

a</3 a</3 

and 0 < da ^ d(Wa
2) g 6 4 ^ 65. 

As / < +co , this process must terminate at some countable ordinal /30 and 
then it must be that 

0 < Ah\En\ U Wa)<l- Z Hda), n = 1, 2, . . . 

but A^(£\U«<^o W«2) < +oo. So we may choose a partition £ = U?=i C* of 
£\Ua</30 ^« 2 w i t h d(G^ ^ M = 1, 2, . . . and Z£=i *(£*) < + ° ° - Re-writ
ing 

{Wa2}a</3oU {G*}?_1 aS { ÏF r }^ i 

we see t ha t 

£ Wr) < +^ 
r = l 

and consequently d{WT) -> 0 as r -> oo. 
Further, d(Wr) ^ 65, r = 1, 2, . . . and £ C U?=i Wr, which completes the 

proof of Lemma 4. 

Following Davies [2] we define 

*,*(£) = infTlim A/(£„) ! , 

the infimum being taken over all increasing sequences of sets with union E. 
Let 

$*(£) = lim $ / ( £ ) . 

Now $h(E) is a Borel regular metric outer measure on the subsets £ of a 
complete separable metric space 12. Further $«*(£) ^ A8

h(E) for all subsets 
£ o f 0. 

LEMMA 5. Le/ E be a subset of a complete separable metric space Q, and suppose 
that E has infinite generalized Hausdorff dimension, i.e. Ah(E) = +oo for all 
Hausdorff functions h. Then there exists di > 0, such that 

<V(£) = +™ 
for all Hausdorff functions h. 
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Proof. We say that a set E has a fine repeated cover if there exists a sequence 
{ [/*}ï=i of sets such that 

CO 

ECUUj, i = 1, 2, . . . , 

and d{Uj) —> 0 as j —» oo . Then, by a result of P. R. Goodey [3] £ has infinite 
generalized Hausdorff dimension if and only if E does not have a fine repeated 
cover. 

If Lemma 5 is false then there exists a sequence of Hausdorff functions 
{/̂ }T=i and a sequence of positive numbers {ôj}ï=i, ôt —» 0 as i —> oo such that 

$*i**(£) < +oo. 

Consequently, there exists a sequence {EJ}^ with Ei* C Ei C • • • » 
£ = U:=i £»* and 

lim A , / ' W ) < + ». 

By Lemma 4, there exists a cover {WVjr^i of E such that d(WV) :g 65f and 
d(WV) —> 0 as r —» oo, i = 1, 2, . . . . Rearranging 

as a single sequence, we obtain a fine repeated cover of E. This contradicts E 
having infinite generalized Hausdorff dimension and completes the proof of 
Lemma 5. 

Let A be an analytic subset of a complete separable metric space £2, and let 
I be the set of irrationals i = (iu . . . , ini . . .) in [0, 1] expressed as continued 
fractions. Then, by definition, there exists a relatively closed subset I0 of I 
and a continuous function F on I0 such that 

A = U F(i) = F(h). 
ieio 

It is usual, if i = (i1} . . . , in, . . .) G I towr i te i /w = (ii, . . . ,tn),n = 1, 2, . . . 
and 

F(i/n) = U £( i ) . 
j M=i /w 

LEMMA 6. Le/ A be an analytic subset of a complete separable metric space with 
A — £(Io) as above. Suppose also that A has infinite generalized Hausdorff 
dimension. Then, for each Hausdorff function h there exists a collection {Ca}a<œi, 
where coi is the first uncountable ordinal, of disjoint compact subsets of A, each 
of positive h-measure and with Ca = F(la) for some compact subset la of I0. 

Proof. By Lemma 5, there exists di > 0 such that 

QtfiA) = +oo . 

By [2, Theorem 6], A contains a compact subset C\ of positive ^-measure 
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and, a fortiori, Ci has positive /^-measure. Further there exists a compact 
subset Ii of I0 such that Ci = F(Ii). 

Suppose now that ft is a countable ordinal and that disjoint compact subsets 
Ca, a < j8 of A have been defined and corresponding disjoint compact subsets 
Ia, a < j8 of I0 have been defined so that 

Ca = F(Ia), a<(3 

and Ah(Ca) > 0, a < 13. 
Then U«<# Ca is a <7-compact subset of 12 and consequently, by [6, Theorem 

33], there exists a Hausdorff function g such that 

A'( U C«) = 0. 

Consequently A\\Ja<$ Ca is an analytic set and has infinite generalized 
Hausdorff dimension. So, by Lemma 5, there exists ôp > 0 such that 

*,, ( A U G.) = +oo. 

Let I«* = {i : i € Io, F(i) € Ca}, a < 13. Then Ia* is a relatively closed subset 
of I0 containing Ia. So 

M U la* 
a<0 

is a GVsubset of Io. Consequently 

M u 4* 
a</3 

is the continuous one-one image, under fp, of a closed subset 1$ of I. Again we 
may pick a compact subset 1 / of Ip such that if 

then C/3 is a compact subset of A with Ah(Cp) > 0. We write 1/3 = / / s ( / / ) 
which is a compact subset of Io disjoint from Ua</3 Ia. 

Lemma 6 now follows by transfinite induction. 

LEMMA 7. Let I0 be a relatively closed subset of the irrationals I in [0, 1]. Let 
^ \ denote the space of all compact subsets of I0 with the Hausdorff metric. Then 
J1\ is an analytic set. 

Proof. There exists in [0, 1] X [0, 1] a closed subset U which is universal, 
for the closed sets of [0, 1] (see, for example, W. Sierpinski [7, pp. 252-255]) 
i.e. if 

U* = \y : (x, y) G U} 

then, for 0 ^ x ^ 1, every set Ux is congruent to a closed subset of [0, 1] and, 
given any closed subset V of [0, 1] there exists x, 0 ^ x ^ 1, such that V is 
congruent to Ux. 
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Now consider 

V= t / \ { [ 0 , l ] X l o } . 

For 0 ^ x ^ 1, Vx is an Fff-set. Consequently, by Kunugui's theorem (see [5]), 
pro]xV is a Borel set, where X denotes the 1st coordinate axis. 

So 

W = [0, l ] \ p r o j x F 

is a Borel set. Now x 6 W if and only if Ux C Io- Let / be the continuous 
one-one map of a relatively closed subset Ii of I onto W. If i £ Ii let 

g(i) = [C e Jo : C is congruent to [/ / (<)}. 

As [/ is compact, g is a continuous mapping from Ii o n t o ^ o and consequently 
Jo is an analytic set. 

Remark. By choosing U more carefully, i.e. so that UZl ?* Ux* if %\ ^ x2 

we can ensure that g is one-one and consequently deduce t h a t ^ o is a Borel set. 

Proof of Theorem 2. Consider the compact subsets {Ca}a<ÛJl of A and compact 
subsets {Ia}a<o>1 of Io as in Lemma 6. As there are uncountably many C«, we 
may suppose, by choosing a subcollection if necessary, that there exist 
ô, rj > 0 such that 

Aa*(C«) ^ I/, 0 S a < COL 

Now l e t ^ o denote the compact subsets of I0 with the Hausdorff metric pi. 
By Lemma 7, Jo is an analytic subset of the complete separable metric space 
formed by the non-empty closed subsets of [0, 1]. We write 

Jo = / ( I i ) 

where / is a continuous function from a relatively closed subset Ii of I onto 
J o- Let A = F(I0) where F is a continuous function from a relatively closed 
subset Io of I onto A. Then, if J is a compact subset of I0, 

G (J) = {F(i):i eJ\ 

is a compact subset of A. We next show that the map G is continuous from 
<fl o into the space ^f of compact subsets of 4̂ with Hausdorff metric p2. 

Let / Ç Jo and, for e > 0, let 

N< = {G(/*) : J* £ / o , P2(G(J), G (J*)) < e}. 

If j G J then there exists 0(j) > 0 such that if i £ Io and |i — j | < 0(j) then 

P(F(i), Fa» < c/2 

where p is the metric on 0. As J is compact we may choose 0(j) = 0 > 0, 
independent of j in / . So, if Me = \J* : Pi (J, J*) < 0} C Jo, G (J*) 6 iV< 
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whenever J* G Me. So G is continuous and consequently the map 

g(i) = G/(i), i 6 Ix 

is a continuous map from I to a subset Se of ^ . 
Further, for each set C« there exists i« G Ii such that 

Ca = F(U). 

From Ii, we remove all the intervals [i/n] where 

[i/n] = {j 6 l : j / » = i /»}, 

such that g(i/n) does not contain uncountably many members of the collection 
a<w1* If I2 is the remaining subset of Ii then I2 is a relatively closed un

countable subset of I and if i G I2 then g (i/n) contains uncountably many 
members of {Ca}a<Ul, n = 1, 2, . . . . 

Now g(l2) is an uncountable analytic subset of ^ and we next show that 

(5) A,*(g(l)) è n , * ' € I2. 

For suppose that A&h(g(i)) < 77. Then there exists a cover {Gj}k
j=i of g(i) 

by open sets of diameter less than or equal to ô such that 

z h(Gj) < v. 

As g is continuous, there exists n such that g*(i/n) C U*=i Gjf where 

g*(i/n) = U g(i*). 
i*/w=i/n 

By construction, there exists a and ia G I2 such that Ca = g(i«) and î«/w = 
i/n. So Ca C Uj=i G j-, and hence 

A A C ) < È *(Gy) < U, 

which contradicts Ag/I(Ca) ^ 77 and thus establishes (5). As g (12) 1S a n un~ 
countable analytic set, it follows (see for example W. Sierpinski [7, p. 290]), 
that g(l2) contains c "points". Thus, using (5), it follows that A contains c 
distinct compact sets, each of positive /^-measure, but we cannot, without 
further argument, ensure that these sets are pairwise disjoint. 

Consider i ( l ) , i(2) G I2, where g(i(l)) = d, g(i(2)) = C2. Because 
C\ C\ C2 = 0, there exists disjoint open sets Gi, G2 with C\ C Gi, C2 C G2. As 
g is continuous, there exists a positive integer n\ such that 

* ( l ( l ) / » i ) C G i , g(i(2)/ni)CG2. 

Suppose now we have defined, for some positive integer k, positive integers 

(6) Wi < n2 < . . . < »*, 
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and points 

(7) i(*i, ...,hk) 6 I2, hj = l o r 2, 1 £j ^ k 

such that 

(8) i(Ai, . . . , h^/tij = i(&i, . . . , A*)/»,, 1 ^ j ^ & 

and 

(9) g(i(hlt . . . , A*)/»* H g(i(Ai', . . . , hk')/nk) = 0 

if (hi, . . . , hk) 5* (hi, . . . , A/). By the construction of I2 there exist i (a) , 
i(/3), a y£ p such that i(a) = i(hi, . . . , A*)/»*, i(/3) = i(hu . . . , A*)/»*, and 
g(i(a)) = C«, g(i(j8)) = Cfi. In particular, therefore i(a) 9^ i(/3). So there 
exists nk+i > % such that 

g(i(a)\nk+i) n g(i(/3)\nk+i) = 0. 

We define 

i(hu . . . ,hk,l) = i(a) 

i(hi, . . . , hk, 2) = 10 ) . 

With these definitions (6)-(9) are satisfied for k replaced by k + 1. By induc
tion we suppose that a system has been defined to satisfy (6)-(9) for 
k = 1,2, . . . . 

UJ^f is the set of infinite sequences of one's and two's and 

h = (hi, . . . , hk, . . .) £ 2tf we define i(h) by 

i(h)/«* = i(/h, . . . , A*)/»*, * = 1, 2, . . . . 

Properties (7) and (8) ensure that i(h) is well-defined, and, as I2 is relatively 
closed, i (h) G U, h 6 Jf7. Further, if 

h = (Alf . . . , A* , . . .), h ' = (A/, . . . , V , . . .) 

are in 3f and h ^ h ' then there exists k such that 

(hu...,hk) * (hi',...,hk'). 

So, by (9), 

(10) g(i(h)) r\ g(i(h')) = 0 . 

Consequently, combining (5) and (10), the collection 

{ g ( i ( h ) ) W 

form c pairwise disjoint compact subsets of A, each of positive A-measure. 
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