ON THE SELECTION OF COMPACT SUBSETS OF POSITIVE MEASURE FROM ANALYTIC SETS OF POSITIVE MEASURE

D. G. LARMAN

An important but seemingly difficult problem is to decide whether or not an analytic set A of positive h-measure, for some continuous Hausdorff function h, contains a compact subset C of positive h-measure, in every complete separable metric space Ω .

By extending some earlier work of R. O. Davies [1], M. Sion and D. Sjerve [8] proved that

(i) the selection of the set C is always possible in a σ -compact metric space Ω .

More recently Davies [2] has shown that it is always possible to select C

(ii) when $h(t) = t^s$, $t \ge 0$, for some fixed positive number s,

(iii) when Ω is finite dimensional in the sense of [4],

- (iv) when A has σ -finite h-measure, and
- (v) when Ω is an ultra metric space.

The purpose of this article is to prove a common generalization (Theorem 1) of (i), (iii), (iv) and also to prove (Theorem 2) that if A is really large in that it has infinite generalized Hausdorff dimension, i.e., $\Lambda^h(A) = +\infty$ for all Hausdorff functions h (see P. R. Goodey [3]), then for each Hausdorff function h, A contains c disjoint compact subsets, each of non- σ -finite h-measure. This second theorem related to another unsolved problem of Hausdorff measure theory, namely: Does every compact (analytic) set of non- σ -finite h-measure? (See C. A. Rogers [6, pp. 123–27].)

Definition. Let E be a subset of a complete separable metric space Ω and let h be a continuous Hausdorff function. We say that E is h-compact if $\Lambda_{\delta}^{h}(E)$ is finite for all positive numbers δ . We say that E is σ -h-compact if

$$E = \bigcup_{i=1}^{\infty} E_i$$

and each set E_i is *h*-compact.

THEOREM 1. Let A be a σ -h-compact analytic subset of a complete separable metric space Ω and let A have positive h-measure. Then A contains a compact subset of positive h-measure.

Received December 19, 1972 and in revised form, November 22, 1973. This research was supported by the National Research Council of Canada.

D. G. LARMAN

THEOREM 2. Let A be an analytic subset, of infinite generalized Hausdorff dimension, of a complete separable metric space Ω . Then, for each Hausdorff function h, A contains c disjoint compact subsets each of non- σ -finite h-measure.

For the proofs of these theorems we shall draw freely on the techniques available in [1]-[6] and, in particular, those of [2]. We prove Theorem 1 by proving the increasing sets lemma (see [6, p. 90]), for an *h*-compact subset of a complete separable metric space Ω .

LEMMA 1. Let E be an h-compact subset of a complete separable metric space Ω for some continuous Hausdorff function h and let δ , ϵ , η , $\delta < \eta$ be positive numbers. Let $E = \bigcup_{m=1}^{\infty} E_m$, where $E_1 \subset E_2 \subset \ldots$. Then, if

(1)
$$\Lambda_{\delta}^{h}(E_{m}) \leq l < (1 + \epsilon)^{-1} \Lambda_{\eta}^{h}(E), \quad m = 1, 2, \ldots,$$

there exists a subset F of E such that

$$\Lambda_{\delta}^{h}(E_{\mathfrak{m}}\backslash F) \leq l - (1+\epsilon)^{-1}\Lambda_{\eta}^{h}(F) < (1+\epsilon)^{-1}\Lambda_{\eta}^{h}(E\backslash F),$$

 $m = 1, 2, ..., and \ 0 < \Lambda_{\eta}^{h}(F) < +\infty.$

Proof. We shall write h(d(F)) = h(F) for all subsets F of Ω . Let $E = \bigcup_{r=1}^{\infty} F_n^r$, where $\delta \ge d(F_n^1) \ge d(F_n^2) \ge \ldots$ and

$$\sum_{r=1}^{\infty} h(F_n^r) \to \lambda = \lim_{m \to \infty} \Lambda_{\delta}^h(E_m) \leqslant l \quad \text{as } n \to \infty.$$

By picking subsequences if necessary, we may suppose that $d(F_n^1) \to d_1 \ge 0$ as $n \to \infty$. If $d_1 = 0$ then it follows that $\Lambda_{\delta^*}{}^h(E_m) \le l$ for all $\delta^* > 0$. Consequently $\Lambda^h(E_m) \le l$ and so $\Lambda^h(E) \le l$ which contradicts $\Lambda_{\eta}{}^h(E) > l$. So $d_1 > 0$. Also, as

$$\Lambda_{\delta}^{h}(E_{n}) \leqslant \Lambda_{\delta}^{h}(F_{n}^{1}) + \sum_{i=2}^{\infty} h(F_{n}^{i}) \leqslant \sum_{i=1}^{\infty} h(F_{n}^{i})$$

we conclude, letting $n \to \infty$, that $\Lambda_{\delta}^{h}(F_{n}^{1}) \to h(d_{1})$ as $n \to \infty$.

By choosing subsequences if necessary we may suppose that

$$(1 + \epsilon)^{-1/3}h(d_1) < \Lambda_{\delta}^{h}(F_n^{-1}), \qquad n = 1, 2, \dots,$$

and

$$d(F_n^1) < d_1 + \theta$$

where

$$0 < \theta < \min(\delta, \frac{1}{3}(\eta - \delta))$$
 and $h(d_1 + 3\theta) < (1 + \epsilon)^{1/2}h(d_1)$.

As *E* is *h*-compact, $\Lambda_{\theta}^{h}(E) < +\infty$. So there exists a partition $\{G_{t}\}_{t=1}$ of *E* into sets of diameter less than θ such that

$$\sum_{i=1}^{\infty} h(G_i) < +\infty.$$

Hence there exists N such that

$$\sum_{i=N+1}^{\infty} h(G_i) < ((1+\epsilon)^{-1/3} - (1+\epsilon)^{-1/2})h(d_1).$$

We may suppose, by choosing subsequences if necessary, that there exists a partition R, S of $\{1, \ldots, N\}$ such that

$$F_n^{-1} \cap G_i \neq \emptyset, \qquad i \in F_n^{-1} \cap G_i = \emptyset, \qquad i \in S$$

 $n = 1, 2, \ldots$. Let

$$F = \bigcup_{i \in R} G_i.$$

Then $d(F) < d_1 + 3\theta$ and consequently

$$h(F) < (1 + \epsilon)^{1/2} h(d_1).$$

Hence

$$\Lambda_n^h(F) < (1 + \epsilon)^{1/2} h(d_1).$$

Also, as

$$F_n^{\ 1} \subset F \cup \bigcup_{N+1}^{\infty} G_i,$$

$$\Lambda_{\delta}^{\ h}(F) \ge \Lambda_{\delta}^{\ h}(F_n^{\ 1}) - \sum_{N+1}^{\infty} h(G_i) > (1+\epsilon)^{-1/2} h(d_1) > 0,$$

and consequently $\Lambda_{\eta}^{h}(F) > 0$. Further

$$E_m \setminus F \subset (E_m \setminus F_m^{-1}) \cup \left\{ \bigcup_{N+1}^{\infty} G_i \right\}.$$

Now $\sum_{i=1}^{\infty} h(F_m^i) \to \lambda \leq l$ as $m \to \infty$ and $h(F_m^1) > (1 + \epsilon)^{-1/3} h(d_1)$. Consequently, for *m* sufficiently large, and hence always,

$$\Lambda_{\delta}^{h}(E_{m}\backslash F) \leqslant \sum_{i=2}^{\infty} h(F_{m}^{i}) + \sum_{i=N+1}^{\infty} h(G_{i})$$

$$\leqslant l - (1+\epsilon)^{-1/3}_{-1}h(d_{1}) + ((1+\epsilon)^{-1/3} - (1+\epsilon)^{-1/2})h(d_{1})$$

$$\leqslant l - (1+\epsilon)^{-1}\Lambda_{\eta}^{h}(F),$$

which proves the left hand side of (1). The right hand side of (1) follows immediately from the observation that

$$\Lambda_{\eta}^{h}(E) \leq \Lambda_{\eta}^{h}(E \setminus F) + \Lambda_{\eta}^{h}(F).$$

LEMMA 2. Let E be an h-compact subset of a complete separable metric space Ω

for some Hausdorff function h, and let δ , η , $\delta < \eta$ be positive numbers. Then if $E = \bigcup_{m=1}^{\infty} E_m, E_1 \subset E_2 \ldots$

(2)
$$\Lambda_{\eta}^{h}(E) \leq \lim_{m \to \infty} \Lambda_{\delta}^{h}(E_{m}) \leq \Lambda_{\delta}^{h}(E).$$

Remark. We may interpret Lemma 2 as proving the increasing sets lemma for *h*-compact sets. Although we shall not use the fact, it is perhaps worth noting that in view of [2, Theorem 3], the lemma also holds for σ -*h*-compact subsets, and with $\delta = \eta$.

Proof of Lemma 2. Only the left hand side of (2) is non-trivial. If

$$\lim_{m\to\infty} \Lambda_{\delta}^{h}(E_m) < \Lambda_{\eta}^{h}(E)$$

then there exists $l, \epsilon > 0$ such that

 $\lim_{m\to\infty} \Lambda_{\delta}^{h}(E_m) \leqslant l, \quad l(1+\epsilon) < \Lambda_{\eta}^{h}(E).$

By Lemma 1, there exists F_1 , $0 < \Lambda_{\eta}^{h}(F_1) < +\infty$ such that for all m

(3)
$$\Lambda_{\delta}^{h}(E_{m}\backslash F_{1}) \leq l - (1+\epsilon)^{-1}\Lambda_{\eta}^{h}(F_{1}) < (1+\epsilon)^{-1}\Lambda_{\eta}^{h}(E\backslash F_{1}).$$

We may repeat this process until the inequalities similar to (3) cease to be true, producing disjoint subsets $\{F_{\alpha}\}_{\alpha < \beta}$, α , β countable ordinals, of E such that

$$0 < \Lambda_{\eta}{}^{h}(F_{\alpha}) < +\infty$$

and

(4)
$$\Lambda_{\delta}^{h}(E_{m} \setminus \bigcup_{\alpha < \beta} F_{\alpha}) \leq l - (1 + \epsilon)^{-1} \sum_{\alpha < \beta} \Lambda_{\eta}^{h}(F_{\alpha})$$
$$< (1 + \epsilon)^{-1} \Lambda_{\eta}^{h}(E \setminus \bigcup_{\alpha < \beta} F_{\alpha}).$$

Since $\sum_{\alpha < \beta} \Lambda_{\eta}^{h}(F_{\alpha}) \leq l(1 + \epsilon)$, and $\Lambda_{\eta}^{h}(F_{\alpha}) > 0$ for $\alpha < \beta$, it follows that the process must terminate at some countable limit ordinal β_{0} . As the left hand side of (4) will still be true at β_{0} , it follows that

$$(1+\epsilon)^{-1} l \Lambda_{\eta}^{h}(E \bigcup_{\alpha < \beta_{0}} F_{\alpha}) \leq l - (1+\epsilon)^{-1} \sum_{\alpha < \beta_{0}} \Lambda_{\eta}^{h}(F_{\alpha}).$$

But then

$$(1+\epsilon)^{-1}\Lambda_{\eta}^{h}(E) \leqslant (1+\epsilon)^{-1}\Lambda_{\eta}^{h}(E \bigcup_{\alpha < \beta_{0}} F_{\alpha}) + (1+\epsilon)^{-1}\sum_{\alpha < \beta_{0}} \Lambda_{\eta}^{h}(F_{\alpha}) \leqslant l$$

which contradicts $(1 + \epsilon)^{-1} \Lambda_{\eta}^{h}(E) > l$.

So we conclude that the left hand side of (2) is true which completes the proof of Lemma 2.

Proof of Theorem 1. If A is a σ -h-compact analytic subset of Ω , we first show that A is representable as

$$A = \bigcup_{m=1}^{\infty} A_m,$$

where $A_m \subset A_{m+1}$, m = 1, 2, ... and each set A_m is an *h*-compact analytic subset of Ω .

Now $A = \bigcup_{m=1}^{\infty} E_m$, where $E_m \subset E_{m+1}$, $m = 1, 2, \ldots$ and each E_m is an *h*-compact subset of Ω . As Λ_{δ}^h is G_{δ} -regular, and each Borel set in a complete separable metric space is analytic, we can choose an analytic subset A_m^n of A such that $E_m \subset A_m^n$ and

$$\Lambda_{1/n}{}^h(E_m) = \Lambda_{1/n}{}^h(A_m{}^n).$$

Then, if

$$A_m = \bigcup_{k \leqslant m} \bigcap_{n=1}^{\infty} A_k^n$$

 $A_m \subset A_{m+1}$, $m = 1, 2, \ldots, \bigcup_{m=1}^{\infty} A_m = A$ and each A_m is *h*-compact and analytic.

Now, if A has positive h-measure then there exists m such that A_m has positive h-measure. By Lemma 2, the increasing sets lemma holds for A_m . Consequently, by standard arguments, see for example C. A. Rogers [6, Theorem 48], A_m , and hence A, contains a compact subset of positive h-measure. This completes the proof of Theorem 1.

LEMMA 3. Let E be a subset of a complete separable metric space Ω and let $E = \bigcup_{n=1}^{\infty} E_n$, where $E_1 \subset E_2 \subset \ldots$. Then if $\delta > 0$ and h is a Hausdorff function such that

$$\Lambda^h(E) = +\infty$$

and

$$0 \leqslant \lim_{n \to \infty} \Lambda_{\delta}^{h}(E_n) \leqslant l < +\infty$$

then there exists a subset W of E such that for all n

 $\Lambda_{\delta}^{h}(E_{n} \setminus W) \leq l - h(d)/2$

where $0 < d \leq d(W) < 6d \leq 6\delta$.

Proof. For each n we write

$$E_n = \bigcup_{r=1}^{\infty} V_n^r$$

where

$$\delta \geqslant d(V_n^1) \geqslant d(V_n^2) \geqslant \ldots,$$

and

$$\lim_{n\to\infty}\sum_{r=1}^{\infty} h(V_n^r) \leqslant l.$$

Also, by choosing subsequences if necessary, we may suppose that $d(V_n^1) \to d$ as $n \to \infty$. If d = 0 then, as in Lemma 1, it follows that $\Lambda^h(E) \leq l$ which contradicts $\Lambda^h(E) = +\infty$. For any two non-empty subsets A, B of Ω write

$$\chi(A,B) = \inf_{\bar{a} \in A, \bar{b} \in B} \rho(\bar{a},\bar{b})$$

where ρ is the metric of Ω .

By Ramsey's theorem either there exists an infinite subsequence N such that

 $\chi(V_n^1, V_m^1) \geq 2d, \qquad n, m \in N, n \neq m$

or

$$(V_n^1, V_m^1) \leq 2d, \quad n, m \in N.$$

If the former is true then clearly it follows that

$$\lim_{n\to\infty} \Lambda_{\delta}^{h}(E_n) = +\infty,$$

which is not true.

Consequently we must have

$$\chi(V_n^1, V_m^1) \leq 2d, \qquad n, m \in N.$$

As in Lemma 1, $\Lambda_{\delta}^{h}(V_{n}^{1}) \to h(d)$ as $n \to \infty$. Hence, as $\Lambda_{\delta}^{h}(V_{n}^{1}) \leq h(V_{n}^{1})$ if $d(V_{n}^{1}) \leq \delta$, we can suppose that

 $h(V_n^{-1}) \ge h(d)/2, \quad d(V_n^{-1}) < 2d, \quad n \in N.$

Let $W = \bigcup_{n \in \mathbb{N}} V_n^1$. Then $0 < d \leq d(W) < 6d$ and

$$\Lambda_{\delta}^{h}(E_{n}\backslash W) \leqslant \sum_{r=2}^{\infty} h(V_{n}^{r})$$
$$= \sum_{r=1}^{\infty} h(V_{n}^{r}) - h(V_{n}^{1})$$
$$\leqslant l - \frac{1}{2}h(d), \quad n = 1, 2, \dots$$

which completes the proof of Lemma 3.

LEMMA 4. Let E be a subset of a complete separable metric and let $E = \bigcup_{n=1}^{\infty} E_n$, where $E_1 \subset E_2 \subset \ldots$. Then if $\delta > 0$ and h is a Hausdorff function such that

۰,

$$0 \leq \lim_{n \to \infty} \Lambda_{\delta}^{h}(E_{n}) \leq l < +\infty,$$

there exists a cover $\{W_r\}_{r=1}^{\infty}$ of E by sets W_r , with $d(W_r) \leq 6\delta$ and $d(W_r) \to 0$ as $r \to \infty$.

Proof. If $\Lambda^{h}(E)$ is finite then, given $\delta > 0$, there exists a covering $\{W_{r}^{1}\}_{r=1}^{\infty}$ of E such that

$$\sum_{r=1}^{\infty} h(W_r^{1}) < +\infty,$$

and $d(W_r^1) \leq \delta < 6\delta$, r = 1, 2, ... Then $d(W_r^1) \to 0$ as $r \to \infty$ and consequently $\{W_r^1\}_{r=1}^{\infty}$ satisfy Lemma 4.

Otherwise $\Lambda^{h}(E) = +\infty$. So, by Lemma 3, there exists a subset $W_{1^{2}}$ of E such that

$$\Lambda_{\delta}^{h}(E_{n} \setminus W_{1}^{2}) \leq l - h(d_{1})/2 \text{ for all } n,$$

where $0 < d_1 \leq d(W_1^2) < 6d_1 \leq 6\delta$.

If $\Lambda^{\hbar}(E \setminus W_1^2) = +\infty$ we may repeat this process. Consequently we choose a possibly transfinite sequence of disjoint sets W_{α}^2 , $\alpha < \beta$ such that

$$0 \leqslant \Lambda_{\delta}^{h}(E_{n} \setminus \bigcup_{\alpha < \beta} W_{\alpha}^{2}) \leqslant l - \sum_{\alpha < \beta} h(d_{\alpha}), \quad n = 1, 2, \dots$$

and $0 < d_{\alpha} \leq d(W_{\alpha}^2) \leq 6d_{\alpha} \leq 6\delta$.

As $l < +\infty$, this process must terminate at some countable ordinal β_0 and then it must be that

$$0 \leqslant \Lambda_{\delta}^{h}(E_{n} \setminus \bigcup_{\alpha < \beta_{0}} W_{\alpha}^{2}) \leqslant l - \sum_{\alpha < \beta_{0}} h(d_{\alpha}), \quad n = 1, 2, \dots$$

but $\Lambda^{h}(E \setminus \bigcup_{\alpha < \beta_{0}} W_{\alpha}^{2}) < +\infty$. So we may choose a partition $E = \bigcup_{k=1}^{\infty} G_{k}$ of $E \setminus \bigcup_{\alpha < \beta_{0}} W_{\alpha}^{2}$ with $d(G_{k}) \leq \delta$, $k = 1, 2, \ldots$ and $\sum_{k=1}^{\infty} h(G_{k}) < +\infty$. Re-writing

 $\{W_{\alpha}^{2}\}_{\alpha<\beta_{0}} \cup \{G_{k}\}_{k=1}^{\infty}$ as $\{W_{r}\}_{r=1}^{\infty}$

we see that

$$\sum_{r=1}^{\infty} h(W_r) < +\infty$$

and consequently $d(W_r) \to 0$ as $r \to \infty$.

Further, $d(W_r) \leq 6\delta$, r = 1, 2, ... and $E \subset \bigcup_{r=1}^{\infty} W_r$, which completes the proof of Lemma 4.

Following Davies [2] we define

$$\Phi_{\delta}^{h}(E) = \inf \left[\lim_{n \to \infty} \Lambda_{\delta}^{h}(E_{n}) \right],$$

the infimum being taken over all increasing sequences of sets with union E. Let

$$\Phi^{h}(E) = \lim_{\delta \to 0} \Phi^{h}_{\delta}(E).$$

Now $\Phi^{h}(E)$ is a Borel regular metric outer measure on the subsets E of a complete separable metric space Ω . Further $\Phi_{\delta}^{h}(E) \leq \Lambda_{\delta}^{h}(E)$ for all subsets E of Ω .

LEMMA 5. Let E be a subset of a complete separable metric space Ω and suppose that E has infinite generalized Hausdorff dimension, i.e. $\Lambda^h(E) = +\infty$ for all Hausdorff functions h. Then there exists $\delta_1 > 0$, such that

$$\Phi_{\delta_1}{}^h(E) = +\infty$$

for all Hausdorff functions h.

Proof. We say that a set *E* has a fine repeated cover if there exists a sequence $\{U_i\}_{i=1}^{\infty}$ of sets such that

$$E \subset \bigcup_{j=i}^{\infty} U_j, \quad i = 1, 2, \ldots,$$

and $d(U_j) \to 0$ as $j \to \infty$. Then, by a result of P. R. Goodey [3] *E* has infinite generalized Hausdorff dimension if and only if *E* does not have a fine repeated cover.

If Lemma 5 is false then there exists a sequence of Hausdorff functions $\{h_i\}_{i=1}^{\infty}$ and a sequence of positive numbers $\{\delta_i\}_{i=1}^{\infty}$, $\delta_i \to 0$ as $i \to \infty$ such that

$$\Phi_{\delta_1}{}^{h_i}(E) < +\infty.$$

Consequently, there exists a sequence $\{E_n^i\}_{n=1}^{\infty}$ with $E_1^i \subset E_2^i \subset \ldots$, $E = \bigcup_{n=1}^{\infty} E_n^i$ and

 $\lim_{n\to\infty} \Lambda_{\delta_i}^{h_i}(E_n^i) < + \infty.$

By Lemma 4, there exists a cover $\{W_r^i\}_{r=1}^{\infty}$ of E such that $d(W_r^i) \leq 6\delta_i$ and $d(W_r^i) \to 0$ as $r \to \infty$, $i = 1, 2, \ldots$. Rearranging

$$\{\{W_r^i\}_{r=1}^\infty\}_{i=1}^\infty$$

as a single sequence, we obtain a fine repeated cover of E. This contradicts E having infinite generalized Hausdorff dimension and completes the proof of Lemma 5.

Let A be an analytic subset of a complete separable metric space Ω , and let I be the set of irrationals $\mathbf{i} = (i_1, \ldots, i_n, \ldots)$ in [0, 1] expressed as continued fractions. Then, by definition, there exists a relatively closed subset \mathbf{I}_0 of I and a continuous function F on \mathbf{I}_0 such that

$$A = \bigcup_{\mathbf{i}\in\mathbf{I}_0} F(\mathbf{i}) \equiv F(\mathbf{I}_0).$$

It is usual, if $\mathbf{i} = (i_1, \ldots, i_n, \ldots) \in \mathbf{I}$ to write $\mathbf{i}/n = (i_1, \ldots, i_n), n = 1, 2, \ldots$ and

$$F(\mathbf{i}/n) = \bigcup_{\mathbf{j}/n=\mathbf{i}/n} F(j).$$

LEMMA 6. Let A be an analytic subset of a complete separable metric space with $A = F(\mathbf{I}_0)$ as above. Suppose also that A has infinite generalized Hausdorff dimension. Then, for each Hausdorff function h there exists a collection $\{C_{\alpha}\}_{\alpha < \omega_1}$, where ω_1 is the first uncountable ordinal, of disjoint compact subsets of A, each of positive h-measure and with $C_{\alpha} = F(\mathbf{I}^{\alpha})$ for some compact subset \mathbf{I}^{α} of \mathbf{I}_0 .

Proof. By Lemma 5, there exists $\delta_1 > 0$ such that

$$\Phi_{\delta_1}{}^h(A) = +\infty.$$

By [2, Theorem 6], A contains a compact subset C_1 of positive Φ^h -measure

and, a fortiori, C_1 has positive *h*-measure. Further there exists a compact subset I_1 of I_0 such that $C_1 = F(I_1)$.

Suppose now that β is a countable ordinal and that disjoint compact subsets C_{α} , $\alpha < \beta$ of A have been defined and corresponding disjoint compact subsets \mathbf{I}_{α} , $\alpha < \beta$ of \mathbf{I}_{0} have been defined so that

$$C_{\alpha} = F(\mathbf{I}_{\alpha}), \qquad \alpha < \beta$$

and $\Lambda^{h}(C_{\alpha}) > 0, \alpha < \beta$.

Then $\bigcup_{\alpha < \beta} C_{\alpha}$ is a σ -compact subset of Ω and consequently, by [6, Theorem 33], there exists a Hausdorff function g such that

$$\Lambda^g\Big(\bigcup_{\alpha<\beta}C_{\alpha}\Big)=0.$$

Consequently $A \setminus \bigcup_{\alpha < \beta} C_{\alpha}$ is an analytic set and has infinite generalized Hausdorff dimension. So, by Lemma 5, there exists $\delta_{\beta} > 0$ such that

$$\Phi_{\delta_{\beta}}\left(A \setminus \bigcup_{\alpha < \beta} C_{\alpha}\right) = + \infty.$$

Let $I_{\alpha}^* = \{i : i \in I_0, F(i) \in C_{\alpha}\}, \alpha < \beta$. Then I_{α}^* is a relatively closed subset of I_0 containing I_{α} . So

$$I_0 \setminus \bigcup_{\alpha < \beta} I_{\alpha}^*$$

is a G_{δ} -subset of \mathbf{I}_0 . Consequently

$$I_0 \setminus \bigcup_{\alpha \leq \beta} I_{\alpha}^*$$

is the continuous one-one image, under f_{β} , of a closed subset I_{β} of I. Again we may pick a compact subset I_{β}' of I_{β} such that if

$$C_{\beta} = F(f_{\beta}(\mathbf{I}_{\beta}')),$$

then C_{β} is a compact subset of A with $\Lambda^{h}(C_{\beta}) > 0$. We write $\mathbf{I}_{\beta} = f_{\beta}(I_{\beta}')$ which is a compact subset of \mathbf{I}_{0} disjoint from $\bigcup_{\alpha < \beta} \mathbf{I}_{\alpha}$.

Lemma 6 now follows by transfinite induction.

LEMMA 7. Let I_0 be a relatively closed subset of the irrationals I in [0, 1]. Let \mathcal{J}_0 denote the space of all compact subsets of I_0 with the Hausdorff metric. Then \mathcal{J}_0 is an analytic set.

Proof. There exists in $[0, 1] \times [0, 1]$ a closed subset U which is universal, for the closed sets of [0, 1] (see, for example, W. Sierpiński [7, pp. 252–255]) i.e. if

 $U^x = \{y : (x, y) \in U\}$

then, for $0 \le x \le 1$, every set U^x is congruent to a closed subset of [0, 1] and, given any closed subset V of [0, 1] there exists $x, 0 \le x \le 1$, such that V is congruent to U^x .

Now consider

 $V = U \setminus \{[0, 1] \times \mathbf{I}_0\}.$

For $0 \leq x \leq 1$, V^x is an F_{σ} -set. Consequently, by Kunugui's theorem (see [5]), $\operatorname{proj}_X V$ is a Borel set, where X denotes the 1st coordinate axis.

So

 $W = [0, 1] \setminus \operatorname{proj}_X V$

is a Borel set. Now $\mathbf{x} \in W$ if and only if $U^x \subset \mathbf{I}_0$. Let f be the continuous one-one map of a relatively closed subset \mathbf{I}_1 of \mathbf{I} onto W. If $\mathbf{i} \in \mathbf{I}_1$ let

 $g(\mathbf{i}) = \{C \in J_0 : C \text{ is congruent to } U^{f(i)}\}.$

As U is compact, g is a continuous mapping from I_1 onto \mathscr{J}_0 and consequently \mathscr{J}_0 is an analytic set.

Remark. By choosing U more carefully, i.e. so that $U^{x_1} \neq U^{x_2}$ if $\bar{x}_1 \neq \bar{x}_2$ we can ensure that g is one-one and consequently deduce that \mathcal{J}_0 is a Borel set.

Proof of Theorem 2. Consider the compact subsets $\{C_{\alpha}\}_{\alpha < \omega_1}$ of A and compact subsets $\{\mathbf{I}_{\alpha}\}_{\alpha < \omega_1}$ of \mathbf{I}_0 as in Lemma 6. As there are uncountably many C_{α} , we may suppose, by choosing a subcollection if necessary, that there exist $\delta, \eta > 0$ such that

$$\Lambda_{\delta}^{h}(C_{\alpha}) \geq \eta, \qquad 0 \leq \alpha < \omega_{1}.$$

Now let \mathcal{J}_0 denote the compact subsets of \mathbf{I}_0 with the Hausdorff metric ρ_1 . By Lemma 7, \mathcal{J}_0 is an analytic subset of the complete separable metric space formed by the non-empty closed subsets of [0, 1]. We write

 $\mathscr{J}_0 = f(\mathbf{I}_1)$

where f is a continuous function from a relatively closed subset I_1 of I onto \mathcal{J}_0 . Let $A = F(I_0)$ where F is a continuous function from a relatively closed subset I_0 of I onto A. Then, if J is a compact subset of I_0 ,

$$G(J) = \{F(\mathbf{j}) : \mathbf{j} \in J\}$$

is a compact subset of A. We next show that the map G is continuous from \mathscr{J}_0 into the space \mathscr{C} of compact subsets of A with Hausdorff metric ρ_2 .

Let $J \in \mathcal{J}_0$ and, for $\epsilon > 0$, let

$$N_{\epsilon} = \{G(J^*) : J^* \in \mathscr{J}_0, \rho_2(G(J), G(J^*)) < \epsilon\}.$$

If $\mathbf{j} \in J$ then there exists $\theta(\mathbf{j}) > 0$ such that if $\mathbf{i} \in \mathbf{I}_0$ and $|\mathbf{i} - \mathbf{j}| < \theta(\mathbf{j})$ then

$$\rho(F(\mathbf{i}), F(\mathbf{j})) < \epsilon/2$$

where ρ is the metric on Ω . As J is compact we may choose $\theta(\mathbf{j}) = \theta > 0$, independent of \mathbf{j} in J. So, if $M_{\theta} = \{J^* : \rho_1(J, J^*) < \theta\} \subset \mathcal{J}_0, \ G(J^*) \in N_{\epsilon}$

whenever $J^* \in M_{\theta}$. So G is continuous and consequently the map

 $g(\mathbf{i}) = Gf(\mathbf{i}), \mathbf{i} \in \mathbf{I}_1$

is a continuous map from I to a subset \mathscr{B} of \mathscr{C} .

Further, for each set C_{α} there exists $\mathbf{i}_{\alpha} \in \mathbf{I}_1$ such that

$$C_{\alpha} = F(\mathbf{i}_{\alpha}).$$

From I_1 , we remove all the intervals [i/n] where

$$[\mathbf{i}/n] = \{\mathbf{j} \in \mathbf{I} : \mathbf{j}/n = \mathbf{i}/n\},\$$

such that $g(\mathbf{i}/n)$ does not contain uncountably many members of the collection $\{C_{\alpha}\}_{\alpha < \omega_1}$. If \mathbf{I}_2 is the remaining subset of \mathbf{I}_1 then \mathbf{I}_2 is a relatively closed uncountable subset of \mathbf{I} and if $\mathbf{i} \in \mathbf{I}_2$ then $g(\mathbf{i}/n)$ contains uncountably many members of $\{C_{\alpha}\}_{\alpha < \omega_1}$, $n = 1, 2, \ldots$.

Now $g(\mathbf{I}_2)$ is an uncountable analytic subset of \mathscr{C} and we next show that (5) $\Lambda_{\delta}^{h}(g(\mathbf{i})) \geq \eta, i \in \mathbf{I}_2$.

For suppose that $\Lambda_{\delta}^{h}(g(\mathbf{i})) < \eta$. Then there exists a cover $\{G_{j}\}_{j=1}^{k}$ of $g(\mathbf{i})$ by open sets of diameter less than or equal to δ such that

$$\sum_{j=1}^{k} h(G_j) < \eta.$$

As g is continuous, there exists n such that $g^*(\mathbf{i}/n) \subset \bigcup_{j=1}^k G_j$, where

$$g^*(\mathbf{i}/n) = \bigcup_{\mathbf{i}^*/n=\mathbf{i}/n} g(\mathbf{i}^*).$$

By construction, there exists α and $\mathbf{i}_{\alpha} \in \mathbf{I}_2$ such that $C_{\alpha} = g(\mathbf{i}_{\alpha})$ and $\mathbf{i}_{\alpha}/n = \mathbf{i}/n$. So $C_{\alpha} \subset \bigcup_{j=1}^{k} G_j$, and hence

$$\Lambda_{\delta}^{h}(C_{\alpha}) \leqslant \sum_{j=1}^{k} h(G_{j}) < \eta,$$

which contradicts $\Lambda_{\delta}^{h}(C_{\alpha}) \geq \eta$ and thus establishes (5). As $g(\mathbf{I}_{2})$ is an uncountable analytic set, it follows (see for example W. Sierpiński [7, p. 290]), that $g(\mathbf{I}_{2})$ contains *c* "points". Thus, using (5), it follows that *A* contains *c* distinct compact sets, each of positive *h*-measure, but we cannot, without further argument, ensure that these sets are pairwise disjoint.

Consider $\mathbf{i}(1)$, $\mathbf{i}(2) \in \mathbf{I}_2$, where $g(\mathbf{i}(1)) = C_1$, $g(\mathbf{i}(2)) = C_2$. Because $C_1 \cap C_2 = \emptyset$, there exists disjoint open sets G_1, G_2 with $C_1 \subset G_1, C_2 \subset G_2$. As g is continuous, there exists a positive integer n_1 such that

 $g(\mathbf{i}(1)/n_1) \subset G_1, \quad g(\mathbf{i}(2)/n_1) \subset G_2.$

Suppose now we have defined, for some positive integer k, positive integers

 $(6) \quad n_1 < n_2 < \ldots < n_k,$

and points

(7)
$$i(h_1, \ldots, h_k) \in I_2, \quad h_j = 1 \text{ or } 2, 1 \leq j \leq k$$

such that

(8)
$$\mathbf{i}(h_1,\ldots,h_j)/n_j = \mathbf{i}(h_1,\ldots,h_k)/n_j, \quad 1 \leq j \leq k$$

and

(9)
$$g(\mathbf{i}(h_1,\ldots,h_k)/n_k \cap g(\mathbf{i}(h_1',\ldots,h_k')/n_k) = \emptyset$$

if $(h_1, \ldots, h_k) \neq (h_1', \ldots, h_k')$. By the construction of \mathbf{I}_2 there exist $\mathbf{i}(\alpha)$, $\mathbf{i}(\beta), \alpha \neq \beta$ such that $\mathbf{i}(\alpha) = \mathbf{i}(h_1, \ldots, h_k)/n_k$, $\mathbf{i}(\beta) = \mathbf{i}(h_1, \ldots, h_k)/n_k$, and $g(\mathbf{i}(\alpha)) = C_{\alpha}$, $g(\mathbf{i}(\beta)) = C_{\beta}$. In particular, therefore $\mathbf{i}(\alpha) \neq \mathbf{i}(\beta)$. So there exists $n_{k+1} > n_k$ such that

$$g(\mathbf{i}(\alpha)|n_{k+1}) \cap g(\mathbf{i}(\beta)|n_{k+1}) = \emptyset.$$

We define

$$\mathbf{i}(h_1,\ldots,h_k,1) = \mathbf{i}(\alpha)$$

$$\mathbf{i}(h_1,\ldots,h_k,2) = \mathbf{i}(\beta).$$

With these definitions (6)-(9) are satisfied for k replaced by k + 1. By induction we suppose that a system has been defined to satisfy (6)-(9) for k = 1, 2, ...

If \mathscr{H} is the set of infinite sequences of one's and two's and

$$\mathbf{h} = (h_1, \ldots, h_k, \ldots) \in \mathscr{H}$$
 we define $\mathbf{i}(\mathbf{h})$ by
 $\mathbf{i}(\mathbf{h})/n_k = \mathbf{i}(h_1, \ldots, h_k)/n_k, \qquad k = 1, 2, \ldots$

Properties (7) and (8) ensure that $\mathbf{i}(\mathbf{h})$ is well-defined, and, as \mathbf{I}_2 is relatively closed, $\mathbf{i}(\mathbf{h}) \in I_2$, $\mathbf{h} \in \mathscr{H}$. Further, if

$$\mathbf{h} = (h_1, \ldots, h_k, \ldots), \qquad \mathbf{h}' = (h_1', \ldots, h_k', \ldots)$$

are in \mathscr{H} and $\mathbf{h} \neq \mathbf{h}'$ then there exists k such that

$$(h_1,\ldots,h_k) \neq (h_1',\ldots,h_k').$$

So, by (9),

(10)
$$g(\mathbf{i}(\mathbf{h})) \cap g(\mathbf{i}(\mathbf{h}')) = \emptyset$$
.

Consequently, combining (5) and (10), the collection

 $\{g(\mathbf{i}(\mathbf{h}))\}_{\mathbf{h}\in\mathscr{H}}$

form c pairwise disjoint compact subsets of A, each of positive h-measure.

References

- R. O. Davies, Non-σ-finite closed subsets of analytic sets, Proc. Cambridge Philos. Soc. 52 (1956), 174-7.
- 2. —— Increasing sequences of sets and Hausdorff measure, Proc. London Math. Soc. 20 (1970), 222–236.
- 3. P. R. Goodey, Generalized Hausdorff dimension, Mathematika 17 (1970), 324-27.
- 4. D. G. Larman, A new theory of dimension, Proc. London Math. Soc. 17 (1967), 168-192.
- 5. Projecting and uniformising Borel sets with K_{σ} -sections, I, Mathematika 19 (1972), 231–244.
- 6. C. A. Rogers, Hausdorff measures (Cambridge University Press, Cambridge, 1970).
- 7. W. Sierpiński, Introduction to general topology (Toronto, 1934).
- 8. M. Sion and D. Sjerve, Approximation properties of measures generated by continuous set functions, Mathematika 9 (1962), 145-56.

University of British Columbia, Vancouver, British Columbia; University College London, Gower St., London