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Abstract
This paper proposes a novel two-layer framework based on conflict-based search and regional divisions to improve
the efficiency of multi-robot path planning. The high-level layer targets the reduction of conflicts and deadlocks,
while the low-level layer is responsible for actual path planning. Distinct from previous dual-level search frame-
works, the novelties of this work are (1) subdivision of planning regions for each robot to decrease the number of
conflicts encountered during planning; (2) consideration of the number of robots in the region during planning in
the node expansion stage of A∗, and (3) formal proof demonstrating the nonzero probability of the proposed method
in obtaining a solution, along with providing the upper bound of the solution in a special case. Experimental com-
parisons with Enhanced Conflict-Based Search demonstrate that the proposed method not only reduces the number
of conflicts but also achieves a computation time reduction of over 30%.

1. Introduction
Multi-robot path planning (MRPP) (or alternatively, multi-agent path planning, MAPF) is a complex
combinatorial optimization problem that plans collision-free paths for multi-robot systems. MRPP is
important for many applications, such as warehouse automation, traffic management, and multi-robot
autonomous exploration [1, 2]. In comparison to single-robot path planning, MRPP exhibits the fol-
lowing characteristics: 1) high dimensionality. MRPP involves finding feasible paths for multiple robots
simultaneously, leading to a higher dimensional problem; 2) NP-completeness. It has been proven to be
an NP-complete problem [3, 4]; and 3) temporal and spatial entanglement. In MRPP, the coordination
and synchronization of multiple robot movements in time and space must be considered simultaneously
to avoid collisions and deadlocks.

Comprehensive research has been carried out on MRPP due to its numerous applications and chal-
lenges. Centralized methods have garnered substantial research attention due to their ability to guarantee
high-quality solutions. Among these, search-based methods constitute the mainstream, wherein A∗ [5],
independence detection (ID) framework [6, 7], M∗ [8, 9], and conflict-based search (CBS) [10] are recog-
nized for their ability to ensure both optimality and completeness of solutions. CBS is a method based on
increasing cost tree search [11], which has garnered significant attention from the research community
due to its rapid search capabilities. There are many improvements based on CBS, such as improved CBS
(ICBS) [12] and ICBS-h [13]. While these methods ensure optimality, they are often associated with
lower efficiency. To expedite the search process, researchers have proposed bounded suboptimal search
methods such as Enhanced Conflict-Based Search (ECBS) [14] and Explicit Enhanced Conflict-Based
Search (EECBS) [15]. These methods have demonstrated improved search speeds while still providing
reasonably good solutions. In addition to the above methods, another notable method in the search-based
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method is the use of Rubik Tables [16, 17]. While suboptimal, it delivers 1.x guarantees on high-density
grid environments.

Centralized methods rely on globally available information from all robots, but they may encounter
challenges when applied to dynamic environments. Recognizing these drawbacks has spurred the devel-
opment of distributed methods. Among these, velocity obstacles (VO) [18], reciprocal velocity obstacles
(RVO) [19], and optimal reciprocal collision avoidance (ORCA) [20] are prominent methods focusing on
real-time collision avoidance for multiple robots in dynamic environments by interaction and percep-
tion. There are several improved variants and extensions of these methods, including non-holonomic
ORCA [21] and hybrid RVO [22].

With the growing popularity of machine learning methods, researchers are also utilizing deep learn-
ing and reinforcement learning to address MRPP problems. For example, Yang Yang et al. have explored
the application of deep Q-networks (DQN) to solve MRPP challenges [23]. Qingbiao Li et al. combine
convolutional neural network and graph neural network for MRPP problem [24]. In addition, researchers
have employed deep reinforcement learning methods to solve the MRPP problem [25, 26].

In this study, we propose a novel regional heuristic framework over ECBS for MRPP, namely RH-
ECBS. Before solving the MRPP problem, the map undergoes a regional partition. The objective of this
region division is to alleviate the robot density within each region, achieving a more uniform distribution
of robots. This approach significantly reduces the incidence of conflicts, enhancing the overall efficiency
of the planning process. To summarize, the main contributions and novelties of this work are as follows:

1. A novel regional heuristic planning framework is proposed. The region of each robot is divided
before planning so that the number of conflicts and deadlocks encountered during planning can
be decreased.

2. In the planning stage, the number of robots in each subregion is considered when performing the
A∗ search. Thus, the robot is guided to plan in the region with a small number of robots.

3. Formally proving the nonzero probability of obtaining a solution using the proposed method.
Besides, the upper bound of the solution in a special case is given.

4. The comparative experiments were conducted with different numbers of robots, comparing
RH-ECBS against the ECBS algorithm. The experimental results demonstrate that RH-ECBS
outperforms ECBS in terms of efficiency while achieving comparable solution quality.

2. Problem formulation
The environment can be presented by the graph structure G = {V , E}, where V represents vertices and
E represents edge. Multi-robot systems are denoted by R= {R, S, F}, where R = {Ri} represents the set
of robots, S = {Si} represents the set of starting configurations and F = {Fi} represents the set of final
configurations. The solution of MRPP is defined as P= {Pi}, Pi represents the path of robot i.

In the process of multi-robot planning, time is discretized into equal time steps. During each time
step, a robot can only move from the current vertex to the surrounding 4-connect or 8-connect vertices,
or remain waiting at the current vertex. Additionally, two types of conflicts can occur during the planning
process: vertex conflict and edge conflict. Fig 1 shows the two types of conflicts.

According to the above definition, the MRPP problem is defined as follows. Given the environment
map G = {V , E}, the multi-robot system R= {R, S, F}. The planner should find a path from Si to Fi for
each robot Ri in R while there should be no conflict between any two paths Pi and Pj in the path set P.

3. Method
The system consists of the following steps. First, the map is built as a two-layer map that consists of
the high-resolution and low-resolution maps. The start and goal of the robot need to be mapped on
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Figure 1. Two different types of conflict.
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Figure 2. System flowchart of the framework, where the yellow parts are our contributions.

the low-resolution map from the high-resolution map. Then, utilizing individual robot path planning
to partition regions for each robot in a low-resolution map. The region needs to be mapped back to
the high-resolution map. Finally, ECBS is used to plan the path for the multi-robot system in the high-
resolution map. When in the low-level search of ECBS, the probability of the search method expanding
to the respective regions of each robot is greater. And the probability is relative to the robot density. The
diagram of the method is shown in Fig 2. The yellow parts are the novel partition. The detailed method
is presented in the rest of this section.

3.1. Two-layer map and region division
In order to segment the grid map into regions, the original high-resolution grid map was downsampled
to generate a low-resolution map. At the same time, the position information of the robot is mapped to
the low-resolution map. The construction of the high-low-resolution double-layer map and the mapping
relationship of the robot position are shown in Fig 3, where the left side is the original high-resolution
map and the right side is the low-resolution map after downsampling.

Formula (1) describes the mapping relationship of the robot position coordinates between the high-
and low-resolution maps,

xlow = �xhigh − xo

m
�, ylow = �yhigh − yo

n
� (1)

where �•� represents rounding down, (xhigh, yhigh) represents the coordinates of the robot under the high-
resolution map, (xlow, ylow) represents the coordinates of the robot under the low-resolution map, (xo, yo)
denotes the coordinates of the origin of the high-resolution map, m represents the ratio of the resolution
in the x-direction between the high-resolution map and the low-resolution map, and n represents the
ratio of the resolution in the y-direction between the high-resolution map and the low-resolution map.
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Figure 3. Mapping relationship between high-resolution map and low-resolution map.

Algorithm 1. PCM-A∗

Require: multi-robot R, cost map Cm

1: for each Ri in R do
2: path pl

i =invoking A∗(Ri, Cm)
3: for each grid gk in pl

i do
4: Cm[gk] = Cm[gk] + 10
5: update the cost map Cm

6: for each grid gk in grid map do
7: calculate the count that is occupied by robots N
8: calculate the p[gk] = N

Rm+1

Ensure: path Pl and probability p

After building a two-layer map and mapping the robot position from the high-resolution map to the
low-resolution one, the regions are segmented in the low-resolution map.

The novel priority cost map A∗ (PCM-A∗) is used as the region partition method. The robot may
avoid collisions with another robot in the same low-resolution grid as each low-resolution grid comprises
multiple high-resolution grids. Consequently, when PCM-A∗ is employed to partition regions, it does not
need to impede the robot with lower priority passing through the path of the robot with higher priority.
However, to minimize conflicts among the robots, it is essential to decrease the overlap between the
paths of each robot. Therefore, after a high-priority robot has a path, it is necessary to increase the cost
of the path. This operation causes other robots to expand their paths to nodes with fewer occupancies
during path search, thereby reducing overlap between regions. Lines 1 to line 7 of Algorithm 1 shows
the flow. The input to the algorithm is the robot set R and a low-resolution cost map Cm. Besides, the
initial value of the Cm is 10. The number of robots in the robot set is Rm.

Take Fig 4 as an example, to plan an optimal path from S1 to G1 for robot A, and the result of the
planning is assumed to be the yellow grid. Next, the optimal path from S2 to G2 is planned for robot
B. If the traditional A∗ is used, the planning result may be the green path in Fig 4(b); thus, there is a
possibility of conflict between robot A and robot B. Whereas when PCM-A∗ is used to plan the path for
robot B, the cost of the yellow grid has been added. In this case, the optimal path for robot B is the grid
through which blue or green line segments pass. It is assumed that it takes the same time for the robot
to pass through each grid. In this case, no conflict will occur when using PCM-A ∗, but conflicts will
occur when using A∗.

After dividing the region for each robot, there may be no solutions if each robot is only allowed to
perform low-level path planning within its respective region. Therefore, a probabilistic heuristic method
is designed to solve the problem, where each robot has a higher probability of expanding within its
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Figure 4. Comparison of A∗ with PCM-A∗ in path planning.

designated region while still having the possibility to expand into other regions. The method can ensure
completeness, which is analyzed in the section completeness analysis and the maximum of solution. The
probability is calculated by the formula (2). The physical meaning of formula (2) is that the more times
a region is occupied by robots, the probability that a path node expands to this region when searching
is lower.

Dp = w(1 − p), (2)

where p is the output of Algorithm 1, and w is a weight used to calculate the probability Dp. If w is
greater, it implies that during the path search process, the probability of path nodes only expanding
to the partitioned areas is higher. In scenarios where there is a higher number of robots, this could
potentially lead to an inability to find a path solution that meets the constraint conditions in a low-level
search. When w is smaller, the region division is meaningless. The algorithm performs better in terms
of time consumption when w is between 0.05 and 0.2 during the experiment.

3.2. Two-layer division and probability heuristic conflict search framework
ECBS is currently one of the most popular and high-performing algorithms for efficiently handling
conflicts among multiple robots. It achieves this by generating bounded-suboptimal paths with fewer
collisions with the paths of the other robots on the low level and expanding bounded-suboptimal CT
nodes that contain fewer collisions on the high level [27]. In the low-level path planning phase, the A∗

method is used to find the path for each robot on a known map, which satisfies constraints and avoids
collisions with known obstacles. In the high-level conflict detection and constraint generation phase, the
paths of all robots are considered and checked for conflicts. For existing conflicts, constraints are added
to resolve the conflicts between robots. The low-level path planning is then called until a nonconflicting
solution is found. To further improve the algorithm, probabilistic heuristic search is introduced in low-
level path planning to reduce the conflicts and improve efficiency when planning the path, which is called
Ph-A∗. The probability is obtained by the PCM-A∗. The Ph-A∗ algorithm is described as Algorithm 2.
The function CheckConstraints() in Line 8 checks whether the node satisfies the constraints of the high-
level search build and whether it is occupied by obstacles.

3.3. Analysis of the maximum value of the solution and the probability of obtaining the solution

Theorem 1. If a solution exists, the probability of RH-CBS obtaining a solution is nonzero.

Proof. Consider the path nodes for the final solution of agent i denoted as N1, N2, . . . , Nm. Each node
in the high-resolution map is subject to expansion with a specific probability, denoted as p1, p2, . . . , pm.
Thus, the probability of adding node Nm to the OpenList of A∗ can be expressed as follows:
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Algorithm 2. Ph-A∗

Input: start s and goal g;
1: insert start to Open list: Lo

2: while Lo!= ∅ do
3: Node N = Lo.top()
4: put N to close list
5: for each node Ni of adjacent nodes do
6: if Ni == g then
7: break
8: if CheckConstraints(Ni) then
9: continue
10: else insert Ni to Lo with probability Dp[Ni]
11: Find path P from g to s
Ensure: P

Algorithm 3. RH-ECBS
Require: multi-robot instance
1: build two-layer map: low-resolution map and high-resolution map;
2: pose map from the high-resolution map to low-resolution map;
3: invoke the PCM-A∗ and get the Dp;
4: for each robot invoke ECBS-low-level(Ph-A∗) to get path;
5: invoke ECBS-high-level to check conflict and build constraints;
6: if conflicts is ∅ then
7: P= p
8: else go to 4
Ensure: path P

P(Nm) =P(Nm|Nm−1) = pm · P(Nm−1)

=pm · P(Nm−1|Nm−2) = pm · pm−1 · P(Nm−1)

. . .

=
m∏

i=1

pi. (3)

Since the pi > 0, the P(Nm) > 0. In addition, the probability of the method entering the loop is as
follows:

Ploop = Pn
i . (4)

The Pi is the probability of one of the paths with conflicts. And 0 < Pi < 1, so when the n → ∞, the
Ploop → 0. Therefore, RH-ECBS does not get stuck in a loop when solving MAPF problems.

Therefore, if a solution exists, the probability of RH-CBS obtaining a solution is nonzero. �
Theorem 2. When each agent only finds a path in its region, traditional A∗ is used for regional division.
The cost of the solution returned by the RH-ECBS is at most 2m/n · Cmin, and the m and n represent the
number of the grid in high-resolution and low-resolution maps, respectively. Cmin represents the cost of
the optimal solution.

Proof. The Li represents the cost of the solution returned by RH-ECBS and the li represents the cost of
each agent in the optimal solution. Besides, the relationship between Li and li is that Li = ki · li, where ki
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is an indeterminate constant. The cost can be represented as follows:

cost =
∑

Li = L1 + L2 + . . . + Lm

=k1l1 + k2l2 + kmlm

< max{ki}
∑

li

= max{ki}Cmin. (5)

Next, the kmax can be calculated. Assuming that each agent only finds a path in its region. Because
the region is returned by A∗, the optimal path of each agent must be in the region. In addition, the
worst path is to pass through all the grids in the region. Therefore, the kmax = 2m/n. So, theorem 2 is
proved. �

4. Experiments and discussions
In order to verify the effectiveness of the proposed method, we compared RH-ECBS with the open-
source method ECBS [14, 28]. All experiments are performed on an Intel(R) Core(TM) i7-11800H
CPU with 2.3 GHz and 16 G of RAM. The experiment scenarios are set as 24×18 resolution maps with
no obstacles and random obstacles, respectively.

In order to facilitate a comprehensive comparison, each experimental scenario involves the config-
uration of four distinct low-resolution maps: 2×2, 4×3, 6×6, and 12×9. Moreover, varying numbers
of robots are designated for each resolution namely, 118, 142, 166, 190, and 213 – representing 25%,
30%, 35%, 40%, and 45% of the map size, respectively. There are five different configurations for each
number of robots. Given that the proposed method incorporates probability and lacks consistency, each
experiment is conducted 20 times. Subsequently, the 10 trials with the smallest discrepancy in solution
cost between RH-ECBS and ECBS are chosen. Finally, the average of these 10 trials is computed for
comparison with the results obtained using ECBS.

Four distinct low-resolution maps are configured to assess the influence of map resolution on planning
outcomes. Specifically, the low-resolution maps are defined as 2×2, 4×3, 6×6, and 12×9, respectively.
Comparative experiments are conducted with varying numbers of robots. The average experimental
results are presented in Table II and Fig 5. Comparison with ECBS indicates that RH-ECBS exhibits
superior efficiency across different robot quantities. Furthermore, the experimental outcomes for the
6×6 low-resolution map are detailed in Table I to more effectively illustrate performance improvements
with varying robot numbers.

The results show that compared with ECBS, the number of conflicts solved by the proposed method
is reduced by 34.08%, the solving time is reduced by 31.89%, and the cost is only 0.22% worse. It is
noted that the percentage reduction refers to the average of the percentage reduction of experiments at
each configuration.

It is noteworthy that we also conducted experiments on a low-resolution map of 24×12; however,
obtaining a solution within a short timeframe proved unfeasible; hence, it is excluded from the table.
Analysis of the results reveals that, with an increase in the resolution of low-resolution maps, the cost
of the proposed algorithm’s solution also increases. This degradation is attributed to the heightened
randomness of RH-ECBS as the resolution increases. However, the significance of regional division
diminishes when the low-resolution map’s resolution is small, explaining the observed minor efficiency
improvement in the 2×2 low-resolution map. Taking into account the solution cost and solving time,
efficiency sees more improvement with only a slight increase in cost when the low-resolution map has
a resolution of 6×6 or 4×3.

Furthermore, five sets of tests with different numbers of robots are conducted in an environment with
obstacles in a low-resolution map of 4×3. The map with random obstacles is shown in Fig 6a. The
comparison experiment is set up as before, and the results of experiments are presented in Table IV.
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Figure 5. The average of the experimental results for different numbers of robots.

The results show that compared with ECBS, the solution time of the proposed method is reduced by
more than 50% in the environment with obstacles.

In addition, tests are conducted in a warehousing environment, as shown in Fig 6b. In this environ-
ment, path planning was tested for 72 robots, 90 robots, and 108 robots, with five different start-target
points selected for each quantity. The average results are shown in Table III. It is worth noting that
the efficiency improvement refers to the average improvement under each test condition. Furthermore,
the low-resolution map has a resolution of 4×3. The results show that compared with ECBS in a
warehousing environment, the RH-ECBS algorithm obtains paths more quickly.

5. Conclusion
This paper introduces a MRPP framework incorporating regional heuristics. This method improves the
efficiency of solving MRPP problems by reducing the number of conflicts during planning. Besides,
compared with the popular ECBS method, the solving time is decreased by more than 30%. Further
proving the nonzero probability of obtaining a solution using this method and determining the maximum
cost of the solution in certain cases. However, there are still areas for further improvement in the proposed
method. For example, although this method improves efficiency, the path cost increases, so it needs to
be further optimized in the future. At the same time, the region division framework is considered to be
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Table I. Experimental comparison results for different numbers of robots on a low-resolution 6×6
map.

Conflicts Makespan Solving Time
Number Method Conflicts reduction Makespan increase time reduction
25%-118 ECBS 262.2 32.95% 1527.8 0.362% 2.70 20.58%

RH-ECBS 168.7 1533.2 1.70

30%-142 ECBS 340.6 36.62% 1977.4 −0.21% 5.80 23.90%
RH-ECBS 205 1972.56 3.28

35%-166 ECBS 958.25 26.17% 2360 0.04% 17.24 27.30%
RH-ECBS 420.35 2361 9.02

40%-190 ECBS 1111.8 33.92% 2880 0.45% 38.20 36.10%
RH-ECBS 641.06 2893 22.75

45%-213 ECBS 3060.4 40.76% 3250 0.47% 157.38 33.55%
RH-ECBS 1686.54 3265 103.75

Table II. Experimental comparison results under maps of different resolutions.

Map Conflicts Makespan Solving Time
resolution Method Conflicts reduction Makespan increase time reduction
2×2 ECBS 1235.36 17.62% 2393.2 0.21% 40.21 16.77%

RH-ECBS 857.76 1533.2 30.45

4×3 ECBS 1235.36 27.19% 2393.2 0.05% 42.63 23.90%
RH-ECBS 766.44 2394 31.34

6×6 ECBS 1235.36 33.32% 2393.2 0.36% 47.12 31.80%
RH-ECBS 725.68 2401.3 30.40

12×9 ECBS 1235.36 36.37% 2393.2 1.06% 42.63 37.31%
RH-ECBS 607.55 2410.4 20.74

Random obstacles map Warehouse map

(a) (b)

Figure 6. Simulation maps.
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Table III. Experimental comparison results with ECBS in warehouse map.

Conflicts Makespan Solving Time
Number Method Conflicts reduction Makespan increase time reduction
72 ECBS 30.2 21.6% 1060.8 0.6% 0.59 5.18%

RH-ECBS 23.32 1067.84 0.58

90 ECBS 240.4 30.27% 1455.4 0.8% 13.18 10.48%
RH-ECBS 117.7 1467.4 7.51

108 ECBS 933 50.81% 1676.6 0.03% 29.66 56.40%
RH-ECBS 351.22 1683 10.44

Table IV. Experimental comparison results with
ECBS in map with the random obstacle.

ECBS RH-ECBS
Conflicts 1492.2 411.1

Conflict reduction 54.13%

Makespan 2597 2586

Makespan reduction 0.21%

Solving time(s) 46.488 15.228

Time reduction 57.68%

added to other pathfinding methods based on graph search, such as EECBS [15], to further verify the
improvement effect of this method.
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