ON THE PROPERTIES OF AN ENTIRE FUNCTION OF
TWO COMPLEX VARIABLES

ARUN KUMAR AGARWAL
1. Let

<O

(1'1> f(zlv ZQ) = z 0 amlmg Zlm‘ZZWZ

mi,m2=

be an entire function of two complex variables z; and 2,, holomorphic in the
closed polydisk P {[z;] <7, 7 =1, 2}. Let

M(ry,r) = M(ry,79;f) = max lf(z1,20),  j=12
Following S. K. Bose (1, pp. 214-215), u(r1, 7s; f) denotes the maximum term
in the double series (1.1) for given values of 71 and 7, and »y(ms; 71, 72) or
vi(ry, 72), 72 fixed, vo(my; 1, 72) or wo(ry, 72), 71 fixed and »{(r;, ;) denote the
ranks of the maximum term of the double series (1.1). Let us write

1 2w 27 ; 0
(1.2) Is(ry, 723 f) = Ik J; fo [f(rie™™, 7y ) |’do, db,
and

1 71 T2
(1.3) Mo gy e (1, 723 f) = p 1Y, Eetl J; fo M5 (e, %05 1" 25" dey dixs
1 2

where 8§ > 1 and —1 < &y, ks < =, and
My(ry, ve; f) = {Ls(ry, ro; )}V

Then Is(r1, 72; f) is an increasing function of r; and 7, when one remains fixed
and the other increases or both increase. The finite order p of an entire function
f(z1, 22) is defined as (1, p. 219)

) log log M (r,, Tg;f)} B
(L4) fin sup { logrirs) S P
Similarly, we can define the lower order A of f(z1, 22) as
(1.5) fim in {log log M(r, 72:] )} Y
T1,72-50 10g(1’17’2)

In this paper we have deduced an asymptotic relation between the two mean
values defined by (1.2) and (1.3) and a number of results connecting M (r1, 72; f)
and p(ry, 79; f) and »(ry, 72; ) and the coefficients @pm,-
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2. TurorEM 1. Let f(21, 22) be an entire function of finite non-zero order p and
lower order N (2\ < p); then

2.1 log Ms ks e (1, 723 f) ~ log Ms(ra, 725 f),
where § > 1 and —1 < ky, ks < =, and f(0,0) # 0.
Proof. We have
(22)  Wspplr, i f) = M+11 Jart f J; M5 (%1, %35 )21 25 Ay dcy
0

Ms(ry, 725 f)
(ks + 1) (ke + 1)
Further, for 0 < r; < R; < 2Ve+9y, ({ = 1, 2),

R R2
(2-3) 9)}6,k1,k2(R1y Rz?f) > R, “+1R kg1 J‘ f ﬂ[&(xly xz,f)xl x2 dx1 dxe

S Myl reif) (R — pBHY) (RS — o)
T i+ Dk + 1) R Ry
From (2.2) and (2.3), we get that
Ms(ry, 7’2§f)
(By + 1)(ka + 1)

< Mo, ir00 (R, Ros f)

<

(2.4) M 112 (71, 7’2?][) <

ki+1 ka+1
Rl 1+ RZ

(leH-l _ 7,1kx+1) (R2k2+1 _ r2kz+.1) .

('UéAé)}E_ {log (RIMHR?]”H%E&,M s (R, Ro; 1))}

R1
J IRzk2 f x1klﬂla(x1,R2;f)dxll
. 0
1

LR1k1+lekHIEma,m k2 (Rl) Ry; f) J
_ R{"RS My(Ry, Roi YRS RS My gy s (Ra, Roi )}
(RPFRS MG sy sy (R, Ras )}

k1 e k2 . 1[ k2 " k1 L 1
Rl X2 M,s(Rl, QC2,f)d.X‘2fl]€2 . X1 ]\Ia(xl,Rz,j)dxl(

0
(RFRS NG 1 e (Re, Ros )
Ms(Ry, R f) _L_

h EDES,IH,/CZ (Zel) R27j) Rl ]{2 !
we have

Ry R2
k141 k2t 1 . r M;(x1, x2;f)  dxy dxs
log{ Ry Ry M e 1o (Ray R )} < J, o Worsraon 2as ) 41 0
_ J.” I”? Ma(xl, XQ,f) dX1 de

o Wi k1 kz(xly xz:f) X1 X2

LI L0000 R)]wszif@ffk?f)ﬁli?’
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or
(2.5) log{lelHR?kngﬁB'khkz(Rlv Rz?f)}
7’1k1+17'2k2+19ﬁ5,k1,k2 (7'1, Tz;f)

< |: fn j-R2 + flh frz L le fR2:| Ms (xl, x2;f)' @l @C_g
0 T2 71 0 71 re EUE«S,kl,ka (xl, x2,f) X1 X9
=J1+J2+ Jg, say.
For any positive number ¢, from (2), we have

M (ry, 723 f)
Do ks k2 (11, 725 1)
for suthciently large r; and 7, Also

2.7 10g(%> = log(l + Rir— ri) < Ri; L forz=1,2.

i

(2.6) < (rir)™,

Let us choose R; such that
(2.8) Ry —r)/ri=rire for< =1, 2.
Then

71 "R 71
My(x1, %25 f)  dxcy dxs <R2> f e d
= SN2 < log| =2 Ry)rtet
Ji ‘I; JTZ ED}&,kl,kz(xly x2§f) X1 % < log s . (xl 2) %

from (2.6)
<R2>p+e 7,I;H—e
< 72 (p+ €

rlp+c

<2 )
_ Tt
since r; < R; < 2V6+eoy, for ¢ = 1, 2. Similarly,

Js < 292t/ (p + ¢),

and
J;; =

J'R‘ B Ms(ey, %05 f)  dwrday
71 T2

Ema,m,kz(xl, x‘z;f) X1 X2

< (R, ]€2>"+E<R1 — h) <R2 — 72) <4,
71 Yo

from (2.8) and for r; < R; < 2Vltay, (7 = 1, 2). Hence (2.5) becomes

Jle1+lR2k2+1§D}5,k1,k2 (Rl, Rz,f)} <9 719'*‘5 1,29+e

2.9) 1 2 =+ 4.
( ) Ogl 7’1k1+17'2k2+19:n5,k1,k2 (71, Tz;f) (P _+_ é) + (P + E) +
Using (2.9) in (2.4), we get
log M;(r1, r2;f) — log(ky -+ 1) — log (ks + 1)
1
< 10g (R1k1+1 _ 7’1kl+1) (R2k2+1 _ 7’2k2+1);
pte pte
+ 1og{r T My g (1, 75 )} + 2 A 2 4 4

(o + € o+ e
= (1 + o(1))log Ms,xy 22 (71, 725 1),
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for large 71, 7. and on using (2)

. log log Ms 1y 20 (71, 7’2§f)} _
lim sup { Tog (r1 72) = p.

T1,72-5c0

Taking the limit, we get
lim log Ms(ri, 72; ) /log Mo e (71, 725 f) < 1,

71,7200

and from (2.4)

lim log Ms(ri, 72 f) /log Ms iy ne (71, 725 1) > 1,

71,72

which gives the result.

3. THEOREM 2. Let f(z1, 25) be an entive function of order zero and suppose that
(3.1) fim S0P| — 102k _ A
kosoo 1T 1 {1 1 1 1 as
ogy7 log ——
¢ k & 1(1,“ k2[f

sup{log log M (71, fz;fﬂ _ P
log log (71 72) pe’

3.2) lim

71,7200 lnf

then if 1 < A, <1 < w,

(3.3) P, < {0+ 1)/1}4,
and a fortiori
(3.4) pe < (14 1)

where & = ky + k.
Proof. We know (1, p. 218) that
M(ry, 7s) < u(ry, r2)[3v (271, 272) + 3.
Taking the logarithms of both the sides, we get

log M (r1, 72) < log u(ry, 7e) + log v(2ry, 2ry) 4+ O(1)
= log u(r1, 72) + log log u(271,2r2) + o(log(ri7s)),
from (1, (5.1), p. 218 and (5.2), p. 219), for large values of r; and 7.. This gives
log M (r1, r2) < log u(ry, 72) + log log u(2r1, 2r2) + o(log u(ry, 72));

hence

(52 log M (s, 72) < (14 0(1)) log (s, 7).

For any positive ¢, there must exist a sufficiently large positive number k4(4,)
such that

(3.6) Gissa| < exp (—BHFU@EHO),
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for every k& > ko(A4.). Let us suppose that

3.7) ig = explkil/4r + k1Y
and
(3.7a) P = expihalide 4 Ryl/Y,

where A, <l < » and 71 <71 < Fipaty, T2 < 72 < Papep1. Now, for
71 < 710,41 and 72 < 73 0,0,

(3.7b) log u(ry, r2) = IOg{!aklkzlf’lklth}

< logf| @k |71 4175 0041,

where the maximum term u(ry, 72) has the position (ki ks) in the square
representation of the double series (1.1) of f(z1, 22). We obtain

log u(r, 7s) < —(ky + ko) VA5 + Ry { (ky + 1)¥42 4 (kg + 1)VY
+ kol (ke + 1)¥42 4 (ko + 1)VY,
from (3.6), (3.7), and (3.7a). Hence,

log u(ry, 72) < (L + o(1)) (ky + ko)™+/1,
for ki, ko sufficiently large and 4, < I. Hence for sufficiently large %k, and &,,
(3.8) log log u(ry, 72) < (1 + 0(1))(1 + 1/Dlog k.
Also for 71, < rpand 75, < 73,
(8.9) log log(r179) > log log(r1,s, 72,22)
= log{k 42 + k! -+ k42 4 koY from (3.7)
and (3.7a)
~ log{ (kl + k2)1/A2} fOl" 1 < A2 < l
~L log &.
2
Hence from (3.5), (3.8), and (3.9), we have

Hmwgmy%ﬂmmmﬁ}<eji>,

e log log(r172) l

1e.
Py < (“%1)1425
and a fortiore
pe < (I 4+ 1).
THEOREM 3. Let f(21, 22) be an entire function of order zero and suppose that
. sup)log v(ry, 7’2;f)} 7

8.10) ,k;mﬁgmmm Rk
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f 1 <ay<B < o (aras defined in Theorem 2); then

(3.11) v < {8+ 1)/B}as
and
(3.12) 7 < (@+1.
Proof. For any positive ¢, there must exist a sufficiently large kq{a) such that
(3.13) |Grizs] < exp{—RFVal  for every kB > Eolas).
Let us suppose that
(3.14) 71,6, = explkier 4 k,1/8}
and
(3.14a) Paxy, = expikpl/er + kyl/8}

where a; < B8 < o and 7y, <71 < 71341 and 7, < 72 < 724,41. From
(1, (5.4), p. 220), we have

(3.14b) log v(r1, 79) < (1 4+ 0(1)) log log M{ry, 7s),

for r; and 7. sufficiently large. Using (3.5) in (3.14b), we get

(3.15) log v(r1, 72) < (1 + 0(1)) log log u(ry, r2).

Now using (3.13), (3.14) and (3.14a) in (3.7b), we obtain

log p(ry, 72) < — (k1 + ko)t TV d 4 By (ke + 1)Ver - (By 4 1)V/8)
+ kof (ke + 1)1z + (ky + 1)V8}
< (1 o(1)) (ky -+ ko) 1H1,

for 1 < as < B8 and ky, k sufficiently large. Hence

(3.16) log log x(r1, r2) < (1 + 0(1))<%1> log .

Also, for 71, < rrand 724, < 72

(3.17)  log log(ry 72) > log log(*1,4: 72.55)
= log{ki>2 + kVE 4 Eyle2 + k18 from (3.14)
and (3.14a)
~ (1/az)log k for 1 < a» < 8.

Hence from (3.15), (3.16), and (3.17), we have
jlog_v(h, 7'2;f)1 < (B + 1) o,

B

hffffff Vlog log (ri 72) § S

from which the required result follows.
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