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1. I n t r o d u c t i o n . I t was shown in (1) t h a t a complete set of bounded 
observables is metrically complete. However, an extra axiom was needed to 
prove this result (1, footnote, p. 436). In this note we prove the above-
mentioned result wi thout the extra axiom. W e also show t h a t there is an 
abundance of pure s ta tes if M is closed in the weak topology and give a 
necessary and sufficient condition for the la t te r to be the case. 

2. C o m p l e t e s e t s of observables . In this paper we shall assume tha t L 
is an or thocomplemented part ial ly ordered set or logic in which the following 
axiom holds: if a, b, c mutua l ly split, then a <-> b V c. I t can be shown (see 
2) t h a t this axiom holds if L happens to be a latt ice and t h a t the results in 
(4) hold in logics satisfying this axiom. We draw freely from the definitions 
and theorems in (1). 

T H E O R E M 2.1. A complete set K of bounded observables on L is a commuta
tive real Banach algebra with unity satisfying: 

(i) \x2\ = \x\2 for all x in K, 
(ii) x2 is a continuous function of x, 

(iii) \x2 — y2\ ^ max( |x 2 | , \y2\). 

Proof. I t has been shown in (1) t h a t K is a commuta t ive normed algebra 
with uni ty . T h e proofs of (i), (ii), and (iii) are s traightforward and left to 
the reader. W e now show t h a t K is metrically complete. Le t xn be a Cauchy 
sequence in K, let R(xn) denote the range of xn, n = 1, 2, . . . , and let B 
be the smallest Boolean sub cr-algebra containing [)R(xn). Notice t h a t B 
exists by Theorem 3.1 of (4). Since B is separable, there is an observable z 
such t h a t the range Riz) = B (4, Proposit ion 3.15). We now show t h a t z £ K. 
Otherwise, there is an x £ K and x <+>z. B u t since x <-> xn, there is a Boolean 
sub a- algebra B\ which contains R(x) U ([jR(xn)). T h e n Bi contains 
b u t cannot contain B, which contradic ts the minimali ty of B. Now, applying 
Proposition 3.16 of (4), there exist real Borel functions un such t h a t xn = tin(z) 
and since xn is Cauchy there are positive integers n(p), p = 1, 2, . . . , such 
t h a t n, m ^ n(p) implies \un(z) — um{z)\ S P~~l- Le t t ing A(e) = {A: | \ | S e}, 
we have a[un(z) — urn(z)] C &{p~l) and 

0 = [un(z) - um{z)]{k(p-lY) = z{œ: \un(œ) - um(ca)\ > p~1} 
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for all n, m ^ n(p). Letting 

N(p) = U{co: \un(co) — #„»(«) | > ^_1 , n,m ^ n(p)}, 

we have |MW(CO) — wm(«)| ^ £ _ 1 on N(p)' for all n, m ^ n(p) and s[iV(£)] = 0. 
Now if TV = U ^ ( £ ) , then z(iV) = Vz[N(p)] = 0. We assert that un is uni
formly Cauchy on N'. Indeed, if e > 0, then there is an integer q such that 
q~l < e and if n, m > n(q), we have \un(œ) — um(o))\ < q~l < e on N(q)f 

and hence on N'. Therefore, un converges uniformly on N' to a Borel func
tion u. We now show that un(z) —> u{z). For any e > 0, if n is sufficiently 
large, we have {or. |wn(co) — w(co)| > e} C N. Hence, 

[un(z) — u(z)](A(e)') = z{u: un(œ) — u(œ) Ç A(e)'} 

= z{co: \un(œ) — u(œ)\ > e} = 0. 

So for n sufficiently large, <r[un(z) — u(z)] C A(e) and \un(z) — u(z)\ < e. 
Since z G K, we have, of course, that u(z) G K and thus x„ —> u(z) G X and 
K is metrically complete. 

COROLLARY. A complete set of bounded observables on L is isometrically 
isomorphic to the continuous real-valued functions on a compact Hausdorff 
space. 

Proof. This follows from a theorem due to Segal (see 3, p. 933). 

3. Pure states and the closure of M. Let M denote the set of all 
states on L. A set of states Mi C M is said to be full in the following cases: 

(i) if a 9e 0, there is an m G M\ such that m (a) = 1; 
(ii) if a 9e b, there is an m G M\ such that m (a) ^ m(b). 
A set of states M2 C M is said to be quite full if m(b) = 1 whenever 

m(a) = 1 for all m G M2 implies a ^ b. The following theorem was proved 
in (1). 

THEOREM 3.1. If M is weakly closed, then M is the weakly closed convex hull 
of its pure states. 

Since the pure states are physically those in which we have a maximum 
amount of information concerning the condition of the system, it is important 
to show that there are a lot of pure states. 

THEOREM 3.2. Suppose that Mis weakly closed and Mv is the set of pure states. 
If M is full [quite full], then Mv is full [quite full].* 

Proof. Suppose that M is full and a ^ b. If m (a) = m (b) for every m G Mp, 
then convex combinations of pure states and limits of nets of convex com
binations of pure states agree on a and b. I t follows from Theorem 3.1 that 

*The author is indebted to Harry Mullikin for the proof of part of this theorem. 
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m (a) — m(b) for all m G M, which is a contradict ion. Now suppose tha t a ^ O 
and let Ma = {m £ M: m(a) = 1}. T h e n Ma is a non-empty subset of M 
which is weakly closed. T h u s Ma is compact and convex and by the Kreïn-
Milman theorem it is the weakly closed convex hull of its extreme points. 
Let Wo be an extreme point of Ma. T o show t h a t MQ G Mp, suppose tha t 

ra0 = Awi + (1 — \)m2 for wi , m2 G M, 0 < A < 1. 

Then 

1 = mo (a) = \mi(a) + (1 — \)m2(a). 

Hence mi (a) = m2{a) = 1 and Wi, ra2 G M"a. Therefore mi = m2 = m0. T h u s 
M a P \ Mj, ̂  0, and Mp is full. Now suppose t h a t M is qui te full and t h a t every 
m G MP which satisfies m (a) = 1 also satisfies m (6) = 1. Le t lffl = {m G -M: 
m (a) = 1} and ikf& = {w G M : w(6) = 1}. As before, Ma [Mh] is the weakly 
closed convex hull of Ma C\ Mv [Mb H MP]. Now since ikfG Pi Mv C ^ H Afp 

we mus t have Ma C Mb and hence a ^ b. Thus , Mv is qui te full. 

We now give an example which shows t h a t M need no t be weakly closed. 
Le t (12, A) be a measurable space on which there is a finitely addi t ive measure 
ix which is no t countably addit ive. Now, bounded observables on A may be 
identified with bounded measurable functions on (12, A) (cf. 4, Proposit ion 
3.3). Denote the set of bounded observables on A by X and the dua l of X 
by X''. If x G X and / is the corresponding measurable function, we define 
/x(x) = ff du, where the integral is defined in the same way as the Lebesgue 
integral except t h a t p is only finitely addit ive. I t is easy to check t h a t /x, 
defined in this way, is in X'. We now show t h a t there is a ne t of s ta tes ma 

such t h a t ma(a) —>/x(a) for every a G A. Hence ma —> /z weakly and since 
pi $ M, this would show t h a t I f is no t weakly closed in X'. A finite col
lection (ai, . . . , an) of disjoint sets in 4̂ is called a partition if 12 = \Jat. If 
£ i , >̂2 are part i t ions, we write pi ^ p2 if every set of pi is contained in some 
set of p2. I t is easy to see t h a t the collection P of par t i t ions is a directed 
set. Now, associate with each part i t ion p = (ai, . . . , ak) a set of points 
{<Zi, • • • , Qk) C Œ such t h a t qf G a*, i = 1, . . . , &. If wç- denotes the measure 
concentrated a t qu then we associate with every part i t ion p = (c/i, . . . , ak) 
a measure 

k 

mV = X ) V>(fl>i)™>qi-

Since the mqi are s ta tes and 

X) At(«i) = 1, 

we see t h a t mv is a s ta te . W e claim t h a t {mp: p £ P} is a ne t which con
verges weakly to /z. Indeed, if a = Q or a = 0, then clearly mp(a) —» ju(a). 
Now, if a 7e 12, 0, define the par t i t ion £ 0

 = (a, a'), li p = (ai, . . . , afc) ^ £0 

reorder the a / s if necessary, so t h a t 
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l k 

a = U dj and a9 = U a5. 
3=1 3=1+1 

Then 
k l 

2 = 1 f = l 

Therefore mv(a) = v(a) ii p *£ p0 and hence mv(a) —> /*(&) for every a Ç i . 
We shall use some of the techniques in this example to prove Theorem 3.4. 

Le t X be the bounded observables on a logic L and X' the dual of X . If 
f o r / £ X ' , m Ç M, and a real number c, we h a v e / ( # ) = cm(x) for all x Ç X, 
we write / = cm. A linear functional / on X is positive if / ( x ) ^ 0 whenever 
< T ( » ^ 0. 

LEMMA 3.3. L e / / be a positive linear functional on X. Then (a) / £ X' and 
(b) l/l = 1 if and only iff (1) = 1. 

Profl/. (a) If \x\ ^ 1, we have \<r(x)\ ^ 1 and thus cr(l ± x ) ^ 0 . T h u s 
/ ( l ) ±f(x) =f(l±x) ^ 0 and | / ( x ) | ^ / ( l ) . (b) Suppose tha t | / | = 1. Since 
| 1 | = 1, we have / ( l ) ^ 1. Bu t by par t (a), | / ( * ) | ^ / ( l ) for all x with 
|x| ^ 1. T h u s / ( l ) = 1. The converse is similar. 

A finite set of disjoint non-zero propositions {ai, . . . , &„} is a partition of 
a logic if Va* = 1. If pi and £ 2 are parti t ions, wre write pi S pi if every 
proposition in p2 is ^ some proposition of pi. I t is easily checked t h a t the 
part i t ions form a partially ordered set. We say tha t a logic L is directed if 
the part i t ions form a directed set; t ha t is, for any two part i t ions pi, p2 there 
is a part i t ion pd such t h a t £ i ^ £3 , ^?2 ^ £3. 

T H E O R E M 3.4. Let L be a directed logic with a full set of states M. Then M 
is weakly closed if and only if every positive linear functional f on X has the 
form f = l/l m for some m Ç M. 

Proof. T o prove sufficiency, let ma be a net of s tates converging weakly 
to / G X'. Since the m a ' s are positive, it follows t h a t / is positive and hence 
/ = \f\m for some m £ M. Since ma(l) = 1, we h a v e / ( l ) = 1 and by Lemma 
3.3 (b), l/l = 1. H e n c e / = m and M is weakly closed. Conversely, suppose 
M is weakly closed and / is a positive linear functional on X. If | / | = 0, the 
proof is complete; so suppose | / | 9e 0 and let g = / / | / | . Now g is a positive linear 
functional with |g| = 1 so by Lemma 3.3, g(l) = 1. Define m (a) = g{xa) for 
all a G L. I t is easy to see, as in our previous example, t h a t m generates a 
continuous linear functional. We now show t h a t m is a s ta te . Clearly, m(\) = 1. 
For every part i t ion p = {ai, . . . , an] of L define a set of s tates {mai, . . . , maJ 
such t h a t mai(at) = 1 (here we use the fullness of M), and define 

n 

Notice t h a t w p is a s ta te . Indeed, 
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n J n \ 

]£ gfcai) = A Z) Xai) = g(l) = 1, 

and 0 ^ gipcai) ^ 1 since g is positive. Since the partitions form a directed 
set, mp is a net of states. To show that mv converges weakly to m, let 0 ^ a £ L 
and let £0 = {a, &'}• If {#i, . . . , # » } = p ^ po, reorder the &/s if necessary 
so that cii S a, i = 1, • • • , j , ctt ^ af, i = j + 1, . . . ,n. I t easily follows 
that V{a*, i = 1, . . . ,j} = a and V{#z, i = j + 1, . . . , n\ = a'. Then 

3 3 / 3' \ 

w , W = X) gCOwat-(a) = Z g O O = g[ X) *« ) = g(*a) = w(a). 
t=l i= l \ z=l / 

Thus mv-*m weakly, and since M is weakly closed, m G M. Now 

g(#a) = m (a) = j\m[xa(d\)] 

for all a 6 L. If s = X^=i c* xca is a simple observable, we have 
n n n 

gO) = 22 eg (*«,,-) = Z) c*J"Xw[*a<(dX)] = Z c^n(at). 
i—l i=l i= l 

Now there is an observable z and Borel sets Et such that xai = XEi(z), 
i = 1, . . . , w. Thus 

JXro[s(dX)] = /Xm[(EciX^-)(«)(dX)] 

= /EciXJsr,(X)w[2;(dX)] = E^i/x^(X)w[2(dX)] 

= ]£c*w[z(E*)] = Y,Ciin(ai)-

Hence, g (s) = j\m[s(d\)] for simple observables. Now, if x is any bounded 
observable, there is a sequence Si(x) of simple functions of x converging to 
x in norm, where the st are defined as in Lemma 7.1 of (1). Thus 

fsi(\)rn[x(d\)] = g(st)-+g(x) as i -» oo . 

But by definition of s* and the monotone convergence theorem, 

jsi(\)m[x(d\)]^ j\m[x(d\)] as i —» oo . 

Thus g(x) = J\m[x(d\)] = m(x) for all x £ X. Hence f/\f\ = g = m and 

/ = l/h-
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