COMPLETE SETS OF OBSERVABLES AND PURE STATES

STANLEY P. GUDDER

1. Introduction. It was shown in (1) that a complete set of bounded observables is metrically complete. However, an extra axiom was needed to prove this result ($\mathbf{1}$, footnote, p. 436). In this note we prove the abovementioned result without the extra axiom. We also show that there is an abundance of pure states if M is closed in the weak topology and give a necessary and sufficient condition for the latter to be the case.
2. Complete sets of observables. In this paper we shall assume that L is an orthocomplemented partially ordered set or logic in which the following axiom holds: if a, b, c mutually split, then $a \leftrightarrow b \vee c$. It can be shown (see 2) that this axiom holds if L happens to be a lattice and that the results in
(4) hold in logics satisfying this axiom. We draw freely from the definitions and theorems in (1).

Theorem 2.1. A complete set K of bounded observables on L is a commutative real Banach algebra with unity satisfying:
(i) $\left|x^{2}\right|=|x|^{2}$ for all x in K,
(ii) x^{2} is a continuous function of x,
(iii) $\left|x^{2}-y^{2}\right| \leqq \max \left(\left|x^{2}\right|,\left|y^{2}\right|\right)$.

Proof. It has been shown in (1) that K is a commutative normed algebra with unity. The proofs of (i), (ii), and (iii) are straightforward and left to the reader. We now show that K is metrically complete. Let x_{n} be a Cauchy sequence in K, let $R\left(x_{n}\right)$ denote the range of $x_{n}, n=1,2, \ldots$, and let B be the smallest Boolean sub σ-algebra containing $\mathbf{U} R\left(x_{n}\right)$. Notice that B exists by Theorem 3.1 of (4). Since B is separable, there is an observable z such that the range $R(z)=B$ (4, Proposition 3.15). We now show that $z \in K$. Otherwise, there is an $x \in K$ and $x \leftrightarrow z$. But since $x \leftrightarrow x_{n}$, there is a Boolean sub σ - algebra B_{1} which contains $R(x) \cup\left(\mathbf{U} R\left(x_{n}\right)\right)$. Then B_{1} contains $\mathbf{U} R\left(x_{n}\right)$ but cannot contain B, which contradicts the minimality of B. Now, applying Proposition 3.16 of (4), there exist real Borel functions u_{n} such that $x_{n}=u_{n}(z)$ and since x_{n} is Cauchy there are positive integers $n(p), p=1,2, \ldots$, such that $n, m \geqq n(p)$ implies $\left|u_{n}(z)-u_{m}(z)\right| \leqq p^{-1}$. Letting $\Delta(\epsilon)=\{\lambda:|\lambda| \leqq \epsilon\}$, we have $\sigma\left[u_{n}(z)-u_{m}(z)\right] \subset \Delta\left(p^{-1}\right)$ and

$$
0=\left[u_{n}(z)-u_{m}(z)\right]\left(\Delta\left(p^{-1}\right)^{\prime}\right)=z\left\{\omega:\left|u_{n}(\omega)-u_{m}(\omega)\right|>p^{-1}\right\}
$$

Received December 21, 1967.
for all $n, m \geqq n(p)$. Letting

$$
N(p)=\mathbf{U}\left\{\omega:\left|u_{n}(\omega)-u_{m}(\omega)\right|>p^{-1}, \quad n, m \geqq n(p)\right\},
$$

we have $\left|u_{n}(\omega)-u_{m}(\omega)\right| \leqq p^{-1}$ on $N(p)^{\prime}$ for all $n, m \geqq n(p)$ and $z[N(p)]=0$. Now if $N=\mathrm{U} N(p)$, then $z(N)=\mathrm{V}_{z}[N(p)]=0$. We assert that u_{n} is uniformly Cauchy on N^{\prime}. Indeed, if $\epsilon>0$, then there is an integer q such that $q^{-1}<\epsilon$ and if $n, m>n(q)$, we have $\left|u_{n}(\omega)-u_{m}(\omega)\right|<q^{-1}<\epsilon$ on $N(q)^{\prime}$ and hence on N^{\prime}. Therefore, u_{n} converges uniformly on N^{\prime} to a Borel function u. We now show that $u_{n}(z) \rightarrow u(z)$. For any $\epsilon>0$, if n is sufficiently large, we have $\left\{\omega:\left|u_{n}(\omega)-u(\omega)\right|>\epsilon\right\} \subset N$. Hence,

$$
\begin{aligned}
{\left[u_{n}(z)-u(z)\right]\left(\Delta(\epsilon)^{\prime}\right) } & =z\left\{\omega: u_{n}(\omega)-u(\omega) \in \Delta(\epsilon)^{\prime}\right\} \\
& =z\left\{\omega:\left|u_{n}(\omega)-u(\omega)\right|>\epsilon\right\}=0 .
\end{aligned}
$$

So for n sufficiently large, $\sigma\left[u_{n}(z)-u(z)\right] \subset \Delta(\epsilon)$ and $\left|u_{n}(z)-u(z)\right|<\epsilon$. Since $z \in K$, we have, of course, that $u(z) \in K$ and thus $x_{n} \rightarrow u(z) \in K$ and K is metrically complete.

Corollary. A complete set of bounded observables on L is isometrically isomorphic to the continuous real-valued functions on a compact Hausdorff space.

Proof. This follows from a theorem due to Segal (see 3, p. 933).
3. Pure states and the closure of M. Let M denote the set of all states on L. A set of states $M_{1} \subset M$ is said to be full in the following cases:
(i) if $a \neq 0$, there is an $m \in M_{1}$ such that $m(a)=1$;
(ii) if $a \neq b$, there is an $m \in M_{1}$ such that $m(a) \neq m(b)$.

A set of states $M_{2} \subset M$ is said to be quite full if $m(b)=1$ whenever $m(a)=1$ for all $m \in M_{2}$ implies $a \leqq b$. The following theorem was proved in ($\mathbf{1}$).

Theorem 3.1. If M is weakly closed, then M is the weakly closed convex hull of its pure states.

Since the pure states are physically those in which we have a maximum amount of information concerning the condition of the system, it is important to show that there are a lot of pure states.

Theorem 3.2. Suppose that M is weakly closed and M_{p} is the set of pure states. If M is full [quite full], then M_{p} is full [quite full].*

Proof. Suppose that M is full and $a \neq b$. If $m(a)=m(b)$ for every $m \in M_{p}$, then convex combinations of pure states and limits of nets of convex combinations of pure states agree on a and b. It follows from Theorem 3.1 that

[^0]$m(a)=m(b)$ for all $m \in M$, which is a contradiction. Now suppose that $a \neq 0$ and let $M_{a}=\{m \in M: m(a)=1\}$. Then M_{a} is a non-empty subset of M which is weakly closed. Thus M_{a} is compact and convex and by the KreĭnMilman theorem it is the weakly closed convex hull of its extreme points. Let m_{0} be an extreme point of M_{a}. To show that $m_{0} \in M_{p}$, suppose that
$$
m_{0}=\lambda m_{1}+(1-\lambda) m_{2} \text { for } m_{1}, m_{2} \in M, \quad 0<\lambda<1 .
$$

Then

$$
1=m_{0}(a)=\lambda m_{1}(a)+(1-\lambda) m_{2}(a)
$$

Hence $m_{1}(a)=m_{2}(a)=1$ and $m_{1}, m_{2} \in M_{a}$. Therefore $m_{1}=m_{2}=m_{0}$. Thus $M_{a} \cap M_{p} \neq \emptyset$, and M_{p} is full. Now suppose that M is quite full and that every $m \in M_{p}$ which satisfies $m(a)=1$ also satisfies $m(b)=1$. Let $M_{a}=\{m \in M$: $m(a)=1\}$ and $M_{b}=\{m \in M: m(b)=1\}$. As before, $M_{a}\left[M_{b}\right]$ is the weakly closed convex hull of $M_{a} \cap M_{p}\left[M_{b} \cap M_{p}\right]$. Now since $M_{a} \cap M_{p} \subset M_{b} \cap M_{p}$ we must have $M_{a} \subset M_{b}$ and hence $a \leqq b$. Thus, M_{p} is quite full.

We now give an example which shows that M need not be weakly closed. Let (Ω, A) be a measurable space on which there is a finitely additive measure μ which is not countably additive. Now, bounded observables on A may be identified with bounded measurable functions on (Ω, A) (cf. 4, Proposition 3.3). Denote the set of bounded observables on A by X and the dual of X by X^{\prime}. If $x \in X$ and f is the corresponding measurable function, we define $\mu(x)=\int f d \mu$, where the integral is defined in the same way as the Lebesgue integral except that μ is only finitely additive. It is easy to check that μ, defined in this way, is in X^{\prime}. We now show that there is a net of states m_{α} such that $m_{\alpha}(a) \rightarrow \mu(a)$ for every $a \in A$. Hence $m_{\alpha} \rightarrow \mu$ weakly and since $\mu \notin M$, this would show that M is not weakly closed in X^{\prime}. A finite collection $\left(a_{1}, \ldots, a_{n}\right)$ of disjoint sets in A is called a partition if $\Omega=\mathbf{U} a_{i}$. If p_{1}, p_{2} are partitions, we write $p_{1} \geqq p_{2}$ if every set of p_{1} is contained in some set of p_{2}. It is easy to see that the collection P of partitions is a directed set. Now, associate with each partition $p=\left(a_{1}, \ldots, a_{k}\right)$ a set of points $\left\{q_{1}, \ldots, q_{k}\right\} \subset \Omega$ such that $q_{i} \in a_{i}, i=1, \ldots, k$. If $m_{q_{i}}$ denotes the measure concentrated at q_{i}, then we associate with every partition $p=\left(a_{1}, \ldots, a_{k}\right)$ a measure

$$
m_{p}=\sum_{i=1}^{l i} \mu\left(a_{i}\right) m_{q_{i}}
$$

Since the $m_{q_{i}}$ are states and

$$
\sum_{i=1}^{k} \mu\left(a_{i}\right)=1
$$

we see that m_{p} is a state. We claim that $\left\{m_{p}: p \in P\right\}$ is a net which converges weakly to μ. Indeed, if $a=\Omega$ or $a=\phi$, then clearly $m_{p}(a) \rightarrow \mu(a)$. Now, if $a \neq \Omega, \phi$, define the partition $p_{0}=\left(a, a^{\prime}\right)$. If $p=\left(a_{1}, \ldots, a_{k}\right) \geqq p_{0}$ reorder the a_{i} 's if necessary, so that

$$
a=\bigcup_{j=1}^{l} a_{j} \quad \text { and } \quad a^{\prime}=\bigcup_{j=l+1}^{k} a_{j} .
$$

Then

$$
m_{p}(a)=\sum_{i=1}^{k} \mu\left(a_{i}\right) m_{q i}(a)=\sum_{i=1}^{l} \mu\left(a_{i}\right)=\mu(a) .
$$

Therefore $m_{p}(a)=\mu(a)$ if $p \geqq p_{0}$ and hence $m_{p}(a) \rightarrow \mu(a)$ for every $a \in A$. We shall use some of the techniques in this example to prove Theorem 3.4.

Let X be the bounded observables on a logic L and X^{\prime} the dual of X. If for $f \in X^{\prime}, m \in M$, and a real number c, we have $f(x)=c m(x)$ for all $x \in X$, we write $f=c m$. A linear functional f on X is positive if $f(x) \geqq 0$ whenever $\sigma(x) \geqq 0$.

Lemma 3.3. Let f be a positive linear functional on X. Then (a) $f \in X^{\prime}$ and (b) $|f|=1$ if and only if $f(1)=1$.

Proof. (a) If $|x| \leqq 1$, we have $|\sigma(x)| \leqq 1$ and thus $\sigma(1 \pm x) \geqq 0$. Thus $f(1) \pm f(x)=f(1 \pm x) \geqq 0$ and $|f(x)| \leqq f(1)$. (b) Suppose that $|f|=1$. Since $|1|=1$, we have $f(1) \leqq 1$. But by part (a), $|f(x)| \leqq f(1)$ for all x with $|x| \leqq 1$. Thus $f(1)=1$. The converse is similar.

A finite set of disjoint non-zero propositions $\left\{a_{1}, \ldots, a_{n}\right\}$ is a partition of a logic if $\mathrm{V} a_{i}=1$. If p_{1} and p_{2} are partitions, we write $p_{1} \leqq p_{2}$ if every proposition in p_{2} is \leqq some proposition of p_{1}. It is easily checked that the partitions form a partially ordered set. We say that a logic L is directed if the partitions form a directed set; that is, for any two partitions p_{1}, p_{2} there is a partition p_{3} such that $p_{1} \leqq p_{3}, p_{2} \leqq p_{3}$.

Theorem 3.4. Let L be a directed logic with a full set of states M. Then M is weakly closed if and only if every positive linear functional f on X has the form $f=|f| m$ for some $m \in M$.

Proof. To prove sufficiency, let m_{α} be a net of states converging weakly to $f \in X^{\prime}$. Since the m_{α} 's are positive, it follows that f is positive and hence $f=|f| m$ for some $m \in M$. Since $m_{\alpha}(1)=1$, we have $f(1)=1$ and by Lemma 3.3 (b), $|f|=1$. Hence $f=m$ and M is weakly closed. Conversely, suppose M is weakly closed and f is a positive linear functional on X. If $|f|=0$, the proof is complete; so suppose $|f| \neq 0$ and let $g=f /|f|$. Now g is a positive linear functional with $|g|=1$ so by Lemma 3.3, $g(1)=1$. Define $m(a)=g\left(x_{\alpha}\right)$ for all $a \in L$. It is easy to see, as in our previous example, that m generates a continuous linear functional. We now show that m is a state. Clearly, $m(1)=1$. For every partition $p=\left\{a_{1}, \ldots, a_{n}\right\}$ of L define a set of states $\left\{m_{a_{1}}, \ldots, m_{a_{n}}\right\}$ such that $m_{a_{i}}\left(a_{i}\right)=1$ (here we use the fullness of M), and define

$$
m_{p}=\sum_{i=1}^{n} g\left(x_{a i}\right) m_{a i} .
$$

Notice that m_{p} is a state. Indeed,

$$
\sum_{i=1}^{n} g\left(x_{a_{i}}\right)=g\left(\sum_{i=1}^{n} x_{a_{i}}\right)=g(1)=1
$$

and $0 \leqq g\left(x_{a_{i}}\right) \leqq 1$ since g is positive. Since the partitions form a directed set, m_{p} is a net of states. To show that m_{p} converges weakly to m, let $0 \neq a \in L$ and let $p_{0}=\left\{a, a^{\prime}\right\}$. If $\left\{a_{1}, \ldots, a_{n}\right\}=p \geqq p_{0}$, reorder the a_{i} 's if necessary so that $a_{i} \leqq a, i=1, \ldots, j, a_{i} \leqq a^{\prime}, i=j+1, \ldots, n$. It easily follows that $\mathbf{V}\left\{a_{i}, i=1, \ldots, j\right\}=a$ and $\mathbf{V}\left\{a_{i}, i=j+1, \ldots, n\right\}=a^{\prime}$. Then

$$
m_{p}(a)=\sum_{i=1}^{j} g\left(x_{a i}\right) m_{a i}(a)=\sum_{i=1}^{j} g\left(x_{a i}\right)=g\left(\sum_{i=1}^{j} x_{a i}\right)=g\left(x_{a}\right)=m(a) .
$$

Thus $m_{p} \rightarrow m$ weakly, and since M is weakly closed, $m \in M$. Now

$$
g\left(x_{a}\right)=m(a)=\int \lambda m\left[x_{a}(d \lambda)\right]
$$

for all $a \in L$. If $s=\sum_{i=1}^{n} c_{i} x_{a_{i}}$ is a simple observable, we have

$$
g(s)=\sum_{i=1}^{n} c_{i} g\left(x_{a_{i}}\right)=\sum_{i=1}^{n} c_{i} \int \lambda m\left[x_{a i}(d \lambda)\right]=\sum_{i=1}^{n} c_{i} m\left(a_{i}\right) .
$$

Now there is an observable z and Borel sets E_{i} such that $x_{a_{i}}=\chi_{E_{i}}(z)$, $i=1, \ldots, n$. Thus

$$
\begin{aligned}
\int \lambda m[s(d \lambda)] & =\int \lambda m\left[\left(\sum c_{i} \chi_{E_{i}}\right)(z)(d \lambda)\right] \\
& =\int \sum c_{i} \chi_{E_{i}}(\lambda) m[z(d \lambda)]=\sum c_{i} \int \chi_{E_{i}}(\lambda) m[z(d \lambda)] \\
& =\sum c_{i} m\left[z\left(E_{i}\right)\right]=\sum c_{i} m\left(a_{i}\right) .
\end{aligned}
$$

Hence, $g(s)=\int \lambda m[s(d \lambda)]$ for simple observables. Now, if x is any bounded observable, there is a sequence $s_{i}(x)$ of simple functions of x converging to x in norm, where the s_{i} are defined as in Lemma 7.1 of (1). Thus

$$
\int s_{i}(\lambda) m[x(d \lambda)]=g\left(s_{i}\right) \rightarrow g(x) \quad \text { as } \quad i \rightarrow \infty .
$$

But by definition of s_{i} and the monotone convergence theorem,

$$
\int s_{i}(\lambda) m[x(d \lambda)] \rightarrow \int \lambda m[x(d \lambda)] \quad \text { as } \quad i \rightarrow \infty .
$$

Thus $g(x)=\int \lambda m[x(d \lambda)]=m(x)$ for all $x \in X$. Hence $f /|f|=g=m$ and $f=|f| m$.

References

1. S. P. Gudder, Spectral methods for a generalized probability theory, Trans. Amer. Math. Soc. 119 (1965), 428-442.
2. A. Ramsey, A theorem on two commuting observables, J. Math. Mech. 15 (1966), 227-234.
3. I. Segal, Postulates for general quantum mechanics, Ann. of Math. (2) 48 (1947), 930-948.
4. V. Varadarajan, Probability in physics and a theorem on simultaneous observability, Comm. Pure Appl. Math. 15 (1962), 189-217.

University of Wisconsin, Madison, Wisconsin

[^0]: *The author is indebted to Harry Mullikin for the proof of part of this theorem.

