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3.1 Introduction

The Riemann zeta function is defined first for complex numbers s such that
Re(s) > 1, by means of the series

ζ(s) =
∑
n�1

1

ns
.

It plays an important role in prime number theory, arising because of the
famous Euler product formula, which expresses ζ(s) as a product over primes,
in this region: we have

ζ(s) =
∏
p

(1− p−s)−1 (3.1)
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48 The Distribution of Values of the Riemann Zeta Function

if Re(s)> 1 (see Corollary C.1.5). By standard properties of series of holo-
morphic functions (note that s �→ ns = es log n is entire for any n � 1), the
Riemann zeta function is holomorphic for Re(s)> 1. It is of crucial importance
however that it admits an analytic continuation to C− {1}, with furthermore a
simple pole at s = 1 with residue 1.

This analytic continuation can be performed simultaneously with the proof
of the functional equation: the function defined by

ξ(s) = π−s/2�(s/2)ζ(s)
satisfies

ξ(1− s) = ξ(s)
and has simple poles with residue 1 at s = 0 and s = 1. Since the inverse
of the Gamma function is an entire function (Proposition A.3.2), the analytic
continuation of the Riemann zeta function follows immediately.

However, for many purposes (including the results of this chapter), it is
enough to know that ζ(s) has analytic continuation for Re(s) > 0, and this
can be checked quickly using the following computation, based on summation
by parts (Lemma A.1.1): using the notation 〈x〉 for the fractional part of a real
number x, namely, the unique real number in [0,1[ such that x − 〈x〉 ∈ Z for
Re(s) > 1,1 we have∑
n�1

1

ns
= s

∫ +∞

1

( ∑
1�n�t

1

)
t−s−1dt

= s
∫ +∞

1
(t − 〈t〉)t−s−1dt

= s
∫ +∞

1
t−sdt − s

∫ +∞

1
〈t〉t−s−1dt = s

s − 1
− s

∫ +∞

1
〈t〉t−s−1dt .

The rational function s �→ s/(s − 1) has a simple pole at s = 1 with
residue 1. Also, since 0 � 〈t〉 � 1, the integral defining the function

s �→ s

∫ +∞

1
〈t〉t−s−1dt

is absolutely convergent, and therefore this function is holomorphic, for
Re(s)> 0. The expression above then shows that the Riemann zeta function
is meromorphic, with a simple pole at s = 1 with residue 1, for Re(s) > 0.

1 A more standard notation would be {x}, but this clashes with the notation used for set
constructions.
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3.1 Introduction 49

Since ζ(s) is quite well behaved for Re(s) > 1, and since the Gamma
function is a very well-known function, the functional equation ζ(1−s) = ζ(s)
shows that one can understand the behavior of ζ(s) for s outside of the critical
strip

S = {s ∈ C | 0 � Re(s) � 1}.
The Riemann Hypothesis is a fundamental (still conjectural) statement

about the Riemann zeta function in the critical strip: it states that if s ∈ S
satisfies ζ(s) = 0, then the real part of s must be 1/2. Because holomorphic
functions (with relatively slow growth, a property true for ζ , although this
requires some argument to prove) are essentially characterized by their zeros
(just like polynomials are!), the proof of this conjecture would enormously
expand our understanding of the properties of the Riemann zeta function.
Although it remains open, this should motivate our interest in the distribution
of values of the zeta function. Another motivation is that it contains crucial
information about primes, which will be very visible in Chapter 5.

We first focus our attention to a vertical line Re(s) = τ , where τ is a fixed
real number such that τ � 1/2 (the case τ � 1 will be the most interesting, but
some statements do not require this assumption). We consider real numbers
T � 2 and define the probability space �T = [−T,T] with the uniform
probability measure dt/(2T). We then view

t �→ ζ(τ + it)
as a random variable Zτ,T on �T= [−T,T]. These are arithmetically defined
random variables. Do they have some specific, interesting, asymptotic
behavior?

The answer to this question turns out to depend on τ , as the following first
result of Bohr and Jessen reveals:

Theorem 3.1.1 (Bohr–Jessen) Let τ > 1/2 be a fixed real number. Define
Zτ,T as the random variable t �→ ζ(τ + it) on �T. There exists a probability
measure μτ on C such that Zτ,T converges in law to μτ as T → +∞.
Moreover, the support of μτ is compact if τ > 1, and is equal to C if 1/2 <
τ � 1.

We will describe precisely the measure μτ in Section 3.2: it is a highly
nongeneric probability distribution, whose definition (and hence properties)
retains a significant amount of arithmetic, in contrast with the Erdős–Kac
Theorem, where the limit is a very generic distribution.

Theorem 3.1.1 is in fact a direct consequence of a result due to Voronin
[119] and Bagchi [4], which extends it in a very surprising direction. Instead of
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50 The Distribution of Values of the Riemann Zeta Function

fixing τ ∈]1/2,1[ and looking at the distribution of the single values ζ(τ + it)
as t varies, we consider for such τ some radius r such that the disc

D = {s ∈ C | |s − τ | � r}
is contained in the interior of the critical strip, and we look for t ∈ R at the
functions

ζD,t :

{
D −→ C,
s �→ ζ(s + it),

which are “vertical translates” of the Riemann zeta function restricted to D.
For each T � 0, we view t �→ ζD,t as a random variable (say, ZD,T) on
([−T,T],dt/(2T)) with values in the space H(D) of functions which are
holomorphic in the interior of D and continuous on its boundary. Bagchi’s
remarkable result is a convergence in law in this space, that is, a functional limit
theorem: there exists a probability measure ν on H(D) such that the random
variables ZD,T converge in law to ν as T → +∞. Computing the support of ν
(which is a nontrivial task) leads to a proof of Voronin’s Universality Theorem:
for any function f ∈ H(D) which does not vanish on D, and for any ε > 0,
there exists t ∈ R such that

‖ζ(· + it)− f ‖∞ < ε,
where the norm is the supremum norm on D. In other words, up to arbitrarily
small error, all holomorphic functions f (that do not vanish) can be seen by
looking at some vertical translate of the Riemann zeta function!

We illustrate this fact in Figure 3.1, which presents density plots of
|ζ(s + it)| for various values of t ∈R, as functions of s in the square
[3/4 − 1/8,3/4 + 1/8] × [−1/8,1/8]. Voronin’s Theorem implies that, for
suitable t , such a picture will be indistinguishable from that associated to any
holomorphic function on this square that never vanishes there.

We will prove the Bohr–Jessen–Bagchi theorems in the next section,
and use in particular the computation of the support of Bagchi’s limiting
distribution for translates of the Riemann zeta function to prove Voronin’s
Universality Theorem in Section 3.3.

3.2 The Theorems of Bohr–Jessen and of Bagchi

We begin by stating a precise version of Bagchi’s Theorem. In the remainder
of this chapter, we denote by �T the probability space ([−T,T],dt/(2T)) for
T � 1. We will often write ET(·) and PT(·) for the corresponding expectation
and probability.
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3.2 The Theorems of Bohr–Jessen and of Bagchi 51

Figure 3.1 The modulus of ζ(s+ it) for s in the square [3/4− 1/8,3/4+ 1/8]×
[−1/8,1/8], for t = 0, 21000, 58000, and 75000.

Theorem 3.2.1 (Bagchi [4]) Let τ be such that 1/2 < τ . If 1/2 < τ < 1, let
r > 0 be such that

D = {s ∈ C | |s − τ | � r} ⊂ {s ∈ C | 1/2 < Re(s) < 1},

and if τ � 1, let D be any compact subset of {s ∈ C | Re(s) � 1} such that
τ ∈ D.

Consider the H(D)-valued random variables ZD,T defined by

t �→ (s �→ ζ(s + it))

on �T. Let (Xp)p be a sequence of independent random variables, indexed by
the primes, which are identically distributed, with distribution uniform on the
unit circle S1 ⊂ C×.

Then we have convergence in law ZD,T −→ ZD as T → +∞, where ZD is
the random Euler product defined by

ZD(s) =
∏
p

(1− p−sXp)−1.

In this theorem, the space H(D) is viewed as a Banach space (hence a metric
space, so that convergence in law makes sense) with the norm

‖f ‖∞ = sup
z∈D
|f (z)|.
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52 The Distribution of Values of the Riemann Zeta Function

We can already see that Theorem 3.2.1 is (much) stronger than the con-
vergence in law component of Theorem 3.1.1, which we now prove assuming
this result:

Corollary 3.2.2 Fix τ such that 1/2 < τ . As T →+∞, the random variables
Zτ,T of Theorem 3.1.1 converge in law to the random variable ZD(τ ), where D
is either a disc

D = {s ∈ C | |s − τ | � r}
contained in the interior of the critical strip, if τ < 1, or any compact subset
of {s ∈ C | Re(s) � 1} such that τ ∈ D.

Proof Fix D as in the statement. Tautologically, we have

Zτ,T = ζD,T(τ )
or Zτ,T = eτ ◦ ζD,T, where

eτ

{
H(D) −→ C,
f �→ f (τ)

is the evaluation map. This map is continuous on H(D), so it follows by
composition (Proposition B.3.2 in Appendix B) that the convergence in law
ZD,T −→ ZD of Bagchi’s Theorem implies the convergence in law of Zτ,T to
the random variable eτ ◦ ZD, which is simply ZD(τ ).

In order to prove the final part of Theorem 3.1.1, and to derive Voronin’s
Universality Theorem, we need to understand the support of the limit ZD in
Bagchi’s Theorem. We will prove in Section 3.3:

Theorem 3.2.3 (Bagchi, Voronin) Let τ be such that 1/2 < τ < 1, and r
such that

D = {s ∈ C | |s − τ | � r} ⊂ {s ∈ C | 1/2 < Re(s) < 1}.
The support of ZD contains

H(D)× = {f ∈ H(D) | f (z) �= 0 for all z ∈ D}
and is equal to H(D)× ∪ {0}.

In particular, for any function f ∈ H(D)×, and for any ε > 0, there exists
t ∈ R such that

sup
s∈D
|ζ(s + it)− f (s)| < ε. (3.2)

It is then obvious that if 1/2 < τ < 1, the support of the Bohr–Jessen
random variable ZD(τ ) is equal to C.
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3.2 The Theorems of Bohr–Jessen and of Bagchi 53

Exercise 3.2.4 Prove that the support of the Bohr–Jessen random vari-
able ZD(1) is also equal to C.

We now begin the proof of Theorem 3.2.1 by giving some intuition for
the result and in particular for the shape of the limiting distribution. Indeed,
this very elementary argument will suffice to prove Bagchi’s Theorem in the
case τ > 1. This turns out to be similar to the intuition behind the Erdős–Kac
Theorem. We begin with the Euler product

ζ(s + it) =
∏
p

(1− p−s−it )−1,

which is valid for Re(s) > 1. We can express this also (formally, we “compute
the logarithm”; see Proposition A.2.2 (2)) in the form

ζ(s + it) = exp

(
−
∑
p

log(1− p−s−it )
)

. (3.3)

This displays the Riemann zeta function on �T as the exponential of a sum
involving the sequence (indexed by primes) of random variables (Xp,T)p such
that

Xp,T(t) = p−it,
each taking value in the unit circle S1. To understand how the zeta function will
behave statistically on �T, the first step is to understand the limiting behavior
of this sequence.

This has a very simple answer:

Proposition 3.2.5 For T � 0, let XT = (Xp,T)p be the sequence of random
variables on �T given by

t �→ (p−it )p.

Then XT converges in law as T → +∞ to a sequence X = (Xp)p of
independent random variables, each of which is uniformly distributed on S1.

Bagchi’s Theorem is therefore to be understood as saying that we can “pass
to the limit” in the formula (3.3) to obtain a convergence in law of ζ(s + it),
for s ∈ D, to

exp

(
−
∑
p

log(1− p−sXp)
)
,

viewed as a random function.
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54 The Distribution of Values of the Riemann Zeta Function

This sketch is of course incomplete in general, the foremost objection being
that we are especially interested in the zeta function outside of the region of
absolute convergence, so the meaning of (3.3) is unclear. But we will see that
nevertheless enough connections remain to carry the argument through.

We isolate the crucial part of the proof of Proposition 3.2.5 as a lemma,
since we will also use it in the proof of Selberg’s Theorem in the next chapter
(see Section 4.2).

Lemma 3.2.6 Let r > 0 be a real number. We have

|ET(r
−it )| � min

(
1,

1

T| log r|
)

. (3.4)

In particular, if r = n1/n2 for some positive integers n1 �= n2, then we have

ET(r
−it )� min

(
1,
√
n1n2

T

)
, (3.5)

where the implied constant is absolute.

Proof of Lemma 3.2.6 Since |r−it | = 1, we see that the expectation is always
� 1. If r �= 1, then we get

ET(r
−it ) = 1

2T

[
i

log r
r−it

]T

−T
= i(r

iT − r−iT)
2T(log r)

,

which has modulus at most | log r|−1T−1, hence the first bound holds.
Assume now that r = n1/n2 with n1 �= n2 positive integers. Assume that

n2 > n1 � 1. Then n2 � n1 + 1, and hence∣∣∣∣log
n1

n2

∣∣∣∣ � ∣∣∣∣log

(
1+ 1

n1

)∣∣∣∣� 1

n1
� 1√

n1n2
.

If n2 < n1, we exchange the role of n1 and n2, and since both sides of the
bound (3.5) are symmetric in terms of n1 and n2, the result follows.

Proof of Proposition 3.2.5 It is convenient here to view the sequences (Xp,T)p
and (Xp)p as two random variables on �T, taking value in the infinite product

Ŝ1 =
∏
p

S1

of copies of the unit circle indexed by primes. Note that Ŝ1 is a compact abelian
group (with componentwise product).

In this interpretation, the limit (or more precisely the law of (Xp)) is simply
the probability Haar measure on the group Ŝ1 (see Section B.6). This allows
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3.2 The Theorems of Bohr–Jessen and of Bagchi 55

us to prove convergence in law using the well-known Weyl Criterion: the
statement of the proposition is equivalent with the property that

lim
T→+∞

ET(χ(Xp,T)) = 0 (3.6)

for any nontrivial continuous unitary character χ : Ŝ1 −→ S1. An elementary
property of compact groups shows that for any such character there exists a
finite nonempty subset S of primes, and for each p ∈ S some integer mp ∈
Z− {0}, such that

χ(z) =
∏
p∈S

z
mp
p

for any z = (zp)p ∈ Ŝ1 (see Example B.6.2(2)). We then have by definition

ET(χ(Xp,T)) = 1

2T

∫ T

−T

∏
p∈S

p−itmpdt = 1

2T

∫ T

−T
r−it dt,

where r > 0 is the rational number given by

r =
∏
p∈S

pmp .

Since we have r �= 1 (because S is not empty and mp �= 0), we obtain
ET(χ(Xp,T))→ 0 as T →+∞ from (3.4).

As a corollary, Bagchi’s Theorem follows formally for τ > 1 and D
contained in the set of complex numbers with real part > 1. This is once more
a very simple fact which is often not specifically discussed, but which gives an
indication and a motivation for the more difficult study in the critical strip.

Special case of Theorem 3.2.1 for τ > 1 Assume that τ > 1 and that D is a
compact subset containing τ contained in {s ∈ C | Re(s) > 1}. We view
XT = (Xp,T) as random variables with values in the topological space Ŝ1, as
before. This is also (as a countable product of metric spaces) a metric space.
We claim that the map

ϕ

⎧⎨⎩
Ŝ1 −→ H(D),

(xp) �→
(
s �→ −

∑
p

log(1− xpp−s)
)

is continuous (see Definition A.2.1 again for the definition of the logarithm
here). If this is so, then the composition principle (see Proposition B.3.2)
and Proposition 3.2.5 imply that ϕ(XT) converges in law to the H(D)-valued
random variable ϕ(X), where X = (Xp) with the Xp uniform and independent
on S1. But this is exactly the statement of Bagchi’s Theorem for D.
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56 The Distribution of Values of the Riemann Zeta Function

Now we check the claim. Fix ε > 0. Let T > 0 be some parameter to be
chosen later in terms of ε. For any x = (xp) and y = (yp) in Ŝ1, we have

‖ϕ(x)− ϕ(y)‖∞ �
∑
p�T

‖ log(1− xpp−s)− log(1− ypp−s)‖∞

+
∑
p>T

‖ log(1− xpp−s)‖∞ +
∑
p>T

‖ log(1− ypp−s)‖∞.

Because D is compact in the half-plane Re(s) > 1, the minimum of the real
part of s ∈ D is some real number σ0 > 1. Since |xp| = |yp| = 1 for all
primes, and since

| log(1− z)| � 2|z|
for |z| � 1/2 (Proposition A.2.2 (3)), it follows that∑
p>T

‖ log(1− xpp−s)‖∞ +
∑
p>T

‖ log(1− ypp−s)‖∞ � 4
∑
p>T

p−σ0 � T1−σ0 .

We fix T so that T1−σ0 < ε/2. Now the map

(xp)p�T �→
∑
p�T

‖ log(1− xpp−s)− log(1− ypp−s)‖∞

is obviously continuous, and therefore uniformly continuous since the domain
is a compact set. This function has value 0 when xp = yp for p � T, so there
exists δ > 0 such that∑

p�T

| log(1− xpp−s)− log(1− ypp−s)| < ε
2

if |xp − yp| � δ for p � T. Therefore, provided that

max
p�T

|xp − yp| � δ,

we have

‖ϕ(x)− ϕ(y)‖∞ � ε.

This proves the (uniform) continuity of ϕ.

We now begin the proof of Bagchi’s Theorem in the critical strip. The
argument follows partly his original proof [4], which is quite different from
the Bohr–Jessen approach, with some simplifications. Here are the main steps
of the proof:
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3.2 The Theorems of Bohr–Jessen and of Bagchi 57

• we prove convergence almost surely of the random Euler product, and of its
formal Dirichlet series expansion; this also shows that they define random
holomorphic functions;

• we prove that both the Riemann zeta function and the limiting Dirichlet
series are, in suitable mean sense, limits of smoothed partial sums of their
respective Dirichlet series;

• we then use an elementary argument to conclude using Proposition 3.2.5.

We fix from now on a sequence (Xp)p of independent random variables all
uniformly distributed on S1. We often view the sequence (Xp) as an Ŝ1-valued
random variable, as in the proof of Proposition 3.2.5. Furthermore, for any
positive integer n � 1, we define

Xn =
∏
p|n

X
vp(n)
p , (3.7)

where vp(n) is the p-adic valuation of n. Thus (Xn) is a sequence of S1-valued
random variables.

Exercise 3.2.7 Prove that the sequence (Xn)n�1 is neither independent nor
symmetric.

Exercise 3.2.8 The following exercise provides the starting point of recent
probabilistic approaches to the problem of estimating the so-called pseudo-
moments of the Riemann zeta function (see the thesis of M. Gerspach [46]),
although it is often proved using different approaches, such as the ergodic
theorem for flows.

For any real numbers q � 0 and x � 1 and any sequence of complex
numbers (an), prove that the limit

lim
T→+∞

1

T

∫ 2T

T

∣∣∣∣∑
n�x

ann
−it
∣∣∣∣qdt

exists and that it is equal to

E
(∣∣∣∣∑
n�x

anXn

∣∣∣∣q).

We first show that the limiting random functions are indeed well defined as
H(D)-valued random variables.
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58 The Distribution of Values of the Riemann Zeta Function

Proposition 3.2.9 Let τ ∈]1/2,1[, and let Uτ = {s ∈ C | Re(s) > τ }.
(1) The random Euler product defined by

Z(s) =
∏
p

(1− Xpp
−s)−1

converges almost surely for any s ∈ Uτ . For any compact subset K ⊂ Uτ , the
random function

ZK :

{
K −→ C,

s �→ Z(s)

is an H(K)-valued random variable.
(2) The random Dirichlet series defined by

Z̃ =
∑
n�1

Xnn
−s

converges almost surely for any s ∈ Uτ . For any compact subset K ⊂ Uτ , the
random function Z̃K : s �→ Z̃(s) on K is an H(K)-valued random variable.

(3) We have Z̃K = ZK almost surely.

Proof (1) For N � 1 and s ∈ K, we have by definition∑
p�N

log(1− Xpp
−s)−1 =

∑
p�N

Xp
ps
+
∑
k�2

∑
p�N

Xpk

pks
.

Since Re(s) > 1/2 for s ∈ K, the series∑
k�2

∑
p

Xpk

pks

converges absolutely for s ∈Uτ . By Lemma A.4.1, its sum is therefore an
H(K)-valued random variable for any compact subset K of Uτ .

Fix now τ1 < τ such that τ1 > 1
2 . We can apply Kolmogorov’s Theorem,

B.10.1, to the independent random variables (Xpp−τ1), since∑
p

V(p−τ1 Xp) =
∑
p

1

p2τ1
< +∞.

Thus the series ∑
p

Xp
pτ1
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3.2 The Theorems of Bohr–Jessen and of Bagchi 59

converges almost surely. By Lemma A.4.1 again, it follows that

P(s) =
∑
p

Xp
ps

converges almost surely for all s ∈Uτ , and is holomorphic on Uτ . By restric-
tion, its sum is an H(K)-valued random variable for any K compact in Uτ .

These facts show that the sequence of partial sums∑
p�N

log(1− Xpp
−s)−1

converges almost surely as N →+∞ to a random holomorphic function on K.
Taking the exponential, we obtain the almost sure convergence of the random
Euler product to a random holomorphic function ZK on K.

(2) The argument is similar, except that the sequence (Xn)n�1 is not
independent. However, it is orthonormal: if n �= m, we have

E(XnXm) = 0 and E(|Xn|2) = 1

(indeed Xn and Xm may be viewed as characters of Ŝ1, and they are distinct
if n �= m, so that this is the orthogonality property of characters of compact
groups). We can then apply the Menshov–Rademacher Theorem, B.10.5, to
(Xn) and an = n−τ1 : since∑

n�1

|an|2(log n)2 =
∑
n�1

(log n)2

n2τ1
< +∞,

the series
∑

Xnn−τ1 converges almost surely, and Lemma A.4.1 shows that
Z̃ converges almost surely on Uτ , and defines a holomorphic function there.
Restricting to K leads to Z̃K as H(K)-valued random variable.

Finally, to prove that ZK = Z̃K almost surely, we may replace K by the
compact subset

K1 = {s ∈ C | τ1 � σ � A, |t | � B},
with A � 2 and B chosen large enough to ensure that K ⊂ K1. The previous
argument shows that the random Euler product and Dirichlet series converge
almost surely on K1. But K1 contains the open set

V = {s ∈ C | 1 < Re(s) < 2, |t | < B},
where the Euler product and Dirichlet series converge absolutely, so that
Lemma C.1.4 proves that the random holomorphic functions ZK1 and Z̃K1 are
equal when restricted to V. By analytic continuation (and continuity), they are
equal also on K1, hence a posteriori on K.
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60 The Distribution of Values of the Riemann Zeta Function

We will prove Bagchi’s Theorem using the random Dirichlet series, which
is easier to handle than the Euler product. However, we will still denote it Z(s),
which is justified by the last part of the proposition.

Some additional properties of this random Dirichlet series are now needed.
Most importantly, we need to find a finite approximation that also applies to
the Riemann zeta function. This will be done using smooth partial sums.

First we need to check that Z(s) is of polynomial growth on average on
vertical strips.

Lemma 3.2.10 Let Z(s) be the random Dirichlet series
∑

Xnn−s defined and
holomorphic almost surely for Re(s) > 1/2. For any σ1 > 1/2, we have

E(|Z(s)|)� 1+ |s|
uniformly for all s such that Re(s) � σ1.

Proof The series ∑
n�1

Xn
nσ1

converges almost surely. Therefore the partial sums

Su =
∑
n�u

Xn
nσ1

are bounded almost surely.
By summation by parts (Lemma A.1.1), it follows that for any s with real

part σ > σ1, we have

Z(s) = (s − σ1)

∫ +∞

1

Su
us−σ1+1

du,

where the integral converges almost surely. Hence

|Z(s)| � (1+ |s|)
∫ +∞

1

|Su|
uσ−σ1+1

du.

Fubini’s Theorem (for nonnegative functions) and the Cauchy–Schwarz
inequality then imply

E(|Z(s)|) � (1+ |s|)
∫ +∞

1
E(|Su|) du

uσ−σ1+1

� (1+ |s|)
∫ +∞

1
E(|Su|2)1/2 du

uσ−σ1+1

= (1+ |s|)
∫ +∞

1

⎛⎝∑
n�u

1

n2σ1

⎞⎠1/2
du

uσ−σ1+1
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3.2 The Theorems of Bohr–Jessen and of Bagchi 61

using the orthonormality of the variables Xn. The integrand is � u
− 1

2−σ ,
hence the integral converges uniformly for σ � σ1.

We can then deduce a good result on average approximation by partial
sums. We refer to Section A.3 for the definition and properties of the Mellin
transform.

Proposition 3.2.11 Let ϕ : [0, + ∞[−→ [0,1] be a smooth function with
compact support such that ϕ(0) = 1. Let ϕ̂ denote its Mellin transform. For
N � 1, define the H(D)-valued random variable

ZD,N =
∑
n�1

Xnϕ
( n

N

)
n−s .

There exists δ > 0 such that

E(‖ZD − ZD,N‖∞)� N−δ

for N � 1.

We recall that the norm ‖ · ‖∞ refers to the sup norm on the compact set D.

Proof The first step is to apply the smoothing process of Proposition A.4.3 in
Appendix A. The random Dirichlet series

Z(s) =
∑
n�1

Xnn
−s

converges almost surely for Re(s) > 1/2. For σ > 1/2 and any δ > 0 such
that

−δ + σ � 1/2,

we have therefore almost surely the representation

ZD(s)− ZD,N(s) = − 1

2iπ

∫
(−δ)

Z(s + w)ϕ̂(w)Nwdw (3.8)

for s ∈ D. (Figure 3.2 may help understand the location of the regions involved
in the proof.)

Note that here and below, it is important that the “almost surely” property
holds for all s; this is simply because we work with random variables taking
values in H(D), and not with particular evaluations of these random functions
at a specific s ∈ D.

We need to control the supremum norm on D, since this is the norm on the
space H(D). For this purpose, we use Cauchy’s integral formula.
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62 The Distribution of Values of the Riemann Zeta Function

Figure 3.2 Regions and contours in the proof of Proposition 3.2.11.

Let S be a compact segment in ]1/2,1[ such that the fixed rectangle
R = S × [−1/2,1/2] ⊂ C contains D in its interior. Then, almost surely,
for any v in D, Cauchy’s Theorem gives

ZD(v)− ZD,N(v) = 1

2iπ

∫
∂R
(ZD(s)− ZD,N(s))

ds

s − v,

where the boundary of R is oriented counterclockwise. The definition of R
ensures that |s − v|−1 � 1 for v ∈ D and s ∈ ∂R, so that the random variable
‖ZD − ZD,N‖∞ satisfies

‖ZD − ZD,N‖∞ �
∫
∂R
|ZD(s)− ZD,N(s)| |ds|.

Using (3.8) and writing w = −δ + iu with u ∈ R, we obtain

‖ZD − ZD,N‖∞ � N−δ
∫
∂R

∫
R
|Z(−δ + σ + i(t + u))| |ϕ̂(−δ + iu)||ds|du.

Therefore, taking the expectation, and using Fubini’s Theorem (for nonnega-
tive functions), we get

E(‖ZD − ZD,N‖∞)
� N−δ

∫
∂R

∫
R

E (|Z(−δ + σ + i(t + u))|) |ϕ̂(−δ + iu)||ds|du

� N−δ sup
s=σ+it∈R

∫
R

E (|Z(−δ + σ + i(t + u))|) |ϕ̂(−δ + iu)|du.

We therefore need to bound∫
R

E (|Z(−δ + σ + i(t + u))|) |ϕ̂(−δ + iu)|du
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for some fixed σ + it in the compact rectangle R. We take

δ = 1

2
(min S− 1/2),

which is > 0 since S is compact in ]1/2,1[, so that

−δ + σ > 1/2 and 0 < δ < 1.

Since ϕ̂ decays faster than any polynomial at infinity in vertical strips, and

E(|Z(s)|)� 1+ |s|
uniformly for s ∈ R by Lemma 3.2.10, we have∫

R
E (|Z(−δ + σ + i(t + u))|) |ϕ̂(−δ + iu)|du� 1

uniformly for s = σ + it ∈ R, and the result follows.

The last preliminary result is a similar approximation result for the trans-
lates of the Riemann zeta function by smooth partial sums of its Dirichlet
series.

Proposition 3.2.12 Let ϕ : [0, + ∞[−→ [0,1] be a smooth function with
compact support such that ϕ(0) = 1. Let ϕ̂ denote its Mellin transform. For
N � 1, define2

ζN(s) =
∑
n�1

ϕ
( n

N

)
n−s,

and define ZN,T to be the H(D)-valued random variable

t �→ (s �→ ζN(s + it).
There exists δ > 0 such that

ET(‖ZD,T − ZN,T‖∞)� N−δ + NT−1

for N � 1 and T � 1.

Note that ζN is an entire function, since ϕ has compact support, so that the
range of the sum is in fact finite. The meaning of the statement is that
the smoothed partial sums ζN give very uniform and strong approximations
to the vertical translates of the Riemann zeta function.

Proof We will write ZT for ZD,T for simplicity. We begin by applying the
smoothing process of Proposition A.4.3 in Appendix A in the case an = 1.

2 There should be no confusion with ZD,T.
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For σ > 1/2 and any δ > 0 such that−δ+σ � 1/2, we have (as in the previous
proof) the representation

ζ(s)− ζN(s) = − 1

2iπ

∫
(−δ)

ζ(s + w)ϕ̂(w)Nwdw − N1−s ϕ̂(1− s), (3.9)

where the second term on the right-hand side comes from the fact that the
Riemann zeta function has a pole at s = 1 with residue 1.

As before, let S be a compact segment in ]1/2,1[ such that the fixed
rectangle R = S × [−1/2,1/2] ⊂ C contains D in its interior. Then for any v
with Re(v) > 1/2 and t ∈ R, Cauchy’s Theorem gives

ζ(v + it)− ζN(v + it) = 1

2iπ

∫
∂R
(ζ(s + it)− ζN(s + it)) ds

s − v,

where the boundary of R is oriented counterclockwise; using |s − v|−1 � 1
for v ∈ D and s ∈ ∂R, we deduce that the random variable ‖ZT − ZN,T‖∞,
which takes the value

sup
s∈D
|ζ(s + it)− ζN(s + it)|

at t ∈ �T, satisfies

‖ZT − ZN,T‖∞ �
∫
∂R
|ζ(s + it)− ζN(s + it)||ds|

for t ∈�T. Taking the expectation with respect to t (i.e., integrating over t ∈
[−T,T]) and applying Fubini’s Theorem for nonnegative functions leads to

ET
(‖ZT − ZN,T‖∞

)� ∫
∂R

ET (|ζ(s + it)− ζN(s + it)|) |ds|

� sup
s∈∂R

ET (|ζ(s + it)− ζN(s + it)|) . (3.10)

We take again δ = 1
2 (min S − 1/2) > 0, so that 0 < δ < 1. For any fixed

s = σ + it ∈ ∂R, we have

−δ + σ � 1

2
+ δ > 1

2
.

Applying (3.9) and using again Fubini’s Theorem, we obtain

ET (|ζ(s + it)− ζN(s + it)|)
� N−δ

∫
R
|ϕ̂(−δ + iu)|ET (|ζ(σ − δ + i(t + u))|) du

+ N1−σ ET(|ϕ̂(1− s − it)|).
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The rapid decay of ϕ̂ on vertical strips shows that the second term (arising
from the pole) is� NT−1. In the first term, since σ −δ � min(S)−δ � 1

2+δ,
we have

ET (|ζ(σ − δ + i(t + u))|) = 1

2T

∫ T

−T
|ζ(σ − δ + i(t + u))|dt

� 1+ |u|
T
� 1+ |u| (3.11)

by Proposition C.4.1 in Appendix C. Hence

ET (|ζ(s + it)− ζN(s + it)|)� N−δ
∫

R
|ϕ̂(−δ + iu)|(1+ |u|)du+ NT−1.

(3.12)

Now the fast decay of ϕ̂(s) on the vertical line Re(s) = −δ shows that the last
integral is bounded, and we conclude from (3.10) that

ET
(‖ZT − ZN,T‖∞

)� N−δ + NT−1,

as claimed.

Finally we can prove Theorem 3.2.1:

Proof of Bagchi’s Theorem By Proposition B.4.1, it is enough to prove that for
any bounded and Lipschitz function f : H(D) −→ C, we have

ET(f (ZD,T)) −→ E(f (ZD))

as T → +∞. We may use the Dirichlet series expansion of ZD according to
Proposition 3.2.9, (2).

Since D is fixed, we omit it from the notation for simplicity, denoting
ZT=ZD,T and Z = ZD. Fix some integer N � 1 to be chosen later. We denote

ZT,N =
∑
n�1

n−s−it ϕ
( n

N

)
(viewed as a random variable defined for t ∈ [−T,T]) and

ZN =
∑
n�1

Xnn
−sϕ

( n
N

)
the smoothed partial sums of the Dirichlet series as in Propositions 3.2.12
and 3.2.11.
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We then write

|ET(f (ZT))− E(f (Z))| � |ET(f (ZT)− f (ZT,N))|
+ |ET(f (ZT,N))− E(f (ZN))|
+ |E(f (ZN)− f (Z))|.

Since f is a Lipschitz function on H(D), there exists a constant C � 0 such
that

|f (x)− f (y)| � C‖x − y‖∞
for all x, y ∈ H(D). Hence we have

|ET(f (ZT))− E(f (Z))| � C ET(‖ZT − ZT,N‖∞)
+ |ET(f (ZT,N))− E(f (ZN))|+C E(‖ZN− Z‖∞).

Fix ε > 0. Propositions 3.2.12 and 3.2.11 together show that there exists
some N � 1 and some constant C1 � 0 such that

ET(‖ZT − ZT,N‖∞) < ε + C1N

T

for all T � 1 and

E(‖ZN − Z‖∞) < ε.
We fix such a value of N. By Proposition 3.2.5 and composition, the random
variables ZT,N (which are Dirichlet polynomials) converge in law to ZN as
T → +∞. Since N/T → 0 also for T → +∞, we deduce that for all T large
enough, we have

|ET(f (ZT))− E(f (Z))| < 4ε.

This finishes the proof.

Exercise 3.2.13 Prove that if σ > 1/2 is fixed, then we have almost surely

lim
T→+∞

1

2T

∫ T

−T
|Z(σ + it)|2dt = ζ(2σ).

[Hint: Use the Birkhoff–Khintchine pointwise ergodic theorem for flows; see,
e.g., [30, §8.6.1].]

Before we continue toward the computation of the support of Bagchi’s
measure, and hence the proof of Voronin’s Theorem, we can use the current
available information to obtain bounds on the probability that the Riemann zeta
function is “large” on the subset D. More precisely, it is natural to discuss the

https://doi.org/10.1017/9781108888226.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.004


3.3 The Support of Bagchi’s Measure 67

probability that the logarithm of the modulus of translates of the zeta function
is large, since this will also detect how close it might approach zero.

Proposition 3.2.14 Let σ0 be the infimum of the real part of s for s ∈ D. There
exists a positive constant c > 0, depending on D, such that for any A > 0, we
have

lim sup
T→+∞

PT(‖ log |ZD,T| ‖∞ > A) � c exp
(
−c−1A1/(1−σ0)(log A)1/(2(1−σ0))

)
.

Proof Convergence in law implies that

lim sup
T→+∞

PT(‖ log |ZD,T| ‖∞ > A) � PT(‖ log |ZD| ‖∞ > A)

and

log |ZD| =
∑
p

Re

(
Xp
ps

)
+ O(1),

where the implied constant depends on D. In addition, we have

PT

⎛⎝∥∥∥∥∥∑
p

Re

(
Xp
ps

)∥∥∥∥∥
∞
> A

⎞⎠ � PT

⎛⎝∥∥∥∥∥∑
p

Xp
ps

∥∥∥∥∥
∞
> A

⎞⎠ .

Since σ0 >
1
2 and the random variables (Xp) are independent and bounded

by 1, we can therefore estimate the right-hand side of this last inequality using
the variant of Proposition B.11.13 discussed in Remark B.11.14 (2) for the
Banach space H(D), and hence conclude the proof.

Remark 3.2.15 It is also possible to obtain lower bounds for these probabil-
ities, by evaluating at a fixed element of D (see Theorem 6.3.1 for a similar
argument, although the shape of the lower bound is different).

3.3 The Support of Bagchi’s Measure

Our goal in this section is to explain the proof of Theorem 3.2.3, which is due
to Bagchi [4, Ch. 5]. Since it involves results of complex analysis that are quite
far from the main interest of this book, we will only treat in detail the part of
the proof that involves arithmetic, giving references for the other results that
are used.

The support is easiest to compute using the random Euler interpretation
of the random Dirichet series, because it is essentially a sum of independent
random variables. To be precise, define
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P(s) =
∑
p

Xp
ps

and P̃(s) =
∑
p

∑
k�1

Xkp
pks

(see the proof of Proposition 3.2.9). The series converge almost surely for
Re(s) > 1/2. We claim that the support of the distribution of P̃, when viewed
as an H(D)-valued random variable, is equal to H(D). Let us first assume this.

Since Z = exp(P̃), we deduce by composition (see Lemma B.2.1) that the
support of Z is the closure of the set of functions of the form eg , where g ∈
H(D). But this last set is precisely H(D)×, and Lemma A.5.5 in Appendix A
shows that its closure in H(D) is H(D)× ∪ {0}.

Finally, to prove the approximation property (3.2), which is the original
version of Voronin’s Universality Theorem, we simply apply Lemma B.3.3 to
the family of random variables ZT, which gives the much stronger statement
that for any ε > 0, we have

lim inf
T→+∞

λ

(
{t ∈ [−T,T] | sup

s∈D
|ζ(s + it)− f (s)| < ε}

)
> 0,

where λ denotes Lebesgue measure.
From Proposition B.10.8 in Appendix B, the following proposition will

imply that the support of the random Dirichlet series P is H(D). The statement
is slightly more general to help with the last step afterward.

Proposition 3.3.1 Let τ be such that 1/2 < τ < 1. Let r > 0 be such that

D = {s ∈ C | |s − τ | � r} ⊂ {s ∈ C | 1/2 < Re(s) < 1}.
Let N be an arbitrary positive real number. The set of all series∑

p>N

xp

ps
with (xp) ∈ Ŝ1,

which converge in H(D), is dense in H(D).

We will deduce the proposition from the density criterion of Theorem A.5.1
in Appendix A, applied to the space H(D) and the sequence (fp) with fp(s) =
p−s for p prime. Since ‖fp‖∞ = p−σ1 , where σ1 = τ−r > 1/2, the condition∑

p

‖fp‖2
∞ < +∞

holds. Furthermore, Proposition 3.2.9 certainly shows that there exist some
(xp)∈ Ŝ1 such that the series

∑
p xpfp converges in H(D). Hence the

conclusion of Theorem A.5.1 is what we seek, and we only need to check
the following lemma to establish the last hypothesis required to apply it:
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Lemma 3.3.2 Let μ ∈ C(D̄)′ be a continuous linear functional. Let

g(z) = μ(s �→ esz)

be its Laplace transform. If∑
p

|g(logp)| < +∞, (3.13)

then we have g = 0.

Indeed, the point is that μ(fp) = μ(s �→ p−s) = g(logp), so that the
assumption (3.13) concerning g is precisely (A.3).

This is a statement that has some arithmetic content, as we will see, and
indeed the proof involves the Prime Number Theorem.

Proof Let

� = lim sup
r→+∞

log |g(r)|
r

,

which is finite by Lemma A.5.2 (1). By Lemma A.5.2 (3), it suffices to prove
that � � 1/2 to conclude that g = 0. To do this, we will use Theorem A.5.3,
that provides access to the value of � by “sampling” g along certain sequences
of real numbers tending to infinity.

The idea is that (3.13) implies that |g(logp)| cannot be often of size at least
1/p = e− logp, since the series

∑
p−1 diverges. Since the sequence logp

increase slowly, this makes it possible to find real numbers rk →+∞ growing
linearly and such that |g(rk)| � e−rk , and from this and Theorem A.5.3 we will
get a contradiction.

To be precise, we first note that for y ∈ R, we have

|g(iy)| � ‖μ‖ ‖s �→ eiys‖∞ � ‖μ‖er|y|

(since the maximum of the absolute value of the imaginary part of s ∈ D̄ is r),
and therefore

lim sup
y∈R

|y|→+∞

log |g(iy)|
|y| � r .

We put α = r � 1/4. Then the first condition of Theorem A.5.3 holds for the
function g. We also take β = 1 so that αβ < π .

For any k � 0, let Ik be the set of primes p such that ek � p < ek+1. By
the Mertens Formula (C.4), or the Prime Number Theorem, we have∑

p∈Ik

1

p
∼ 1

k
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as k→+∞. Let further A be the set of those k � 0 for which the inequality

|g(logp)| � 1

p

holds for all primes p ∈ Ik , and let B be its complement among the nonnegative
integers. We then note that∑

k∈A

1

k
�
∑
k∈A

∑
p∈Ik

1

p
�
∑
k∈A

∑
p∈Ik

|g(logp)| < +∞.

This shows that B is infinite. For k ∈ B, let pk be a prime in Ik such that
|g(logpk)| < p−1

k . Let rk = logpk . We then have

lim sup
k→+∞

log |g(rk)|
rk

� −1.

Since pk ∈ Ik , we have

rk = logpk ∼ k.
Furthermore, if we order B in increasing order, the fact that∑

k /∈B

1

k
< +∞

implies that the kth element nk of B satisfies nk ∼ k.
Now we consider the sequence formed from the r2k , arranged in increasing

order. We have r2k/k→ 2 from the above. Moreover, since rk ∈ Ik , we have

r2k+2 − r2k � 1,

by construction, hence |r2k − r2l | � |k − l|. Since |g(r2k)| � e−r2k for all
k ∈ B, we can apply Theorem A.5.3 to this increasing sequence and we get

� = lim sup
k→+∞

log |g(r2k)|
r2k

� −1 < 1/2,

as desired.

There remains a last lemma to prove, that allows us to go from the support
of the series P(s) of independent random variables to that of the full series P̃(s).

Lemma 3.3.3 The support of P̃(s) is H(D).

Proof We can write

P̃ = −
∑
p

log(1− Xpp
−s),
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where the random variables (log(1−Xpp−s))p are independent, and the series
converges almost surely in H(D). Therefore it is enough by Proposition B.10.8
to prove that the set of convergent series

−
∑
p

log(1− xpp−s) and (xp) ∈ Ŝ1

is dense in H(D).
Fix f ∈ H(D) and ε > 0 be fixed. For N � 1 and any (xp) ∈ Ŝ1, let

hN(s) =
∑
p>N

∑
k�2

xkp

kpks
.

This series converges absolutely for any s such that Re(s)> 1/2 and (xp) ∈ Ŝ1,
and we have

‖hN‖∞ �
∑
p>N

∑
k�2

1

kpk/2
→ 0

as N →+∞, uniformly with respect to (xp) ∈ Ŝ1. Fix N such that ‖hN‖∞< ε
2

for any (xp) ∈ Ŝ1.
Now let xp = 1 for p � N and define f0 ∈ H(D) by

f0(s) = f (s)+
∑
p�N

log(1− xpp−s).

For any choice of (xp)p>N such that the series∑
p

xp

ps

defines an element of H(D), we can then write

f (s)+
∑
p

log(1− xpp−s) = gN(s)+ f0(s)+ hN(s),

for s ∈ D, where

gN(s) =
∑
p>N

xp

ps
.

By Proposition 3.3.1, there exists (xp)p>N such that the series gN converges
in H(D) and ‖gN + f0‖∞ < ε

2 . We then have∥∥∥∥f +∑
p

log(1− xpp−s)
∥∥∥∥
∞
< ε.
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Exercise 3.3.4 This exercise uses Voronin’s Theorem to deduce that the
Riemann zeta function is not the solution to any algebraic differential equation.

(1) For (a0, . . . ,am) ∈ Cm+1 such that a0 �= 0, prove that there exists
(b0, . . . ,bm) ∈ Cm+1 such that we have

exp

(
m∑
k=0

bks
k

)
=

m∑
k=0

ak

k!
sk + O(sm+1)

for s ∈ C.
Now fix a real number σ with 1

2 < σ < 1, and let g be a holomorphic
function on C which does not vanish.

(2) For any ε > 0, prove that there exists a real number t and r > 0 such
that

sup
|s|�r

|ζ(s + σ + it)− g(s)| < εr
k

k!
.

(3) Let n � 1 be an integer. Prove that there exists t ∈ R such that for all
integers k with 0 � k � n− 1, we have

|ζ (k)(σ + it)− g(k)(0)| < ε.
(4) Let n � 1 be an integer. Prove that the image in Cn of the map{

R −→ Cn,

t �→ (ζ(σ + it), . . . ,ζ (n−1)(σ + it))
is dense in Cn.

(5) Using (4), prove that if n � 1 and N � 1 are integers, and F0, . . . , FN

are continuous functions Cn→ C, not all identically zero, then the function

N∑
k=0

skFk(ζ(s),ζ
′(s), . . . ,ζ (n−1)(s))

is not identically zero. In particular, the Riemann zeta function satisfies no
algebraic differential equation.

3.4 Generalizations

If we look back at the proof of Bagchi’s Theorem, and at the proof of Voronin’s
Theorem, we can see precisely which arithmetic ingredients appeared. They
are the following:
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• the crucial link between the arithmetic objects and the probabilistic model
is provided by Proposition 3.2.5, which depends on the unique factorization
of integers into primes; this is an illustration of the asymptotic
independence of prime numbers, similarly to Proposition 1.3.7;

• the proof of Bagchi’s Theorem then relies on the mean-value property
(3.11) of the Riemann zeta function; this estimate has arithmetic meaning;

• the Prime Number Theorem, which appears in the proof of Voronin’s
Theorem, in order to control the distribution of primes in (roughly) dyadic
intervals.

Note that some arithmetic features remain in the Random Dirichlet Series
that arises as the limit in Bagchi’s Theorem, in contrast with the Erdős–Kac
Theorem, where the limit is the universal Gaussian distribution. This means, in
particular, that going beyond Bagchi’s Theorem to applications (as in Voronin’s
Theorem) still naturally involves arithmetic problems, many of which are very
interesting in their interaction with probability theory (see below for a few
references).

From this analysis, it shouldn’t be very surprising that Bagchi’s Theorem
can be generalized to many other situations. The most interesting concerns
perhaps the limiting behavior, in H(D), of families of L-functions of the type

L(f ,s) =
∑
n�1

λf (n)n
−s,

where f runs over some sequence of arithmetic objects with associated
L-functions, ordered in a sequence of probability spaces (which need not be
continuous like �T). We refer to [59, Ch. 5] for a survey and discussion of
L-functions, and to [69] for a discussion of families of L-functions. There are
some rather elementary special cases, such as the vertical translates L(χ,s+it)
of a fixed Dirichlet L-function L(χ,s), since almost all properties of the
Riemann zeta function extend quite easily to this case. Another interesting case
is the finite set �q of nontrivial Dirichlet characters modulo a prime number
q, with the uniform probability measure. Then one can look at the distribution
of the restrictions to D of the Dirichlet L-functions L(s,χ) for χ ∈ �q , and
indeed one can check that Bagchi’s Theorem extends to this situation.

A second example, which is treated in [72] is, still for a prime q � 2, the
set �q of holomorphic cuspidal modular forms of weight 2 and level q, either
with the uniform probability measure, or with that provided by the Petersson
formula ([69, 31, ex. 8]). An analogue of Bagchi’s Theorem holds, but the
limiting random Dirichlet series is not the same as in Theorem 3.2.1: with the
Petersson average, it is
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∏
p

(1− Xpp
−s + p−2s)−1, (3.14)

where (Xp) is a sequence of independent random variables, which are all
distributed according to the Sato–Tate measure (the same that appears in
Example B.6.1 (3)). This different limit is simply due to the form that “local
spectral equidistribution” (in the sense of [69]) takes for this family (see
[69, 38]). Indeed, the local spectral equidistribution property plays the role of
Proposition 3.2.5. The analogue of (3.11) follows from a stronger mean-square
formula, using the Cauchy–Schwarz inequality: there exists a constant A > 0
such that, for any σ0 > 1/2 and all s ∈ C with Re(s) � σ0, we have∑

f∈�q
ωf |L(f ,s)|2 � (1+ |s|)A (3.15)

for q � 2, where ωf is the Petersson-averaging weight (see [76, Prop. 5],
which proves an even more difficult result where Re(s) can be as small as
1
2 + c(log q)−1).

However, extending Bagchi’s Theorem to many other families of
L-functions (e.g., vertical translates of an L-function of higher rank) requires
restrictions, in the current state of knowledge. The reason is that the analogue
of the mean-value estimates (3.11) or (3.15) is usually only known when
Re(s) � σ0 > 1/2, for some σ0 such that σ0 < 1. Then the only domains D
for which one can prove a version of Bagchi’s Theorem are those contained in
Re(s) > σ0.

[Further references: Titchmarsh [117], especially Chapter 11, discusses
the older work of Bohr and Jessen, which has some interesting geometric
aspects that are not apparent in modern treatments. Bagchi’s Thesis [4]
contains some generalizations as well as more information concerning the limit
theorem and Voronin’s Theorem.]
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