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Abstract. Noetherian dimer algebras form a prominent class of examples of
noncommutative crepant resolutions (NCCRs). However, dimer algebras that are
noetherian are quite rare, and we consider the question: how close are nonnoetherian
homotopy dimer algebras to being NCCRs? To address this question, we introduce
a generalization of NCCRs to nonnoetherian tiled matrix rings. We show that if a
noetherian dimer algebra is obtained from a nonnoetherian homotopy dimer algebra
A by contracting each arrow whose head has indegree 1, then A is a noncommutative
desingularization of its nonnoetherian centre. Furthermore, if any two arrows whose
tails have indegree 1 are coprime, then A is a nonnoetherian NCCR.

2010 Mathematics Subject Classification. 13C15, 14A20

1. Introduction. Let (R,m) be a local domain with an algebraically closed residue
field k. In the mid-1950s, Auslander, Buchsbaum, and Serre established the famous
homological characterization of regularity in the case R is noetherian [1, 2, 22]: R is
regular if and only if

gldim R = pdR(k) = dim R.

In 1984, Brown and Hajarnavis generalized this characterization to the setting of
noncommutative noetherian rings which are module-finite over their centres [16]: such
a ring A with local centre R is said to be homologically homogeneous if for each simple
A-module V ,

gldim A = pdA(V ) = dim R.

In 2002, Van den Bergh placed this notion in the context of derived categories
with the introduction of noncommutative crepant resolutions (henceforth NCCRs).
Specifically, a homologically homogeneous ring A is a (local) NCCR if R is a normal
Gorenstein domain and A is the endomorphism ring of a finitely generated reflexive
R-module [23, Definition 4.1].1

1A proper birational map f : Y → X from a non-singular variety Y to a Gorenstein singularity X is a
crepant resolution if f ∗ωX = ωY . Given an NCCR A of R = k[X ], Van den Bergh conjectured that the
bounded derived category of A-modules is equivalent to the bounded derived category of coherent sheaves
on Y [23, Conjecture 4.6].
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In this article, we consider dimer algebras on a torus (Definition 2.2). A
prominent class of NCCRs are noetherian dimer algebras [11, 14, 15, 17]. In fact, every
3-dimensional affine toric Gorenstein singularity admits an NCCR given by a dimer
algebra [19, 20]. A homotopy algebra is the quotient of a dimer algebra by homotopy-
like relations on the paths in its quiver; a dimer algebra is then noetherian if and only if
it coincides with its homotopy algebra. Homotopy algebras, just like noetherian dimer
algebras, are tiled matrix rings over polynomial rings [7, Theorem 1.1]. The homotopy
algebra of a nonnoetherian dimer algebra is also nonnoetherian and an infinitely
generated module over its nonnoetherian centre. Here, we consider the question:

How close are nonnoetherian homotopy algebras to being NCCRs?

To address this question, we consider a relatively small but important class of
nonnoetherian homotopy algebras: Let A be a homotopy algebra with quiver Q such
that a noetherian dimer algebra is obtained by contracting each arrow of Q whose head
has indegree 1, and no arrow of Q has head and tail of indegree both 1. Denote by R
the centre of A. The scheme Spec R has a unique closed point m0 of positive geometric
dimension [9, Theorem 1.1]. Furthermore, m0 is the unique closed point for which the
localizations

Rm0 and Am0 := A ⊗R Rm0

are nonnoetherian [9, Section 3], [5, Theorem 3.4]. An initial answer to our question
appears to be negative:
� Am0 has infinite global dimension (Proposition 6.1).
� Am0 is typically not the endomorphism ring of a module over its centre.

However, the underlying structure of Am0 is more subtle. To uncover this
structure, we introduce a generalization of homological homogeneity and NCCRs
for nonnoetherian tiled matrix rings. Let A be a nonnoetherian tiled matrix ring with
local centre (R,m). First, we introduce
� the cycle algebra S of A, which is a commutative algebra that contains the centre R

as a subalgebra (but in general is not a subalgebra of A); and
� the cyclic localization Aq of A at a prime ideal q of S.

We then say A is cycle regular if for each q ∈ Spec S minimal over m and each
simple Aq-module V , we have

gldim Aq = pdAq
(V ) = dim Sq.

Furthermore, we say A is a nonnoetherian NCCR if the cycle algebra S is a noetherian
normal Gorenstein domain, A is cycle regular, and for each q ∈ Spec S minimal over
m, Aq is the endomorphism ring of a reflexive module over its centre Z(Aq).

Our main result is the following.

THEOREM 1.1 (Theorems 5.7, 6.15, 7.10). Let A be a nonnoetherian homotopy
algebra such that a noetherian dimer algebra is obtained by contracting each arrow whose
head has indegree 1, and no arrow of A has head and tail of indegree both 1. Then

(1) Am0 is cycle regular.
(2) For each prime q of the cycle algebra S which is minimal over m0, we have

gldim Aq = dim Sq = ghtR(m0) = 1 < 3 = htR(m0) = dim Rm0 ,
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Figure 1. (Colour online) (Example 7.12) The homotopy algebra A is a
nonnoetherian NCCR. The quivers Q and Q′ on the top line are each drawn on a

torus, and the two contracted arrows of Q are drawn in green. Here,
S = k[xz, yz, xw, yw] is the coordinate ring for the quadric cone, considered as a

subalgebra of the polynomial ring k[x, y, z, w], and I and J are the respective
S-modules (x, y)S and (z, w)S.

where ghtR(m0) and htR(m0) denote the geometric height and height of m0 in R,
respectively. Furthermore, for each prime q of S minimal over q ∩ R,

gldim Aq = ghtR(q ∩ R).

(3) If the arrows whose tails have indegree 1 are pairwise coprime, then Am0 is a
nonnoetherian NCCR.

The second claim suggests that geometric height, rather than height, is the ‘right’
notion of codimension for nonnoetherian commutative rings, noting that geometric
height and height coincide for noetherian rings [6, Theorem 3.8]. An example of a
dimer algebra, which is a nonnoetherian NCCR, is given in Figure 1, and described in
Example 7.12.

This work is a continuation of [5], where the author considered localizations
Ap := A ⊗R Rp of nonnoetherian dimer and homotopy algebras A at points p ∈ Spec R
away from m0. We focus exclusively on homotopy algebras here since the localization
of a dimer algebra at m0 is much less tractable than its homotopy counterpart; for
example, any dimer algebra satisfying the assumptions of Theorem 1.1 has a free
subalgebra, whereas its homotopy algebra does not [8].

In future work we hope to explore the implications of the definitions we have
introduced in terms of derived categories and tilting theory, and to study larger
classes of nonnoetherian homotopy algebras, as well as other classes of tiled matrix
rings.
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2. Preliminary definitions. Throughout, let k be an algebraically closed field, let
S be an integral domain and a k-algebra, and let R be a (possibly nonnoetherian)
subalgebra of S. Denote by Max S, Spec S, and dim S the maximal spectrum (or
variety), prime spectrum (or affine scheme), and Krull dimension of S, respectively,
similarly for R. For a subset I ⊂ S, set Z(I) := {n ∈ Max S | n ⊇ I}.

A quiver Q = (Q0, Q1, t, h) consists of a vertex set Q0, an arrow set Q1, and head
and tail maps h, t : Q1 → Q0. Denote by deg+ i the indegree of a vertex i ∈ Q0; by kQ
the path algebra of Q; and by ei ∈ kQ the idempotent at vertex i. Path concatenation is
read right to left. By module and global dimension we mean left module and left global
dimension, unless stated otherwise. In a fixed matrix ring, denote by eij the matrix with
a 1 in the ijth slot and zeros elsewhere, and set ei := eii.

The following definitions were introduced in [6] to formulate a theory of geometry
for nonnoetherian rings with finite Krull dimension.

DEFINITION 2.1. [6, Definition 3.1]
� We say S is a depiction of R if S is a finitely generated k-algebra, the morphism

ιS/R : Spec S → Spec R, q �→ q ∩ R,

is surjective, and

{n ∈ Max S | Rn∩R = Sn} = {n ∈ Max S | Rn∩R is noetherian} �= ∅.

� The geometric height of p ∈ Spec R is the minimum

ght(p) := min
{

htS(q) | q ∈ ι−1
S/R(p), S a depiction of R

}
.

The geometric dimension of p is

gdim p := dim R − ght(p).

The algebras that we will consider in this article are called homotopy (dimer)
algebras. Dimer algebras are a type of quiver with potential, and were introduced in
string theory [12] (see also [13]). Homotopy algebras are special quotients of dimer
algebras, and were introduced in [7].

DEFINITION 2.2.
� Let Q be a finite quiver whose underlying graph Q embeds into a two-dimensional

real torus T2, such that each connected component of T2 \ Q is simply connected
and bounded by an oriented cycle, called a unit cycle.2,3,4 The dimer algebra of Q is
the quiver algebra kQ/I with relations

I := 〈p − q | ∃ a ∈ Q1 such that pa and qa are unit cycles〉 ⊂ kQ,

where p and q are paths.

2In contexts such as cluster algebras, Q may be embedded into any compact surface; see for example [3].
3Note that for any vertex i ∈ Q0, the indegree and outdegree of i are equal.
4In [4], it useful to allow length 1 unit cycles. Consequently, it is possible for a length 1 path a ∈ Q1 to equal a
vertex modulo I ; in this case, a is called a ‘pseudo-arrow’ rather than an ‘arrow’, in order to avoid modifying
standard definitions such as perfect matchings.
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Since I is generated by certain differences of paths, we may refer to a path modulo
I as a path in the dimer algebra kQ/I .

� Two paths p, q ∈ kQ/I form a non-cancellative pair if p �= q, and there is a path
r ∈ kQ/I such that

rp = rq �= 0 or pr = qr �= 0.

kQ/I and Q are called non-cancellative if there is a non-cancellative pair; otherwise,
they are called cancellative. By [8, Theorem 1.1], kQ/I is noetherian if and only if it
is cancellative.

� We call the quotient algebra

A := (kQ/I)/ 〈p − q | p, q is a non-cancellative pair〉
the homotopy (dimer) algebra of Q.5 (For the definition of a homotopy algebra on
a general surface, see [7].)

� Let A be a (homotopy) dimer algebra with quiver Q.
– A perfect matching D ⊂ Q1 is a set of arrows such that each unit cycle contains

precisely one arrow in D.
– A simple matching D ⊂ Q1 is a perfect matching such that Q \ D supports a simple

A-module of dimension 1Q0 (that is, Q \ D contains a cycle that passes through each
vertex of Q). Denote by S the set of simple matchings of A.

3. Cycle algebra and nonnoetherian NCCRs. In this section, we introduce the
cycle algebra, cyclic localization, and nonnoetherian NCCRs. Let B be an integral
domain and a k-algebra. Let

A = [
Aij] ⊂ Md (B)

be a tiled matrix algebra; that is, each diagonal entry Ai := Aii is a unital subalgebra
of B. Denote by Z = Z(A) the centre of A.

DEFINITION 3.1. Set

R := k
[∩d

i=1Ai] and S := k
[∪d

i=1Ai] .

We call S the cycle algebra of A. Furthermore, for q ∈ Spec S, set

Aq :=
〈⎡⎢⎢⎢⎣

A1
q∩A1 A12 · · · A1d

A21 A2
q∩A2

...
. . .

Ad1 Ad
q∩Ad

⎤
⎥⎥⎥⎦
〉

⊂ Md (Frac B).

We call Aq the cyclic localization of A at q.

Note that R and S are integral domains since they are subalgebras of B. The
following definitions aim to generalize homological homogeneity and NCCRs to the
nonnoetherian setting.

5A dimer algebra coincides with its homotopy algebra if and only if its quiver is cancellative.
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DEFINITION 3.2. Suppose R is a local domain with unique maximal ideal m.
� We say A is cycle regular if for each q ∈ Spec S minimal over m and each simple

Aq-module V ,

gldim Aq = pdAq
(V ) = dim Sq.

� We say A is a noncommutative desingularization if A is cycle regular, and A ⊗R Frac R
and Frac R are Morita equivalent.

� We say A is a nonnoetherian noncommutative crepant resolution if S is a normal
Gorenstein domain, A is cycle regular, and for each q ∈ Spec S minimal over m, Aq

is the endomorphism ring of a reflexive Z(Aq)-module.

REMARK 3.3. Suppose B is a finitely generated k-algebra, and k is uncountable.
Further suppose the embedding τ : A ↪→ Md (B) has the properties that

(i) for generic b ∈ Max B, the composition

A
τ−→ Md (B)

1−→ Md (B/b)

is surjective;
(ii) the morphism

Max B → Max τ (Z), b �→ b1d ∩ τ (Z),

is surjective; and
(iii) for each n ∈ Max S, Rn∩R = Sn iff Rn∩R is noetherian.
(τ, B) is then said to be an impression of A [11, Definition 2.1].

Under these conditions, the centre Z of A is equal to R,

Z = R1d ,

and is depicted by S [6, Theorem 4.1.1]. Furthermore, by [6, Theorem 4.1.2],

R = S ⇔ A is a finitely generated R-module

⇔ R is noetherian

⇒ A is noetherian

In particular, if R is noetherian, then the cyclic and central localizations of A at
q ∈ Spec S are isomorphic algebras,

Aq
∼= A ⊗R Rq∩R.

If p ∈ Spec R and q ∈ Spec S, then we denote by Ap and Aq the central and cyclic
localizations of A, respectively; no ambiguity arises since the two localizations coincide
whenever R = S.

4. A class of nonnoetherian homotopy algebras. For the remainder of this article,
we will consider a class of homotopy algebras whose quivers contain vertices with
indegree 1. Such quivers are necessarily non-cancellative. Unless stated otherwise, let
A be a nonnoetherian homotopy algebra with quiver Q = (Q0, Q1, t, h) such that
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(A) a cancellative dimer algebra A′ = kQ′/I ′ is obtained by contracting each arrow of
Q whose head has indegree 1; and

(B) for each a ∈ Q1, the indegrees deg+ t(a) and deg+ h(a) are not both 1.
Set

Q∗
1 = {

a ∈ Q1 | deg+ h(a) = 1
}

and Qt
1 := {

a ∈ Q1 | deg+ t(a) = 1
}
.

The quiver Q′ = (Q′
0, Q′

1, t′, h′) is then defined by

Q′
0 = Q0/

{
h(a) ∼ t(a) | a ∈ Q∗

1

}
, Q′

1 = Q1 \ Q∗
1,

and for each arrow a ∈ Q′
1,

h′(a) = h(a) and t′(a) = t(a).

The homotopy algebras A and A′ are isomorphic to tiled matrix rings. Indeed,
consider the k-linear map

ψ : A → A′

defined by

ψ(a) =
{

a if a ∈ Q0 ∪ Q1 \ Q∗
1

et(a) if a ∈ Q∗
1

and extended multiplicatively to (nonzero) paths and k-linearly to A. Furthermore,
consider the polynomial ring generated by the simple matchings S ′ of A′,

B = k
[
xD | D ∈ S ′] .

By [7, Theorem 1.1], there are injective algebra homomorphisms

τ : A′ ↪→ M|Q′
0|(B) and τψ : A ↪→ M|Q0|(B)

defined by

τ (a) =
{

eii if a = ei ∈ Q′
0(∏

D∈S ′ : D�a xD
)

eh(a),t(a) if a ∈ Q′
1

τψ (a) =
{

eii if a = ei ∈ Q0(∏
D∈S ′ : D�ψ(a) xD

)
eh(a),t(a) if a ∈ Q1

and extended multiplicatively and k-linearly to A′ and A.
For p ∈ ejAei and p′ ∈ ejA′ei, denote by

τ̄ψ (p) = p ∈ B and τ̄ (p′) = p′ ∈ B

the single nonzero matrix entry of τψ (p) and τ (p′), respectively. Note that

τ̄ψ (p) = τ̄ (ψ(p)).

Furthermore, for each a ∈ Q1 and D ∈ S ′,

xD|a ⇐⇒ ψ(a) ∈ D.
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Since A′ is cancellative, each a′ ∈ Q′
1 is contained in a simple matching by [8,

Theorem 1.1]; in particular, a′ �= 1. Therefore, for each a ∈ Q1,

a = 1 ⇐⇒ deg+ h(a) = 1.

LEMMA 4.1.

(1) The cycle algebras of A and A′ are equal,6

k
[∪i∈Q0 τ̄ψ (eiAei)

] = k
[∪i∈Q′

0
τ̄
(
eiA′ei

)] = S.

(2) The centre Z′ of A′ is isomorphic to S, and the centre Z of A is isomorphic to the
intersection

Z ∼= k
[∩i∈Q0 τ̄ψ (eiAei)

] = R.

(3) S is a depiction of R.
(4) If the indegree of a vertex i ∈ Q0 is at least 2, then

τ̄ψ (eiAei) = S.

In particular, for each arrow a ∈ Q1,

τ̄ψ (et(a)Aet(a)) = S or τ̄ψ (eh(a)Aeh(a)) = S.

Proof.

(1) By assumption (A), for each cycle p′ in Q′, there is a cycle p in Q such that
ψ(p) = p′. Therefore, the cycle algebras of A and A′ are equal.

(2) Since A′ is cancellative, for each i, j ∈ Q′
0,

τ̄ (eiA′ei) = τ̄ (ejA′ej),

by [8, Theorem 1.1]. Whence for each i ∈ Q′
0,

τ̄ (eiA′ei) = S. (1)

Furthermore, the centres Z and Z′ are isomorphic to the intersections

Z ∼= k
[∩i∈Q0 τ̄ψ (eiAei)

] = R and Z′ ∼= k
[∩i∈Q′

0
τ̄ (eiA′ei)

]
,

by [7, Theorem 1.1]. Therefore, Z′ is isomorphic to S by (1).
(3) Since A and A′ have equal cycle algebras, Z ∼= R is depicted by Z′ ∼= S, by

[9, Theorem 1.1].
(4) By assumption (A), if a vertex i ∈ Q0 has indegree at least 2, then

τ̄ψ (eiAei) = τ̄ (eψ(i)A′eψ(i))
(I)= S,

where (I) holds by (1). Furthermore, by assumption (B), the head or tail of
each arrow a ∈ Q1 has indegree at least 2.

�

6The map ψ is therefore called a ‘cyclic contraction’ [7, Section 3].
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5. Prime decomposition of the origin. Recall that A is a nonnoetherian homotopy
algebra with centre R, satisfying assumptions (A) and (B) given in Section 4. Consider
the origin of Max R,

m0 := (
xD | D ∈ S ′)B ∩ R.

For a monomial g ∈ B, denote by qg the ideal in S generated by all monomials in S
that are divisible by g in B. If g = xD for some simple matching D ∈ S ′, then set

qD := qxD .

We will write h | g if h divides g in B, unless stated otherwise.

LEMMA 5.1. Let g ∈ B be a monomial. Then, the ideal qg ⊂ S is prime if and only if
g = xD for some D ∈ S ′.

Proof. Let n := |S ′|, and enumerate the simple matchings of A′, S ′ = {D1, . . . , Dn}.
Set xi := xDi .

(i) We first claim that for each pair of distinct simple matchings Di, Dj ∈ S ′,
there is a cycle s ∈ A satisfying

xi | s and xj � s. (2)

Indeed, fix i �= j. Since Di �= Dj, there is an arrow a ∈ Q′
1 for which a ∈ Di \

Dj. Furthermore, since Dj is simple, there is a path p ∈ et(a)A′eh(a) supported
on Q′ \ Dj. Whence s := pa is a cycle satisfying (2). But A and A′ have equal
cycle algebras by Lemma 4.1.1. Therefore, s is the τ̄ψ -image of a cycle in A,
proving our claim.

(ii) We now claim that if g ∈ B is a monomial and qg is a prime ideal of S, then
g = xD for some D ∈ S ′. It suffices to consider a monomial g = ∏n′

i=1 xmi
i ,

where 2 ≤ n′ ≤ n, and for each i, mi ≥ 1. By Claim (i), there are cycles
s1, . . . , sn′ ∈ A such that

x1 | s1, x2 � s1,

and for each 2 ≤ i ≤ n′,

x1 � si, xi | si.

Set

h1 := sm1
1 and h2 :=

n′∏
i=2

smi
i .

Then, h1h2 ∈ qg. But h1 �∈ qg and h2 �∈ qg since x2 � h1 and x1 � h2. Therefore,
qg is not prime.

(iii) Finally, consider a simple matching D ∈ S ′. If s, t ∈ eiAei are cycles for which
xD | st, then xD | s or xD | t, since B is the polynomial ring generated by S ′.
Therefore, the ideal qxD is prime.

�

https://doi.org/10.1017/S0017089517000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000209


456 CHARLIE BEIL

LEMMA 5.2. Let i, j ∈ Q0 and D ∈ S ′. If deg+ i ≥ 2, or i is not the tail of an arrow
a ∈ Qt

1 for which xD | a, then there is a path p ∈ ejAei such that xD � p.

Proof.

(i) First suppose deg+ i ≥ 2. Since D is simple, there is a path q ∈ eψ(j)A′eψ(i)

supported on Q′ \ D; whence xD � q. Furthermore, since deg+ i ≥ 2, there
is a path p ∈ ejAei such that ψ(p) = q, by assumption (A). In particular,
xD � q = p.

(ii) Now suppose deg+ i = 1. Let a ∈ Qt
1 be such that t(a) = i. Then, deg+ h(a) ≥

2 by assumption (B). Thus there is a path t ∈ ejAeh(a) for which xD � t, by
Claim (i). Therefore, if xD � a, then the path p := ta ∈ ejAei satisfies xD � p.

�
NOTATION 5.3. Denote by σi the unit cycle at vertex i ∈ Q0, and by

σ := τ̄ψ (σi) =
∏

D∈S ′
xD

the common τ̄ψ -image of each unit cycle in Q. (σ is also the τ̄ -image of each unit cycle
in Q′.) Furthermore, consider a covering map of the torus, π : �2 → T2, such that for
some i ∈ Q0,

π (�2) = i.

Denote by

Q+ := π−1(Q) ⊂ �2

the covering quiver of Q. For each path p in Q, denote by p+ a path in Q+ with tail in
[0, 1) × [0, 1) ⊂ �2 satisfying π (p+) = p.

LEMMA 5.4. Let a ∈ A′ be an arrow and let s ∈ et(a)A′et(a) be a cycle satisfying a | s.
Then there is a path p ∈ et(a)A′eh(a) such that

s = pa.

Proof. We use the notation in [5, Notation 2.1]. Suppose the hypotheses hold.7

It suffices to assume σ � s by [7, Lemma 2.1]. Whence s ∈ Ĉ by [7, Lemma 4.8.3]. Let
u ∈ �2 be such that s ∈ Ĉu. Since A′ is cancellative, for each i ∈ Q′

0 we have

Ĉu
i �= ∅, (3)

by [7, Proposition 4.10]. Consider t ∈ Ĉu
h(a). Then, s = t by [7, Proposition 4.20.2].

Now the paths (as)+ and (ta)+ bound a compact region

Ras,ta ⊂ �2.

Furthermore, since A′ is cancellative, if a cycle p is formed from subpaths of cycles
in Ĉu, then p is in Ĉu, by [7, Proposition 4.20.3]. Therefore we may suppose that the
interior of Ras,ta does not contain any vertices of Q′+, by (3).

7This proof is similar to [5, Claim (i) in proof of Lemma 2.4].
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Figure 2. (Colour online) Cases for Lemma 5.4. In case (i), s and t factor into paths
s = s	 · · · s2s1 and t = t	 · · · t2t1, where a1, . . . , a	, b1, . . . , b	 are arrows, and the cycles

bjajsj and aj−1bjtj are unit cycles. The aj arrows, drawn in thick brown, belong to a
simple matching D of A′. In case (ii), s and t factor into paths s = s2eis1 and t = t2eit1.

Assume to the contrary that s+ and t+ do not intersect (modulo I). Then a
is contained in a simple matching D of A′ such that xD � s, by [7, Lemma 4.15]; see
Figure 2(i). In particular, xD | a. But by assumption, a | s. Thus, xD | s, a contradiction.

Therefore, s+ and t+ intersect at a vertex i+; see Figure 2(ii). By assumption,
σ � s = t. Whence σ � as and σ � ta since a | s = t. Thus,

s1 = t1a and as2 = t2,

by [7, Lemma 4.3]. Consequently,

s2t1a = s2s1 = s.

Therefore, since τ : A′ → M|Q′
0|(B) is injective, we have

s2t1a = s.

In particular, we may take p = s2t1. �

PROPOSITION 5.5. For each arrow a ∈ Q1 \ Q∗
1, τ̄ψ (et(a)Aa) is an ideal of S with prime

decomposition

τ̄ψ (et(a)Aa) =
⋂

D∈S ′ : xD|a
qD. (4)
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Consequently, the prime decomposition of m0 ∈ Max R, as an ideal of S, is

m0 =
⋂

a∈Qt
1

τ̄ψ (et(a)Aa) =
⋂

D∈S ′:
xD|a where a∈Qt

1

qD.

Proof. τ̄ψ (et(a)Aa) is an ideal of S by Lemma 4.1.4. Set qa := ⋂
D∈S ′ : xD|a qD. The

inclusion τ̄ψ (et(a)Aa) ⊆ qa is clear. So, suppose t ∈ ejAej is a cycle such that t ∈ qa, that
is, a | t. We want to show that t ∈ τ̄ψ (et(a)Aa).

First suppose deg+ t(a) ≥ 2. Then, et(a)Aet(a) = Set(a) by Lemma 4.1.4. In
particular, there is a cycle s ∈ et(a)Aet(a) for which s = t. Furthermore, there is a path
p ∈ et(a)Aeh(a) such that s = pa, by Lemma 5.4 and assumption (A).

Now suppose deg+ t(a) = 1. Then, deg+ h(a) ≥ 2 by assumption (B). Whence
eh(a)Aeh(a) = Seh(a). In particular, there is a cycle s ∈ eh(a)Aeh(a) for which s = t.
Furthermore, there is a path p ∈ et(a)Aeh(a) such that s = ap, again by Lemma 5.4
and assumption (A).

Thus, in either case,

t = s ∈ τ̄ψ (et(a)Aa).

Therefore, (4) holds. Finally, each qD is prime by Lemma 5.1. �
In the following, we show that although the ideal qD may not be principal in S, it

becomes principal over the localization SqD .

PROPOSITION 5.6. Let D ∈ S ′ and set q := qD. Then, the maximal ideal qSq of Sq is
generated by σ ,

qSq = σSq.

Proof. Let g ∈ q be a nonzero monomial. Then, there is a cycle s ∈ A with s = g.
By possibly cyclically permuting the arrow subpaths of s, we may assume s factors into
paths s = pa, where xD | a and either
– a ∈ Q1 \ (Q∗

1 ∪ Qt
1

)
, or

– a = a′δ where δ ∈ Q∗
1 and a′ ∈ Qt

1.
In either case, deg+ t(a) ≥ 2.

Let b be a path such that ba is a unit cycle. Then, xD � b since xD | a and ba = σ .
Furthermore, since deg+ h(b) = deg+ t(a) ≥ 2, there is a path t ∈ et(b)Aeh(b) for which
xD � t, by Lemma 5.2. In particular, tp and tb are cycles, and xD � tb. Whence

tp ∈ S and tb ∈ S \ q.

Therefore,

g = ap
tb

tb
= ab

tp

tb
= σ

tp

tb
∈ σSq.

�
Recall that an ideal I is unmixed if for each minimal prime q over I , ht(q) = ht(I).
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THEOREM 5.7.

(1) For each D ∈ S ′, the height of qD in S is 1.
(2) The set of minimal primes of S over m0 are the ideals qD ∈ Spec S for which D

contains the ψ-image of some a ∈ Qt
1.

(3) m0 is an unmixed ideal of S. Furthermore, m0 has height 1 as an ideal of S and height
3 as an ideal of R,

htS(m0) = 1 and htR(m0) = 3.

Proof.

(1) Set q := qD. Then,

1
(I)≤ htS(q) = htSq

(qSq)
(II)= htSq

(σSq)
(III)≤ 1.

Indeed, (I) holds since S is an integral domain and q is nonzero; (II) holds
by Proposition 5.6; and (III) holds by Krull’s principal ideal theorem.

(2) Follows from Claim (1) and Proposition 5.5.
(3) m0 is a height 1 unmixed ideal of S by Claims (1) and (2), and Proposition

5.5. Furthermore, R admits a depiction by Lemma 4.1.3. Thus, the height
of each maximal ideal of R equals the Krull dimension of R by [6, Lemma
3.7.2]. But the Krull dimension of R is 3 by [9, Theorem 1.1]. Therefore,
htR(m0) = 3.

�
QUESTION 5.8. Let K be the function field of an algebraic variety. As shown in

Theorem 5.7.3, a subset p of K may be an ideal in different subalgebras of K , and
the height of p depends on the choice of such subalgebra. Is the geometric height of
p independent of the choice of subalgebra for which p is an ideal? If this is the case,
then the geometric height would be an intrinsic property of an ideal, whereas its height
would not be.

The centre and cycle algebra of Am0 := A ⊗R Rm0 are respectively

Z(Am0 ) ∼= R ⊗R Rm0
∼= Rm0 and S ⊗R Rm0

∼= SRm0 .

PROPOSITION 5.9. The cycle algebra SRm0 of Am0 is a normal Gorenstein domain.

Proof. Let t ∈ Spec(SRm0 ) and set q := t ∩ S.

(i) We claim that

(SRm0 )t = Sq.

Clearly, (SRm0 )t = SqRm0 .8 It thus suffices to show that

SqRm0 = Sq. (5)

8To show this, note that the elements of SRm0 are of the form s/r, with s ∈ S and r ∈ R \ m0. Thus an
element of (SRm0 )t is of the form s1

r1
( s2

r2
)−1, with s1, s2 ∈ S, r1, r2 ∈ R \ m0, and s2

r2
�∈ t. Furthermore, s2

r2
�∈ t

and (6) together imply s2 �∈ t. Whence

s2 ∈ S \ (t∩ S) = S \ q.
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Indeed, we have

t ∩ R ⊆ m0. (6)

Thus, if m0 ⊆ q, then q ∩ R = m0. Whence Rm0 ⊆ Sq. In particular, SqRm0 =
Sq. Otherwise q = 0 ⊂ m0 by Theorem 5.7.3; whence

SqRm0 = (Frac S)Rm0 = Frac S = Sq.

Therefore, in either case, (5) holds, proving our claim.
(ii) S is isomorphic to the centre of A′ by Lemma 4.1.2. Thus, S is a normal

Gorenstein domain since A′ is an NCCR. Whence Sq is a normal Gorenstein
domain. But (SRm0 )t = Sq by Claim (i). Therefore, (SRm0 )t is a normal
Gorenstein domain. Since this holds for all t ∈ Spec(SRm0 ), SRm0 is also a
normal Gorenstein domain.

�

6. Cycle regularity. Recall that A is a nonnoetherian homotopy algebra satisfying
assumptions (A) and (B) given in Section 4, unless stated otherwise. Let q ∈ Spec S
be a minimal prime over the origin m0 of Max R; then, there is a simple matching
D ∈ S ′ such that q = qD, by Proposition 5.5. In this section, we will consider the cyclic
localization Aq of A at q.

The algebra homomorphism τψ : A ↪→ M|Q0|(B) extends to the cyclic localization,
τψ : Aq ↪→ M|Q0|(Frac B). For p ∈ ejAqei, we will denote by τ̄ψ (p) = p ∈ Frac B the
single nonzero matrix entry of τψ (p).

We begin by showing that a notion of homological regularity cannot be obtained
by considering the central localization Am0 := A ⊗R Rm0 alone.

PROPOSITION 6.1. The Am0 -module Am0/m0 = A ⊗R (Rm0/m0) has infinite projective
dimension, and therefore Am0 has infinite global dimension.

Proof. By [10, Lemmas 6.1 and 6.2], there are monomials g, h ∈ S such that for
each n ≥ 1,

hn �∈ R and ghn ∈ m0 ⊂ R.

In particular, there is a vertex i ∈ Q0 such that for each n ≥ 1,

hn �∈ τ̄ψ (eiAei).

Let sn be the cycle in eiAei satisfying sn = ghn. Consider a projective resolution of
Am0/m0 over Am0 ,

· · · → P1 −→ Am0

·1−→ Am0/m0 → 0.

Each sn is in the zeroth syzygy module ker(·1) = annAm0
(Am0/m0). Thus ker(·1) is

not finitely generated over Am0 since hn �∈ τ̄ψ (eiAei). Furthermore, the cycles sn are

Therefore,
s1

r1

(
s2

r2

)−1

= s1r2

s2
· 1

r1
∈ SqRm0 .
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pairwise commuting, and in particular there are an infinite number of independent
commutation relations between them. It follows that pdAm0

(Am0/m0) = ∞. �
LEMMA 6.2. Let V be a simple Aq-module, and let i ∈ Q0. Then,

dimk eiV ≤ 1.

Proof. Suppose V is a simple Aq-module. Then, eiV is a simple eiAqei-module.
Furthermore, the corner ring eiAqei ∼= τ̄ψ (eiAqei) ⊂ B is a commutative k-algebra and
k is algebraically closed. Therefore, dimk eiV ≤ 1 by Schur’s lemma. �

LEMMA 6.3. Let V be a simple Aq-module, and let i ∈ Q0 be a vertex for which eiV �=
0. Suppose s ∈ eiAqei. Then, sV = 0 if and only if s ∈ q. Consequently, annR V = m0.

Proof.

(i) Suppose s ∈ eiAei satisfies s ∈ q. We claim that sV = 0.
Indeed, let v ∈ eiV be nonzero. Then, dimk eiV = 1 by Lemma 6.2. Thus,
there is some c ∈ k such that (s − cei)eiV = 0. Assume to the contrary that
c is nonzero. Then, s − c ∈ S \ q. Therefore,

v = s − cei

s − c
v = 1

s − c
(s − cei)v = 0,

contrary to our choice of v.
(ii) Conversely, suppose s ∈ eiAei satisfies sV = 0. Assume to the contrary that

s �∈ q; then, s−1 ∈ Sq. Whence

eiV = s
s

eiV = 1
s

sV = 0,

contrary to our choice of vertex i.
�

DEFINITION 6.4. Let A be a ring with a complete set of orthogonal idempotents
{e1, . . . , ed}. We say an element p ∈ ejAei is vertex invertible if there is an element
p∗ ∈ eiAej such that

p∗p = ei and pp∗ = ej.

Denote by (ejAei)◦ the set of vertex invertible elements in ejAei.

For an arrow a ∈ Qt
1, denote by δa the unique arrow with h(δa) = t(a); in particular,

δa ∈ Q∗
1.

LEMMA 6.5. A path p ∈ A is vertex invertible in Aq if and only if xD � p and the
leftmost arrow subpath of p is not an arrow δa ∈ Q∗

1 for which xD | a.

Proof.

(i) First suppose xD | p. Assume to the contrary that p has vertex inverse p∗.
Then,

p∗ =
m∑

j=1

s−1
j pj (7)
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for some sj ∈ S \ q and pj ∈ et(p)Aeh(p). In particular,

1 = pp∗ = p
∑

j

s−1
j pj.

Whence

s1 · · · sm = p
∑

j

(
s1 · · · ŝj · · · sm

)
pj ∈ B.

Thus, xD | s1 · · · sm since xD | p. Therefore, xD | sj for some j. But then sj ∈ q,
a contradiction to our choice of sj.

(ii) Now suppose the leftmost arrow subpath of p is an arrow δa ∈ Q∗
1 for which

xD | a. If p is a cycle, then a is the rightmost arrow subpath of p. Whence
xD | p. Thus, p is not vertex invertible by Claim (i).
So, suppose p is not a cycle, and assume to the contrary that p has vertex
inverse p∗ given by (7). Since p is not a cycle, we have h(p) �= t(p). Thus,
each pj ∈ et(p)Aeh(p) is a k-linear combination of nontrivial paths with tails
at h(p). But since deg+ h(p) = 1, each nontrivial path q ∈ A with tail at h(p)
satisfies xD | q. Therefore, xD divides each pj (in B). Furthermore, xD does
not divide any sj since sj ∈ S \ q. Whence xD | p∗ in BSq. Thus xD | p∗p in
BSq, since p ∈ B. Therefore, xD | 1 in BSq. But then xD is invertible in BSq,
a contradiction.

(iii) Finally, suppose xD � p, and the leftmost arrow subpath of p is not an arrow
δa ∈ Q∗

1 for which xD | a. Then, there is a path q ∈ et(p)Aeh(p) satisfying xD � q,
by Lemma 5.2. Whence pq is a cycle satisfying xD � pq; that is, pq ∈ S \ q.
Furthermore, q has a vertex subpath i for which eiAei = Sei, by Lemma
4.1.4. Thus,

p∗ := q(pq)−1

is in Aq. But then

p∗p = q
pq

p = qp
pq

et(p) = et(p) and pp∗ = p
q

pq
= eh(p)

pq
pq

= eh(p).

Therefore, p is vertex invertible in Aq.
�

LEMMA 6.6. Let V be a simple Aq-module.

(1) If a ∈ Q1 \ Q∗
1 satisfies xD | a, then aV = 0.

(2) If δa ∈ Q∗
1 satisfies xD | a, then δaV = 0.

Proof. Let a ∈ Q1 be an arrow for which xD | a.

(i) First suppose a ∈ Q1 \ (Q∗
1 ∪ Qt

1). We claim that aV = 0. Since a ∈ Q1 \
(Q∗

1 ∪ Qt
1), there are paths

s ∈ eh(a)Aet(a) and t ∈ et(a)Aeh(a)

such that xD � s and xD � t, by Lemma 5.2. In particular, xD � st. Whence

st ∈ S \ q.
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Thus,

a = st
st

a = s
st

ta ∈ Aqqet(a).

But ta ∈ qet(a) ∩ et(a)Aet(a). Therefore, a annihilates V by Lemma 6.3.
(ii) Now suppose a ∈ Qt

1. Set δ := δa ∈ Q∗
1.

(ii.a) We first claim that aδV = 0. By assumption (B), deg+ t(δ) ≥ 2 and
deg+ h(a) ≥ 2. Thus, there are paths

s ∈ eh(a)Aet(δ) and t ∈ et(δ)Aeh(a)

such that xD � s and xD � t, by Lemma 5.2. Whence

st ∈ S \ q.

Thus,

aδ = st
st

aδ = s
st

taδ ∈ Aqqet(δ).

Therefore, aδ annihilates V by Lemma 6.3.
(ii.b) We claim that aV = 0. If et(a)V = 0, then aV = 0, so suppose there is some

nonzero v ∈ et(a)V . Assume to the contrary that av �= 0. Then, since V is
simple and deg+ t(a) = 1, there is some p ∈ Aq such that

w := δpav ∈ et(a)V

is nonzero. By Claim (ii.a), aw = (aδ)(pav) = 0. Furthermore, dimk et(a)V =
1 by Lemma 6.2. Thus, since v,w ∈ et(a)V are both nonzero, there is some
c ∈ k∗ such that cw = v. But then

0 �= av = acw = c(aw) = 0,

which is not possible.
(ii.c) Finally, we claim that δV = 0. Assume to the contrary that there is some

v ∈ et(δ)V such that δv �= 0. By Claim (2.i), aδv = 0. But again a is the only
arrow with tail at t(a), and δ is not vertex invertible by Lemma 6.5. Therefore,
V is not simple, a contradiction.

�
For each qD ∈ Spec S minimal over m0, set

εD := 1A −
∑

a∈Qt
1 : xD|a

et(a).

THEOREM 6.7. Let q = qD ∈ Spec S be minimal over m0 ∈ Max R. Suppose there are
n arrows a1, . . . , an ∈ Qt

1 such that xD | a	. Then, there are precisely n + 1 non-isomorphic
simple Aq-modules:

V0 := AqεD/AqqεD ∼= (
Sq/q

)
εD, (8)
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and for each 1 ≤ 	 ≤ n, a vertex simple

V	 := ket(a	)
∼= (Rm0/m0) et(a	). (9)

Proof. Let V be a simple Aq-module. Let a ∈ Qt
1 be such that xD | a. Then, either

V is the vertex simple V = ket(a), or et(a) annihilates V , by Lemma 6.6.
So, suppose et(a)V = 0 for each a ∈ Qt

1 satisfying xD | a. We want to show that the
sequence of left Aq-modules

0 → AqqεD −→ AqεD
g−→ V → 0

is exact.
We first claim that g is onto. Indeed, since V �= 0, there is a vertex summand ei of

εD for which eiV �= 0. Let ej be an arbitrary vertex summand of εD. Then, there is a
path p ∈ ejAei satisfying xD � p, by Lemma 5.2. Thus, since ej is a summand of εD, p
is vertex invertible by Lemma 6.5. Whence ejV �= 0 since eiV �= 0. Therefore, g is onto
by Lemma 6.2.

We now claim that the kernel of g is AqqεD. Let b ∈ εDAεD be an arrow satisfying
bV = 0. Then, there is a path p ∈ et(b)Aeh(b) satisfying xD � p, by Lemma 5.2. Thus,
since et(b) and eh(b) are vertex summands of εD, p is vertex invertible in Aq by Lemma
6.5. Whence

b = (p∗p)b = p∗(pb) ∈ AqqεD.

Thus, the AqεD-annihilator of V is AqqεD, by Lemma 6.2.
Therefore, V = V0. The simple modules V0, . . . , Vn exhaust the possible simple

Aq-modules, again by Lemma 6.2. �
If p ∈ Aq is a concatenation of paths and vertex inverses of paths in A, then we

call p a path.

LEMMA 6.8. Suppose i ∈ Q0 satisfies eiεD �= 0. Then, for each j ∈ Q0, the corner
rings ejAqei and eiAqej are cyclic free Sq-modules. Consequently, Aqei and eiAq are free
Sq-modules.

Proof. Suppose ei is a vertex summand of εD. Then, either eiAei = Sei, or i = t(a)
for some a ∈ Qt

1 with xD � a, by Lemma 4.1.4. In the latter case, a is vertex invertible
by Lemma 6.5, and eh(a)Aeh(a) = Seh(a) by Lemma 4.1.4. Thus, in either case, we have

eiAqei = Sqei.

Therefore, Aqei and eiAq are Sq-modules.

(i) We claim that for each j ∈ Q0, ejAqei is generated as an Sq-module by a
single path; a similar argument holds for eiAqej.

(i.a) First suppose j is not the tail of an arrow a ∈ Qt
1 for which xD | a. Since

D ∈ S ′ is a simple matching of Q′, there is path s from i to j for which xD � s
(that is, ψ(s) is supported on Q′ \ D). Thus, s has a vertex inverse s∗ ∈ eiAqej,
by Lemma 6.5.
Let t ∈ ejAqei be arbitrary. Then, s∗t is in eiAqei = Sqei. Whence

t = ss∗t ∈ sSq.
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Therefore, ejAqei = sSq.
(i.b) Now suppose j is the tail of an arrow a ∈ Qt

1 for which xD | a; in particular,
j �= i. Since D ∈ S ′ is a simple matching of Q′, there is path s from i to t(δa)
for which xD � s. Thus, s has a vertex inverse s∗ ∈ eiAqet(δa), again by Lemma
6.5.
Let t ∈ ejAqei be arbitrary. Since j �= i and deg+ j = 1, there is some r ∈
et(δa)Aqei satisfying t = δar. Whence

t = δar = δass∗r ∈ δasSq.

Therefore, ejAqei = δasSq.
(ii) Finally, we claim that ejAqei is a free Sq-module; a similar argument holds

for eiAqej. By Claim (i), there is a path s such that

ejAqei = sSq.

Furthermore, the Sq-module homomorphism

Sq → sSq, t �→ st,

is an isomorphism since Sq and s belong to the domain Frac B, and τ̄ψ is
injective.

�
LEMMA 6.9. The Aq-module V0 satisfies

pdAq
(V0) ≤ pdSq

(
Sq/q

)
.

Proof. Consider a minimal free resolution of Sq/q over Sq,

· · · → S⊕n1
q → Sq → Sq/q → 0.

Set ε := εD. By Lemma 6.8, Aqε is a free Sq-module. Thus, Aqε is a flat Sq-module,
that is, the functor Aqε ⊗Sq

− is exact. Therefore, the sequence of left Aq-modules

· · · → Aqε ⊗ S⊕n1
q → Aqε ⊗ Sq → Aqε ⊗ Sq/q → 0 (10)

is exact. Each term is a projective Aq-module since

Aqε ⊗Sq

(
S⊕ni

q

) ∼= (
Aqε

)⊕ni
.

Furthermore, there is a left Aq-module isomorphism

V0 = Aqε/Aqqε ∼= Aqε ⊗Sq
Sq/q.

Therefore, (10) is a projective resolution of V0 over Aq of length at most
pdSq

(
Sq/q

)
. �

LEMMA 6.10. The local ring Sq is regular.

Proof. S is normal since S is isomorphic to the centre of the (noetherian) NCCR
A′. In particular, the singular locus of Max S has codimension at least 2. Furthermore,
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the zero locus Z(q) in Max S has codimension 1, by Theorem 5.7.1. Therefore, Z(q)
contains a smooth point of Max S. �

PROPOSITION 6.11. Let q ∈ Spec S be minimal over m0. Then, each simple Aq-module
has projective dimension 1. Consequently, for each simple Aq-module V,

pdAq
(V ) = htS(q).

Proof. Recall the classification of simple Aq-modules given in Theorem 6.7.

(i) Let V0 be the simple Aq-module defined in (8). Then,

1
(I)≤ pdAq

(V0)
(II)≤ pdSq

(
Sq/q

) (III)= htS(q)
(IV)= 1.

Indeed, (I) holds since V0 is clearly not a direct summand of a free Aq-
module; (II) holds by Lemma 6.9; (III) holds by Lemma 6.10; and (IV) holds
by Theorem 5.7.1.

(ii) Fix 1 ≤ 	 ≤ n, and let V	 be the vertex simple Aq-module defined in (9). Set
a := a	. We claim that V	 has minimal projective resolution

0 → Aqeh(a)
·a−→ Aqet(a)

·1−→ ket(a) = V	 → 0. (11)

(ii.a) We first claim that ·a is injective. Suppose b ∈ Aqeh(a) is nonzero. Then,
τ̄ψ (ba) = b · a �= 0 since B is an integral domain. Whence ba �= 0 since τ̄ψ is
injective. Therefore, ·a is injective.

(ii.b) We now claim that im(·a) = ker(·1). Since aV = 0, we have im(·a) ⊆ ker(·1).
To show the reverse inclusion, suppose g ∈ ker(·1); then gV = 0. We may
write

g =
∑

j

s−1
j pj,

where each pj ∈ Aet(a) is a path and sj ∈ S \ q. If pj is nontrivial, then pj = p′
ja

for some path p′
j since deg+ t(a) = 1. Whence

pjV	 = p′
jaV	 = 0.

It thus suffices to suppose that each pj is trivial, pj = et(a). But then g =
s−1et(a) for some s ∈ S \ q. Therefore,

et(a)V	 = sgV	 = 0,

a contradiction.
(ii.c) Finally, (11) is minimal since V	 is clearly not a direct summand of a free

Aq-module.
�

Lemmas 6.12 and 6.14, and Proposition 6.13 are not specific to homotopy algebras.

LEMMA 6.12. Suppose S is a depiction of R. Let p ∈ Spec R and q ∈ ι−1
S/R(p). If

htS(q) = 1, then ghtR(p) = 1.
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Proof. Assume to the contrary that ghtR(p) = 0. Then, there is a depiction S′ of
R and a prime ideal q′ ∈ ι−1

S′/R(p) such that htS′(q′) = 0. Whence q′ = 0 since S′ is an
integral domain. But then q′ ∩ R = 0 �= q ∩ R = p, a contradiction. Therefore,

htS(q) = 1 ≤ ghtR(p) ≤ htS(q).

�
Recall that an ideal I of an integral domain S is a projective S-module if and only

if I is invertible, i.e., there is a fractional ideal J such that IJ = S. In this case, I is a
finitely generated rank one S-module [18, Theorem 19.10].

PROPOSITION 6.13. Let B be an integral domain, and let A = [Aij] ⊂ Md (B) be a tiled
matrix ring with cycle algebra S. Set Q0 := {1, . . . , d}. Suppose that

(1) S is a regular local ring.
(2) There is some i ∈ Q0 such that

(a) Ai = S;
(b) for each j ∈ Q0, Aij is an invertible ideal of S; and
(c) for each j ∈ Q0, either (eiAej)◦ �= ∅, or there is some 	 ∈ Q0 and b ∈ ejAe	

satisfying

ejA = bA ⊕ kej and (eiAe	)◦ �= ∅.

Then,

gldim A ≤ dim S.

Proof. Suppose the hypotheses hold, and set n := dim S. Let V be a left A-module.
We claim that

pdA(V ) ≤ n.

It suffices to show that there is a projective resolution P• of V ,

· · · −→ P2
δ2−→ P1

δ1−→ P0
δ0−→ V → 0,

for which ker δn−1 is a projective A-module [21, Proposition 8.6.iv].

(i) We first claim that there is a projective resolution P• of V so that for each
α ≥ 1,

ker δα = Aei ker δα. (12)

Indeed, fix j ∈ Q0, and recall assumption (2.c). If p ∈ (eiAej)◦, then

ej ker δα = p∗p ker δα = p∗eip ker δα ⊆ Aei ker δα.

Otherwise there is some 	 ∈ Q0 and b ∈ ejAe	 such that ejA = bA ⊕ kej and
(eiAe	)◦ �= ∅. Let p ∈ (eiAe	)◦. Since the sum ejA = bA ⊕ kej is direct, we
may choose P• so that for each α ≥ 1,

δα |ejPα
= b · δα |e	Pα

.
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Furthermore, for nonzero q ∈ e	A, bq �= 0 since B is an integral domain.
Thus,

ej ker δα = b ker δα.

Whence

ej ker δα = b ker δα = bp∗eip ker δα ⊆ Aei ker δα.

Therefore, in either case,

ej ker δα ⊆ Aei ker δα.

(ii) Fix a projective resolution P• of V satisfying (12). We claim that the left
A-module Aei ker δn−1 is projective.
The right A-module eiA is projective, hence flat. Thus, setting ⊗ := ⊗A, the
complex of S-modules

· · · −→ eiA ⊗ P2
1⊗δ2−→ eiA ⊗ P1

1⊗δ1−→ eiA ⊗ P0
1⊗δ0−→ eiA ⊗ V → 0 (13)

is exact. Each term eiA ⊗ P	 is a free S-module since

eiA ⊗ P	
∼= eiA ⊗

⊕
j

(Aej)⊕nj ∼=
⊕

j

(eiA ⊗ Aej)⊕nj

∼=
⊕

j

(eiAej)⊕nj ∼=
⊕

j

(Aij)⊕nj
(I)∼=
⊕

j

S⊕nj ,

where (I) holds by assumption (2.b). Furthermore, eiA ⊗ V is an S-module
since eiAei ∼= S by assumption (2.a). Therefore, (13) is a free resolution of
an S-module. But gldim S = dim S = n by assumption (1). Therefore, the
nth syzygy module of (13) is a free S-module,

ker(1 ⊗ δn−1) ∼= S⊕m.

Since eiA is a flat right A-module, the sequence

0 → eiA ⊗ ker δn−1 −→ eiA ⊗ Pn−1
1⊗δn−1−→ eiA ⊗ Pn−2

is exact. Whence

eiA ⊗ ker δn−1
∼= ker(1 ⊗ δn−1) ∼= S⊕m.

Therefore,

Aei ker δn−1
∼= AeiA ⊗ ker δn−1

∼= AeiS⊕m
(I)∼= A(eiAei)⊕m ∼= (Aei)⊕m,

where (I) holds by assumption (2.a), proving our claim.
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(iii) Finally, ker δn−1 is a projective left A-module by Claims (i) and (ii). Therefore,
AV has projective dimension at most n.

�
LEMMA 6.14. Suppose S is a noetherian integral domain and a k-algebra, and R is a

subalgebra of S. Let p ∈ Spec R. If t ∈ Spec(SRp) is a minimal prime over pRp, then the
ideal t ∩ S ∈ Spec S is a minimal prime over p.

Proof. Suppose that t ∩ S is not a minimal prime over p. We want to show that t

is not a minimal prime over pRp. Since t ∩ S is not minimal, there is some q ∈ Spec S,
minimal over p, such that

p ⊆ q ⊂ t ∩ S. (14)

(i) We claim that q ∩ R = p. Assume to the contrary that there is some a ∈
(t ∩ R) \ p. Then, a−1 ∈ Rp. Whence 1 = aa−1 ∈ tSRp = t, contrary to the
fact that t is prime. Therefore,

t ∩ R ⊆ p. (15)

Consequently,

p ⊆ q ∩ R
(I)
⊆ t ∩ R

(II)
⊆ p,

where (I) holds by (14) and (II) holds by (15). Thus, q ∩ R = p, proving our
claim.

(ii) Now fix a ∈ (t ∩ S) \ q, and assume to the contrary that a ∈ qRp. Then, there
is some b ∈ q and c ∈ R \ p such that a = bc−1. In particular, ac = b ∈ q.
Whence c ∈ q since c ∈ R ⊆ S and q is prime. Thus,

c ∈ q ∩ R
(I)= p,

where (I) holds by Claim (i). But c �∈ p, a contradiction. Whence a ∈ t \ qRp.
Thus,

pRp ⊆ qRp ⊂ t.

Furthermore, qRp is a prime ideal of SRp. Therefore, t is a not a minimal
prime over p.

�
Again let A be a nonnoetherian homotopy algebra satisfying assumptions (A) and

(B). Recall that the centre and cycle algebra of Am0 := A ⊗R Rm0 are isomorphic to
Rm0 and SRm0 , respectively.

THEOREM 6.15. Am0 is a noncommutative desingularization of its centre.
Furthermore, for each t ∈ Spec(SRm0 ) minimal over t ∩ Rm0 ,

gldim At = dim(SRm0 )t = dim St∩S.

Proof. By Lemma 6.14 (with p = m0), it suffices to consider prime ideals q ∈ Spec S
that are minimal over m0.
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(i) Am0 is cycle regular. Let q ∈ Spec S be minimal over m0, and let V be a simple
Aq-module. The hypotheses of Proposition 6.13 hold: condition (1) holds
by Lemma 6.10; (2.a) holds by Lemma 4.1.4; (2.b) holds by Lemma 6.8; and
(2.c) holds by Lemma 6.5. Thus,

1
(I)≤ gldim Aq

(II)≤ dim Sq = htS(q)
(III)= 1

(IV)= ghtR(m0)
(V)= pdAq

(V ).

Indeed, (I) and (V) hold by Proposition 6.11; (II) holds by Proposition 6.13;
(III) holds by Theorem 5.7.3; and (IV) holds by Lemma 6.12. Therefore, Am0

is cycle regular.
(ii) Am0 is a noncommutative desingularization. By [5, Corollary 2.14.1], the

(noncommutative) function fields of A and R, and hence Am0 and Rm0 , are
Morita equivalent,

A ⊗R Frac R ∼ Frac R.

(iii) Finally, suppose q ∈ Spec S is minimal over q ∩ R. We claim that gldim Aq =
dim Sq. By Theorem 5.7.2, either q = qD for some D ∈ S ′, or q = 0. The case
q = qD was shown in Claim (i), so suppose q = 0.

We first claim that for each i ∈ Q0,

eiAqei = (Frac S)ei. (16)

Indeed, let g ∈ Frac S be arbitrary. Fix j ∈ Q0 for which ejAej = Sej. Since S is a
domain,

ejAqej = Sqej = (Frac S)ej. (17)

Thus, there is an element s ∈ ejAqej satisfying s = g.
Now fix a cycle t2ejt1 ∈ eiAqei that passes through j. Then, t1t2 ∈ ejAqej has a

vertex inverse (t1t2)∗ by (17). Thus, the element

s′ := t2(t1t2)∗st1 ∈ eiAqei

satisfies s′ = s = g. Therefore, (16) holds.
We now claim that for each i, j ∈ Q0, there is a (Frac S)-module isomorphism9

ejAqei ∼= Frac S. (18)

Let s ∈ ejAqei be arbitrary, and fix a cycle t2ejt1 ∈ eiAqei that passes through j. Then,
t1t2 has a vertex inverse (t1t2)∗ by (16). Furthermore, st2 ∈ ejAqej. Thus,

s = (t1t2)∗s(t2t1) ∈ (Frac S)t1.

Whence ejAqei ⊆ (Frac S)t1. Conversely, (16) implies ejAqei ⊇ (Frac S)t1. Thus,

ejAqei = (Frac S)t1.

Furthermore, the (Frac S)-module homomorphism

Frac S → (Frac S)t1, s �→ st1,

9In general, τ̄ψ (ejAei) is not contained in Frac S; otherwise (18) would trivially hold.
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is an isomorphism since t1 and Frac S are in the domain Frac B, and τ̄ψ is injective.
Therefore, (18) holds.

It follows from (16) and (18) that

Aq
∼= Md (Frac S).

Thus, Aq is a semisimple algebra. Therefore,

gldim Aq = 0 = dim(Frac S) = dim Sq.

�

7. Local endomorphism rings. Recall that A is a nonnoetherian homotopy algebra
satisfying assumptions (A) and (B) given in Section 4, unless stated otherwise. For
a ∈ Q1, recall the ideal

ma := τ̄ψ (et(a)Aa) ⊂ S

from Proposition 5.5. Given a simple matching D ∈ S ′ for which q := qD is a minimal
prime over m0, set

mD :=
⋂

a∈Qt
1 : xD|a

ma and R̃ := (k + mD)mD
+ qSq.

LEMMA 7.1. Let D ∈ S ′ be a simple matching for which q := qD is a minimal prime
over m0, and let a ∈ Q1. If xD | a, then

maSq = qSq = σSq.

We note that the relation maSq = qSq is nontrivial since if a �= xD, then q �⊆ ma in
general; that is, there may be a cycle s for which xD | s but a � s.

Proof. Suppose xD | a. Then,

σSq ⊆ τ̄ψ (et(a)Aa)Sq = maSq ⊆ qSq

(I)= σSq,

where (I) holds by Proposition 5.6. �

PROPOSITION 7.2. Let D ∈ S ′ be a simple matching for which q := qD is a minimal
prime over m0. The centre Z(Aq) of Aq is isomorphic to the subalgebra

R̃ := (k + mD)mD + qSq =
⋂

a∈Qt
1

τ̄ψ (et(a)Aqet(a)) ⊂ Sq
∼= Z(A′

q).

Proof. Set

Qt
1 ∩ D := Qt

1 ∩ ψ−1(D) = {a ∈ Qt
1 : xD | a}.
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We claim that

Z(Aq)
(I)∼= ⋂

i∈Q0
τ̄ψ (eiAqei)

(II)= ⋂
a∈Qt

1
τ̄ψ (et(a)Aqet(a))

(III)= ⋂
a∈Qt

1

(
(k + ma)q∩(k+ma) + maSq

)
(IV)= ⋂

a∈Qt
1∩D

(
(k + ma)ma + qSq

)
(V)= ⋂

a∈Qt
1∩D(k + ma)ma + qSq

(VI)= (k + ∩a∈Qt
1∩Dma)

((
k + ∩a∈Qt

1∩Dma
) \ ∪a∈Qt

1∩Dma
)−1 + qSq

= (k + mD)mD + qSq

= R̃.

Indeed, (I) holds by Lemma 4.1.2 and (II) holds by Lemma 4.1.4.
To show (III), suppose a ∈ Qt

1. Recall the notation Ai := τ̄ψ (eiAei). Then,

At(a) = k + ma and Ah(a) = S.

Thus, by the definition of cyclic localization,

τ̄ψ

(
et(a)Aqet(a)

) = At(a)
q∩At(a) +

∑
qp∈et(a)Aet(a)

a nontrivial cycle

q Ah(p)
q∩Ah(p) p

= (k + ma)q∩(k+ma) +
∑

q∈et(a)Aeh(a)
a path

q Sq a

= (k + ma)q∩(k+ma) + maSq.

To show (IV), note that for a ∈ Qt
1,

ma ⊆ q if and only if a ∈ ψ−1(D).

Furthermore, if ma ⊆ q, then maSq = qSq by Lemma 7.1. Otherwise, if ma �⊆ q, then
maSq = Sq.

(V) holds since for a ∈ Qt
1 ∩ D,

ma(k + ma)ma ⊆ qSq.

Finally, to show (VI), recall that each ma is generated over S by the τ̄ψ -images of a
set of nontrivial cycles, and thus by a set of nonconstant monomials in S. Therefore,
for any a, b ∈ Qt

1, we have (k + ma) ∩ mb = ma ∩ mb. �

DEFINITION 7.3. We say two arrows a, b ∈ Q1 are coprime if a and b are coprime
in B; that is, the only common factors of a and b in B are the units.

LEMMA 7.4. Suppose the arrows in Qt
1 are pairwise coprime, and let a ∈ Qt

1. Consider
a simple matching D ∈ S ′ for which xD | a. Set q := qD and i := t(a). Then,

Z(Aq) = R̃ 1 = Ai
q 1 ∼= eiAqei.
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Proof. Suppose the arrows in Qt
1 are pairwise coprime. Then, each arrow in Qt

1 \ {a}
is vertex invertible in Aq by Lemma 6.5. Thus, for each j ∈ Q0 \ {i},

ejAqej = Sqej,

by Lemma 4.1.4. The lemma then follows by Proposition 7.2. �
In the following two lemmas, let B be an integral domain, and let A = [

Aij
] ⊂

Md (B) be a tiled matrix ring. Fix i, j, k ∈ {1, . . . , d}. For p ∈ eiAej, denote by p the
element of B satisfying p = peij.

LEMMA 7.5. Suppose

Aij �= 0, Aji �= 0, (19)

and

Ai1d = Z(A). (20)

Then, for each f ∈ HomZ(A)
(
ejAei, ekAei

)
, there is some h ∈ Frac B such that for each

p ∈ ejAei, we have f (p) = hp.

Proof. Let f ∈ HomZ(A)
(
ejAei, ekAei

)
. By assumption (19), there is some 0 �= q ∈

eiAej. By assumption (20), for p1, p2 ∈ ejAei,

q p1f (p2) = p1qf (p2) = f ((p1q)p2) = f (p1(qp2)) = f ((p2q)p1) = p2qf (p1) = q p2f (p1).

Thus, since B is an integral domain,

p1f (p2) = p2f (p1).

In particular, if p1 and p2 are nonzero, then

f (p1)
p1

= f (p2)
p2

=: h ∈ Frac B.

Therefore, for each p ∈ ejAei, we have f (p) = hp. �
LEMMA 7.6. Suppose (19) and (20) hold. If there is some p ∈ ejAei such that for

each f ∈ HomZ(A)
(
ejAei, ekAei

)
, there is some r ∈ ekAej satisfying

f (p) = rp, (21)

then

HomZ(A)
(
ejAei, ekAei

) ∼= ekAej.

Similarly, if there is some p ∈ eiAej such that for each f ∈ HomZ(A)
(
eiAej, eiAek

)
, there

is some r ∈ ejAek satisfying f (p) = pr, then

HomZ(A)
(
eiAej, eiAek

) ∼= ejAek.
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Proof. Fix f ∈ HomZ(A)
(
ejAei, ekAei

)
. By Lemma 7.5, there is some h ∈ Frac B

such that for each p ∈ ejAei, we have

f (p) = hp. (22)

Let p′ be as in (21). Then, there is some r ∈ ekAej such that f (p′) = rp′. Whence r = h by
(22), since B is an integral domain. Thus, r = hekj. Therefore, for each p ∈ ejAei, we have
f (p) = rp by (22). Consequently, there is a surjective Z(A)-module homomorphism

ekAej � HomZ(A)
(
ejAei, ekAei

)
r �→ (p �→ rp).

(23)

To show injectivity, suppose r, r′ ∈ ekAej are sent to the same homomorphism in
HomZ(A)

(
ejAei, ekAei

)
. Then, for each p ∈ ejAei,

rp = r′p.

But ejAei �= 0 by assumption (19). Whence r = r′ since B is an integral domain.
Therefore, (23) is an isomorphism.

Similarly, there is a Z(A)-module isomorphism

ejAek
∼−→ HomZ(A)

(
eiAej, eiAek

)
r �→ (p �→ pr).

�
Again let A be a nonnoetherian homotopy algebra satisfying assumptions (A) and

(B). Furthermore, suppose the arrows in Qt
1 are pairwise coprime. Fix a ∈ Qt

1, and
consider a simple matching D ∈ S ′ such that xD | a. Set q := qD and i := t(a).

LEMMA 7.7. If j ∈ Q0 is a vertex distinct from i and f ∈ HomR̃
(
ejAqei, eiAqei

)
, then

f (ejAqei) ⊆ m0R̃.

Proof. Fix a vertex j �= i ∈ Q0 and an R̃-module homomorphism f : ejAqei →
eiAqei. We may apply Lemma 7.5 to f : assumption (19) holds since there is a path
between any two vertices of Q, and assumption (20) holds by Lemma 7.4. Thus, there
is some h ∈ Frac B such that for each p ∈ ejAqei, we have

f (p) = hp. (24)

Assume to the contrary that there is some p ∈ ejAqei such that f (p) = cei + q,
where 0 �= c ∈ k and q ∈ m0R̃. By (24),

hp = f (p) = c + q.

Whence h = (c + q)p−1.
By assumption (A), there is a path t′ ∈ ejAeh(a) such that (i) xD � t′, and (ii) t′a is

not a scalar multiple of p. Set t := t′a. Then,

ctp−1 + qtp−1 = (c + q)tp−1 = ht
(I)= f (t) ∈ R̃

(II)= τ̄ψ (eiAqei), (25)
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where (I) holds by (24) and (II) holds by Lemma 7.4. Furthermore, R̃ is a unique
factorization domain since it is the localization of a subalgebra of the polynomial ring
B on a multiplicatively closed subset. Thus, since c �= 0, (25) implies

tp−1 ∈ τ̄ψ (eiAqei). (26)

Now every element g ∈ τ̄ψ (eiAqei) is of the form

g = d +
m∑

	=1

xn	

D u	v
−1
	 , (27)

where d ∈ k, and u	, v	 are monomials in B not divisible by xD. Moreover, for each 	,
we have n	 ≥ 1, by Lemma 6.5. The element tp−1 is of the form (27), with m ≥ 1 since
t is not a scalar multiple of p. But each n	 ≤ 0 since xD � t′, contrary to (26). �

PROPOSITION 7.8. For each j, k ∈ Q0,

HomR̃
(
ejAqei, ekAqei

) ∼= ekAqej and HomR̃
(
eiAqej, eiAqek

) ∼= ejAqek.

Proof. Suppose the hypotheses hold. We claim that Aq satisfies the assumptions of
Lemma 7.6, with i = t(a) and arbitrary j, k ∈ Q0.

Indeed, assumption (19) holds since there is a path between any two vertices of Q,
and assumption (20) holds by Lemma 7.4.

To show that the third assumption (21) holds, fix j, k ∈ Q0. Consider a path p ∈
ejAei for which x2

D � p; such a path exists by assumption (A), and since D is a simple
matching of A′. Let f ∈ HomR̃

(
ejAqei, ekAqei

)
be arbitrary. We want to show that

there is an r ∈ ekAqej such that f (p) = rp.
Write f (p) = ∑

	 c	q	 as an R̃-linear combination of paths q	 ∈ ekAei. To show
that f (p) = rp, it suffices to show that for each path q	, there is a path r	 such that

q	 = r	p,

since then we may take r = ∑
	 c	r	. It therefore suffices to assume that f (p) = q is a

single path.
Let p+ and q+ be lifts of p and q to the covering quiver Q+ with coincident tails,

t(p+) = t(q+) ∈ Q+
0 . Let s ∈ ekAej be a path for which s+ has no cyclic subpaths in Q+

and

t(s+) = h(p+) and h(s+) = h(q+).

Then by [7, Lemma 4.3], there is some n ∈ � such that

sp = qσ n.

(i) First suppose n ≤ 0. Set

r := σ n
k s.

Then, rp = q. Thus rp = q since τ̄ψ is injective.
(ii) So, suppose n ≥ 1; without loss of generality we may assume n = 1.

https://doi.org/10.1017/S0017089517000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000209


476 CHARLIE BEIL

(ii.a) Further suppose i �= k or i = k �= j. Then, q is a nontrivial path: if i �= k,
then q is clearly nontrivial, and if i = k �= j, then q is nontrivial by Lemma
7.7.
Since deg+ i = 1, xD divides the τ̄ψ -image of each nontrivial path in Aei.
Whence xD | q. Thus, x2

D | qσ = sp. But x2
D � p by our choice of p. Therefore,

xD | s. Consequently, s factors into paths s = s3s2s1, where s2 is a subpath
of a unit cycle satisfying xD | s2. Let b be one of the two paths for which bs2

is a unit cycle. Then, xD � b since xD | s2. Thus, b has vertex inverse

b∗ ∈ et(s3)Aqeh(s1),

by Lemma 6.5. Set

r := s3b∗s1.

Then, since b∗ = b−1, we have

rp = s3b∗s1p = b−1s3s1p = s2

σ
s3s1p = sp

σ
= q.

Therefore, rp = q since τ̄ψ is injective, proving our claim.
(ii.b) Finally, suppose i = j = k. Then, rp = f (p) holds by taking p = ei and r =

f (ei).

�

THEOREM 7.9. Suppose the arrows in Qt
1 are pairwise coprime. Let q ∈ Spec S be a

minimal prime over q ∩ R = m0. Then, there is some i ∈ Q0 for which

Aq
∼= EndZ(Aq)(Aqei).

Furthermore, Aqei is a reflexive Z(Aq)-module.

Proof. Suppose the hypotheses hold. By Theorem 5.7.2, there is some D ∈ S ′ such
that q = qD. Since the arrows in Qt

1 are pairwise coprime, there is a unique arrow
a ∈ Qt

1 for which xD | a. Set

i := t(a) and ε := εD = 1A − ei.

For brevity, denote HomR̃(−,−) by R̃(−,−). There are algebra isomorphisms

Aq
∼=

[
eiAqei eiAqε

εAqei εAqε

]
(I)∼=
[

R̃(eiAqei, eiAqei) R̃(εAqei, eiAqei)

R̃(eiAqei, εAqei) R̃(εAqei, εAqei)

]
(II)∼= EndZ(Aq)(eiAqei ⊕ εAqei)
= EndZ(Aq)(Aqei),

where (I) holds by Proposition 7.8 and (II) holds by Lemma 7.4.
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Furthermore, Aqei is a reflexive Z(Aq)-module:

Z(Aq)(Z(Aq)(Aqei, Z(Aq)), Z(Aq))
(I)= ((Aqei, eiAqei), eiAqei)
(II)= (eiAq, eiAqei)
(III)= Aqei,

where (I) holds by Lemma 7.4, and (II) and (III) hold by Proposition 7.8. �
THEOREM 7.10. Let A be a nonnoetherian homotopy algebra satisfying assumptions

(A) and (B), and suppose the arrows in Qt
1 are pairwise coprime. Then, Am0 is a

nonnoetherian NCCR.

Proof. Am0 is nonnoetherian and an infinitely generated module over its
nonnoetherian centre by [9, Section 3]; has a normal Gorenstein cycle algebra SRm0 by
Proposition 5.9; is cycle regular by Theorem 6.15; and for each prime q ∈ Spec(SRm0 )
minimal over m0, the cyclic localization Aq is an endomorphism ring of a reflexive
Z(Aq)-module by Theorem 7.9. �

7.1. Examples.

EXAMPLE 7.11. Set

B := k [x, y, z, w] , S := k [xz, yz, xw, yw] ∼= k [a, b, c, d] /(ad − bc),

and

I := (x, y)S, J := (z, w)S, m0 := zI, R := k + m0.

Consider the contraction of homotopy algebras given in Figure 3. Each arrow is labeled
by its τ̄ψ/τ̄ -image in B. The centre and cycle algebra of A are R and S, respectively.

In this example, the maximal ideal m0 ∈ Max R at the origin is a height one prime
ideal of S.10 Therefore, m0 itself is the only minimal prime of S over m0. Furthermore,
the cyclic localization of A at m0 is

Am0 =
〈⎡⎣Sm0 I zI

J Sm0 zS
S I Rm0

⎤
⎦〉 =

⎡
⎣ Sm0 ISm0 zISm0

JSm0 Sm0 zSm0

Sm0 ISm0 Rm0 + m0Sm0

⎤
⎦ ,

with centre Z(Am0 ) ∼= Rm0 + m0Sm0 .

EXAMPLE 7.12. Set

B := k [x, y, z, w] , S := k [xz, yz, xw, yw] ,

and

I := (x, y)S, J := (z, w)S, m0 := zwI2, R := k + m0.

10Note that the ideals xzS and yzS, each of which is properly contained in zI , are not prime since (xw) · (yz) ∈
xzS and (xz) · (yw) ∈ yzS.
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Q :

2 1 2

1 2 1

3 3

x y

y x

1

z

1

z

w
ψ−→ Q :

2 1 2

1 2 1

x y

y x

z zw

1 2

3

1 2

A =

⎡
⎢⎢⎣

S I zI

J S zS

S I R

⎤
⎥⎥⎦ ∼= EndR(Ae3) A =

S I

J S

∼= EndS(A ei).

Figure 3. (Colour online) (Example 7.11) The homotopy algebra A is a
nonnoetherian NCCR. The quivers Q and Q′ on the top line are each drawn on a

torus, and the contracted arrow of Q is drawn in green.

Consider the contraction of homotopy algebras given in Figure 1. As in Example 7.11,
the centre and cycle algebra of A are R and S respectively.

The minimal primes in S over m0 are

q1 := zI and q2 := wI,

each of height 1. The cyclic localizations of A at q1 and q2 are

Aq1 =

⎡
⎢⎢⎣

Sq1 ISq1 q1Sq1 Sq1

wSq1 Sq1 zSq1 wSq1

Sq1 ISq1 (k + q1)q1 + q1Sq1 Sq1

Sq1 ISq1 q1Sq1 Sq1

⎤
⎥⎥⎦ ∼= EndZ(Aq1 )(Aq1 e3)

and

Aq2 =

⎡
⎢⎢⎣

Sq2 ISq2 Sq2 q2Sq2

zSq2 Sq2 zSq2 wSq2

Sq2 ISq2 Sq2 q2Sq2

Sq2 ISq2 Sq2 (k + q2)q2 + q2Sq2

⎤
⎥⎥⎦ ∼= EndZ(Aq2 )(Aq2 e4),

with respective centres

Z(Aq1 ) ∼= (k + q1)q1 + q1Sq1 and Z(Aq2 ) ∼= (k + q2)q2 + q2Sq2 .

(Note that wSq1 = JSq1 since z = w xz
xw

, and similarly zSq2 = JSq2 .) In contrast to
Example 7.11, A itself is not an endomorphism ring, although its cyclic localizations
are.
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