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Multiple Nontrivial Solutions for Doubly
Resonant Periodic Problems

Nikolaos S. Papageorgiou and Vasile Staicu

Abstract. We consider semilinear periodic problems with the right-hand side nonlinearity satisfying a

double resonance condition between two successive eigenvalues. Using a combination of variational

and degree theoretic methods, we prove the existence of at least two nontrivial solutions.

1 Introduction

In this paper we consider the following periodic problem

(1.1)

{
−x ′ ′(t) = f (t, x(t)) a.e. on T := [0, b],

x(0) = x(b), x ′(0) = x ′(b).

The goal of this work is to establish the existence of multiple nontrivial solutions for

problem (1.1). When the nonlinearity of f can grow linearly and asymptotically at

±∞, the slope,
f (z,x)

x
, stays between two successive distinct eigenvalues of the negative

scalar Laplacian with periodic boundary conditions, and resonance is possible at both

ends of the spectral interval (double resonance).

In the past the problem initially was investigated under uniform and nonuni-

form nonresonance conditions by Iannacci–Nkashama [9], Habets–Metzen [7], and

Fonda–Mawhin [5]. The doubly resonant case was studied by Fabry–Fonda [4] and

Omari–Zanolin [13]. Both works proved existence theorems, but did not address the

question of existence of multiple solutions for the doubly resonant problem. We also

mention the recent work of Kyritsi–Papageorgiou [10], which proved an existence

theorem for a doubly resonant periodic problem driven by the scalar p-Laplacian

and with a nonsmooth potential function.

In this paper, using a combination of variational and degree theoretic methods,

we prove the existence of at least two nontrivial solutions for problem (1.1) under a

double resonance condition.
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2 Background and Hypotheses

Consider the linear eigenvalue problem:

(2.1)

{
−x ′ ′(t) = λx(t) a.e. on T := [0, b],

x(0) = x(b), x ′(0) = x ′(b).

It is well known that problem (2.1) has a nontrivial solution x ∈ C1(T) if and only

if

λ = λk =

( 2πk

b

) 2

, k ≥ 0.

These are the eigenvalues of the negative scalar Laplacian under periodic boundary

conditions, (−△,W
1,2
per(0, b)) for short, where

W 1,2
per(0, b) := {x ∈ W 1,2(0, b) : x(0) = x(b)}.

By E(λk) we denote the two-dimensional eigenspace corresponding to the eigenvalue

λk. Of course, we have the orthogonal direct sum decomposition

W 1,2
per(0, b) = E(λk) ⊕V with V = E(λk)⊥,

and so for every x ∈ W
1,2
per(0, b) we can write, in a unique way,

x = x0 + x̂, with x0 ∈ E(λk) and x̂ ∈ V.

If g ∈ L∞(T)+ := {g ∈ L∞(T) : g(t) ≥ 0 a.e. on T} and for some k ≥ 0 we have

λk ≤ g(t) ≤ λk+1 a.e. on T and the inequalities are strict on sets (not necessarily the

same) of positive measure, then the linear problem

{
−x ′ ′(t) = g(t)x(t) a.e. on T := [0, b],

x(0) = x(b), x ′(0) = x ′(b).

has only the trivial solution. (For a more general result in this direction, see[1].)

The hypotheses on the nonlinearity f (t, x) are the following:

(H f ) f : T × R → R is a function such that

(i) for all x ∈ R, t → f (t, x) is measurable;

(ii) for almost all t ∈ T, f (t, · ) ∈ C1(T);

(iii) for every M > 0, there exists aM ∈ L1(T)+ such that

| f (t, x)| ≤ aM(t) for a.a. t ∈ T and all |x| ≤ M;

(iv) there exists k ≥ 0 such that

λk ≤ lim inf
|x|→∞

f (t, x)

x
≤ lim sup

|x|→∞

f (t, x)

x
≤ λk+1

uniformly for a.a. t ∈ T;
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(v) when xn ∈ W
1,2
per(0, b), ‖xn‖ → ∞, and

‖x0
n‖

‖xn‖
→ 1, we have

(a) if x0
n ∈ E(λk), there exist γ1 > 0 and n1 ≥ 1 such that

∫ b

0

( f (t, xn(t)) − λkxn(t))x0
n(t) dt ≥ γ1 > 0 for all n ≥ n1,

(b) if x0
n ∈ E(λk+1), there exist γ2 > 0 and n2 ≥ 1 such that

∫ b

0

( f (t, xn(t)) − λk+1xn(t))x0
n(t) dt ≤ −γ2 < 0 for all n ≥ n2;

(vi) there exist δ > 0 and w0 ∈ Rr{0} such that, if F(t, x) =

∫ x

0
f (t, r)dr, then

F(t, x) ≤ 0 for a.a. t ∈ T and all |x| ≤ δ

and ∫ b

0

F(t, w0) dt ≥ 0.

Remark. Hypothesis (H f )(iv) is the double resonance condition. Hypothesis (H f )(v)

is a generalization of the well-known Landesman–Lazer sufficiency conditions (LL-

conditions for short) for the solvability of resonant problems (see [11, 12]). We find

analogous conditions in the works of Fabry–Fonda [4] and Iannacci–Nkashama [9].

We consider now an example. For simplicity we drop the t-dependence on f and

consider f (x) = λkx + g(x), with g ∈ C1(R). Then

F(x) = λkx2 + G(x), with G(x) =

∫ x

0

g(s) ds.

Assume that near the origin G(x) = x4 − sin x and for |x| large, G(x) = c|x|
3
2 , c > 0.

Such nonlinearity f ( · ) satisfies hypotheses (H f ). Then the equation

− x ′ ′(t) = λkx(t) + g(x(t)) a.e. on T := [0, b],

x(0) = x(b), x ′(0) = x ′(b).

can serve as a model equation for our work.

The Euler functional ϕ : W
1,2
per(0, b) → R for problem (1.1) is defined by

ϕ(x) =

1

2
‖x ′‖2

2 −

∫ b

0

F(t, x(t)) dt, for all x ∈ W 1,2
per(0, b).

We have that ϕ ∈ C2(W
1,2
per(0, b)). In fact, if by 〈 · , · 〉 we denote the duality brackets

for the pair (W
1,2
per(0, b),W

1,2
per(0, b)∗), we have

〈ϕ ′(x), y〉 =

∫ b

0

x ′(t)y ′(t) dt −

∫ b

0

f (t, x(t))y(t) dt
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and

ϕ ′ ′(x)(u, v) =

∫ b

0

u ′(t)v ′(t) dt −

∫ b

0

f ′
x (t, x(t))u(t)v(t) dt,

for all y, u, v ∈ W
1,2
per(0, b).

Finally recall that if H is a Hilbert space and ψ ∈ C1(H), we say that ψ satisfies

the Cerami condition (C-condition for short), if every sequence {xn}n≥1 ⊆ H such

that |ψ(xn)| ≤ M1 for some M1 > 0, all n ≥ 1, and (1 + ‖xn‖)ψ ′(xn) → 0 in H∗ has

a strongly convergent subsequence. This is a compactness condition on ψ, weaker

than the usual PS-condition. It was shown by Bartolo–Benci–Fortunato [3] that this

condition is enough to prove a deformation theorem and from it derive minimax

characterizations of the critical values of ψ (see also [6]).

3 Multiple Solutions

As we already mentioned, we will combine variational and degree theoretic tech-

niques. For the implementation of the variational methods, we need the following

proposition.

Proposition 3.1 If hypotheses (H f ) hold, then ϕ satisfies the C-condition.

Proof We consider a sequence {xn}n≥1 ⊆ W
1,2
per(0, b) such that |ϕ(xn)| ≤ M1 for

some M1 > 0, all n ≥ 1, and (1 + ‖xn‖)ϕ ′(xn) → 0 in W
1,2
per(0, b)∗ as n → ∞. We

will show that {xn}n≥1 ⊆ W
1,2
per(0, b) is bounded.

We argue indirectly. Suppose that the sequence {xn}n≥1 ⊆ W
1,2
per(0, b) is un-

bounded. We may assume that ‖xn‖ → ∞. We set yn =
xn

‖xn‖
, n ≥ 1. By passing to a

suitable subsequence if necessary, we can say that

yn
w

−−→ y in W 1,2
per(0, b) and yn → y in C(T) as n → ∞.

(Recall that W
1,2
per(0, b) is embedded compactly in C(T)). Hypotheses (H f )(iii) and

(iv) imply that

| f (t, x)| ≤ a(t) + c|x| for a.a. t ∈ T, all x ∈ R,

with a ∈ L1(T)+ and c > 0. Hence we have

(3.1)
| f (t, xn(t))|

‖xn‖
≤

a(t)

‖xn‖
+ c|yn(t)| for a.a. t ∈ T,

therefore { f ( · , xn( · ))/‖xn‖}n≥1 ⊆ L1(T) is uniformly integrable. By virtue of the

Dunford–Pettis theorem, we can say that

f ( · , xn( · ))

‖xn‖
w

−−→ h in L1(T) as n → ∞.
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For every ε > 0 and n ≥ 1, we introduce the sets

C+
ε,n =

{
t ∈ T : xn(t) > 0, λk − ε ≤

f (t, xn(t))

xn(t)
≤ λk+1 + ε

}

and

C−
ε,n =

{
t ∈ T : xn(t) < 0, λk − ε ≤

f (t, xn(t))

xn(t)
≤ λk+1 + ε

}
.

Note that xn(t) → ∞ for all t ∈ {y > 0} and xn(t) → −∞ for all t ∈ {y < 0} as

n → ∞. So by virtue of hypothesis (H f )(iv), we have

χ
C+

ε,n
(t) → 1 a.e. on {y > 0} and χ

C
−

ε,n

(t) → 1 a.e. on {y < 0}.

Using the dominated convergence theorem, we obtain

∥∥∥ (1 − χ
C+

ε,n
)

f ( · , xn( · ))

‖xn‖

∥∥∥
L1({y>0})

→ 0

and ∥∥∥ (1 − χ
C
−

ε,n

)
f ( · , xn( · ))

‖xn‖

∥∥∥
L1({y<0})

→ 0.

It follows that

χ
C+

ε,n
( · )

f ( · , xn( · ))

‖xn‖
w

−−→ h in L1({y > 0})

and

χ
C
−

ε,n

( · )
f ( · , xn( · ))

‖xn‖
w

−−→ h in L1({y < 0}).

From the definition of the sets C+
ε,n and C−

ε,n, we have

(λk − ε)yn(t) ≤
f (t, xn(t))

xn(t)
yn(t)

=

f (t, xn(t))

‖xn‖
≤ (λk+1 + ε)yn(t) a.e. on C+

ε,n

and

(λk − ε)yn(t) ≥
f (t, xn(t))

xn(t)
yn(t)

=

f (t, xn(t))

‖xn‖
≥ (λk+1 + ε)yn(t) a.e. on C−

ε,n.

Passing to the limit as n → ∞, using Mazur’s lemma, and recalling that ε > 0 was

arbitrary, we obtain

(3.2) λk y(t) ≤ h(t) ≤ λk+1 y(t) a.e. on {y > 0}
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and

(3.3) λk y(t) ≥ h(t) ≥ λk+1 y(t) a.e. on {y < 0}.

Moreover, from (3.1) it is clear that

(3.4) h(t) = 0 a.e. on {y = 0}.

Combining (3.2), (3.3), and (3.4), we see that h(t) = g(t)y(t) a.e. on T, with

g ∈ L∞(T)+ such that λk ≤ g(t) ≤ λk+1 a.e. on T. Let V : W
1,2
per(0, b) → W

1,2
per(0, b)

be the linear operator defined by

〈V (x), y〉 =

∫ b

0

x ′(t)y ′(t) dt for all x, y ∈ W 1,2
per(0, b).

Clearly V is continuous, i.e., V ∈ L(W
1,2
per(0, b),W

1,2
per(0, b)∗. Also let N : C(T) →

L1(T) be the Nemitsky operator corresponding to the nonlinearity f , i.e.,

N(x)(.) = f (., x(.)) for all x ∈ C(T).

Evidently N is bounded continuous. Moreover, because of the compact embedding

of W
1,2
per(0, b) into C(T) and of L1(T) into W

1,2
per(0, b)∗, we see that N is completely

continuous as a map from W
1,2
per(0, b) into W

1,2
per(0, b)∗.

From the choice of the sequence {xn}n≥1 ⊆ W
1,2
per(0, b), we have

|〈ϕ ′(xn), v〉| ≤ εn for all v ∈ W 1,2
per(0, b) and with εn ↓ 0.

We know that ϕ ′(xn) = V (xn) − N(xn) for all n ≥ 1. So

(3.5)
∣∣∣ 〈V (yn), v〉 −

∫ b

0

N(xn)

‖xn‖
v dt

∣∣∣ ≤
εn

‖xn‖
, n ≥ 1.

Use as a test function v = yn − y ∈ W
1,2
per(0, b). Since

∫ b

0

N(xn)

‖xn‖
(yn − y) dt → ∞ as n → ∞,

from (3.5) it follows that limn→∞〈V (yn), yn − y〉 = 0. Recall that V (yn)
w

−−→ V (y),

so we have limn→∞〈V (yn), yn〉 = 〈V (y), y〉. Hence ‖y ′
n‖2 → ‖y ′‖2. Since y ′

n
w

−−→ y ′

in L2(T), from the Kadec–Klee property of the Hilbert space L2(T), we infer that

y ′
n → y ′ in L2(T). This combined with the fact that yn → y in C(T), implies that

yn → y in W
1,2
per(0, b) and so ‖y‖ = 1. Passing to the limit as n → ∞ in (3.5), we

obtain

〈V (y), v〉 =

∫ b

0

g(t)y(t)v(t) dt for all v ∈ W 1,2
per(0, b).
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Hence

(3.6) −y ′ ′(t) = g(t)y(t) a.e. on T, y(0) = y(b), y ′(0) = y ′(b).

We consider three distinct cases for problem (3.6), depending on the position of the

weight function g ∈ L∞(T)+ in the spectral interval [λk, λk+1].

Case 1: g(t) = λk a.e. on T. From (3.6) it follows that y = y0 ∈ E(λk). So we have

(3.7)
‖x0

n‖

‖xn‖
→ 1

(recall xn = x0
n + x̂n, with x0

n ∈ E(λk), x̂n ∈ V , n ≥ 1). From the choice of the

sequence {xn}n≥1 ⊆ W
1,2
per(0, b), we have

∣∣∣ 〈V (xn), x0
n〉 −

∫ b

0

N(xn)x0
n dt

∣∣∣ ≤ εn.

Hence ∣∣∣‖(x0
n) ′‖2

2 −

∫ b

0

N(xn)x0
n dt

∣∣∣ ≤ εn,

and since x0
n ∈ E(λk), we get

∣∣∣λk‖x0
n‖

2
2 −

∫ b

0

N(xn)x0
n dt

∣∣∣ ≤ εn.

Therefore,

(3.8)

∫ b

0

( f (t, xn(t)) − λkxn(t))x0
n(t) dt ≤ εn.

Here we have used the orthogonality of the component spaces. But because of (3.7),

inequality (3.8) contradicts hypothesis (H f )(v) (the generalized LL-condition).

Case 2: g(t) = λk+1 a.e. on T. This case is treated similarly to Case 1, using this

time the second half of hypothesis (H f )(v).

Case 3: λk ≤ g(t) ≤ λk+1 a.e. on T, g 6= λk, g 6= λk+1. As we already mentioned in

Section 2, from (3.6) it follows that y = 0, a contradiction to the fact that ‖y‖ = 1.

So in all three cases, we have reached a contradiction. This means that {xn}n≥1 ⊆

W
1,2
per(0, b) is bounded and so we may assume that

xn
w

−−→ x in W 1,2
per(0, b) and xn → x in C(T).

Then reasoning as earlier in this proof via the continuity of the linear operator V

and the Kadec–Klee property of L2(T), we conclude that xn → x in W
1,2
per(0, b), which

proves that ϕ satisfies the C-condition.
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Proposition 3.2 If hypotheses (H f ) hold, then the origin is a local minimizer of ϕ.

Proof Since W
1,2
per(0, b) is embedded continuously (in fact compactly) into C(T), we

can find c0 > 0 such that ‖x‖∞ ≤ c0‖x‖ for all x ∈ W
1,2
per(0, b). If δ > 0 is as in

hypothesis (H f )(vi) and we set δ0 =
δ
c0

, then for all x ∈ W
1,2
per(0, b) with ‖x‖ ≤ δ0, we

have|x(t)| ≤ c0‖x‖ ≤ δ for all t ∈ T. Thus, because of hypothesis (H f )(vi), we have

F(t, x(t)) ≤ 0 a.e. on T. Therefore, for all x ∈ W
1,2
per(0, b) with ‖x‖ ≤ δ0, we have

ϕ(x) =

1

2
‖x ′‖2

2 −

∫ b

0

F(t, x(t)) dt ≥ 0 = ϕ(0).

Hence the origin is a local minimizer of ϕ.

From this proposition we have that the origin is a critical point of ϕ. We will

assume that it is an isolated critical point of ϕ. Otherwise, we have a sequence of

nontrivial critical points of ϕ, hence a sequence of nontrivial solutions for problem

(1.1) and so we are done.

Let f1(t, x) = f (t, x) + x. By the Riesz representation theorem, we can find a

continuous G1 : W
1,2
per(0, b) → W

1,2
per(0, b), such that

(G1(u), v)W
1,2
per (0,b) =

∫ b

0

f1(t, u(t))v(t) dt for all u, v ∈ W 1,2
per(0, b),

where by ( · , · )W
1,2
per (0,b) we denote the inner product of the Hilbert space W

1,2
per(0, b).

So we have ∇ϕ(u) = I − G1(u) for all u ∈ W
1,2
per(0, b), ∇ϕ(u) being the gradient of

ϕ at u ∈ W
1,2
per(0, b). Because of the compact embedding of W

1,2
per(0, b) into C(T), we

can easily check that G1 is compact. Since the origin is an isolated critical point which

is a local minimizer of ϕ, from [2, Corollary 2], we have the following.

Proposition 3.3 If hypotheses (H f ) hold, then there exists ρ0 > 0 small such that

dLS(∇ϕ, Bρ, 0) = 1 for all 0 < ρ ≤ ρ0 (here dLS denotes the Leray–Schauder degree

map and Bρ = {x ∈ W
1,2
per(0, b) : ‖x‖ < ρ}).

In the next proposition, we produce the first nontrivial solution of problem (1.1).

Proposition 3.4 If hypotheses (H f ) hold, then there exists x0 ∈ C1
per(T), x0 6= 0,

solution of problem (1.1).

Proof Since the origin is a strict local minimizer of ϕ, we can find ρ > 0 such that

ϕ(0) = 0 < inf
∂Bρ

ϕ.

Also because of hypothesis (H f )(vi), we have ϕ(w0) ≤ 0 = ϕ(0) < inf∂Bρ
ϕ. These

facts, combined with Proposition 3.1, permit the use of the mountain pass theorem

(see Bartolo–Benci–Fortunato [3] and Gasinski–Papageorgiou [6, p. 648]), which

gives x0 ∈ W
1,2
per(0, b) such that

0 = ϕ(0) < inf
∂Bρ

ϕ ≤ ϕ(x0) and ϕ ′(x0) = 0.
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From the inequality we obtain x0 6= 0, while from the equality we have V (x0) =

N(x0), and hence x0 ∈ C1
per(T) and solves problem (1.1).

From [8, Theorems 1, 2] we have the following.

Proposition 3.5 If hypotheses (H f ) hold, then there exists r0 > 0 small such that

dLS(∇ϕ, Br(x0), 0) = −1 for all 0 < r ≤ r0, where

Br(x0) = {x ∈ W 1,2
per(0, b) : ‖x − x0‖ < r}.

In the next proposition we compute the Leray–Schauder degree of ∇ϕ for large

balls.

Proposition 3.6 If hypotheses (H f ) hold, then there exists R0 > 0 such that

dLS(∇ϕ, BR, 0) = (−1)k

for all R ≥ R0.

Proof For ε > 0, we consider the continuous, linear operator Vε := V + εI from

W
1,2
per(0, b) into W

1,2
per(0, b)∗. Clearly Vε is strongly monotone, hence surjective. More-

over, by Banach’s theorem V−1
ε ∈ L(W

1,2
per(0, b)∗,W

1,2
per(0, b)). Because of the com-

pact embedding of L1(T) into W
1,2
per(0, b)∗, we see that V−1

ε : L1(T) → W
1,2
per(0, b) is a

completely continuous linear operator. Let fε(t, x) = f (t, x) + εx and consider the

Nemitsky operator for fε, Nε : C(T) → L1(T) defined by

Nε(x)(.) = fε(., x(.)) for all x ∈ C(T).

Clearly Nε is bounded, continuous. Then x → V−1
ε ◦ Nε(x) is a compact map from

W
1,2
per(0, b) into itself.

Let θ ∈ (λk, λk+1) and consider the compact homotopy

h(β, x) = V−1
ε ◦ (βNε + (1 − β)θI)(x).

Claim: We can find R0 > 0 such that 0 6= h(β, x) for all β ∈ [0, 1], all ‖x‖ = R,

and all R ≥ R0.

We proceed by contradiction. Suppose that the claim is not true. We can find

{βn}n≥1 ⊆ [0, 1] and {xn}n≥1 ⊆ W
1,2
per(0, b) such that

(3.9) βn → β ∈ [0, 1], ‖xn‖ → ∞, and h(βn, xn) = 0 for all n ≥ 1.

From the equality in (3.9), we have

(3.10) V (xn) + εxn = βnNε(xn) + (1 − βn)θxn.

Let yn =
xn

‖xn‖
, n ≥ 1. By passing to a suitable subsequence if necessary, we may

assume that

yn
w

−−→ y in W 1,2
per(0, b) and yn → y in C(T).
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Dividing (3.10) by ‖xn‖, we obtain

(3.11) V (yn) + εyn = βn
N(xn)

‖xn‖
+ βnεyn + (1 − βn)θyn.

From the proof of Proposition 3.1, we know that (at least for a subsequence)

N(xn)

‖xn‖

w
−−→

h = g y in L1(T),

with g ∈ L∞(T)+, λk ≤ g(t) ≤ λk+1 a.e. on T, and yn → y in W
1,2
per(0, b). Hence

‖y‖ = 1. Therefore, if we pass to the limit as n → ∞ in (3.11), we obtain

(3.12) V (y) = (βg + (1 − β)θ − (1 − β)ε)y.

As in the proof of Proposition 3.1, we consider three distinct cases, corresponding to

three different possibilities for the weight function

m = βg + (1 − β)θ − (1 − β)ε ∈ L∞(T)+.

Case 1: β = 1 and g(t) = λk a.e. on T. From (3.12) we have V (y) = λk y. Hence

−y ′ ′(t) = λk y(t) a.e. on T, y(0) = y(b), y ′(0) = y ′(b).

Therefore, y ∈ E(λk), y 6= 0. We take duality brackets of (3.11) with y0
n ∈ E(λk)

(recall yn = y0
n + ŷn, y0

n ∈ E(λk), ŷn ∈ V = E(λk)⊥). We obtain

‖(y0
n) ′‖2

2 + ε‖y0
n‖

2
2 = βn

∫ b

0

N(xn)

‖xn‖
y0

n dt + βnε‖y0
n‖

2
2 + (1 − βn)

∫ b

0

θyn y0
n dt.

Hence

(3.13) βn

∫ b

0

( N(xn)

‖xn‖
− λk y0

n

)
y0

n dt + (1 − βn)

∫ b

0

(θyn − (λk + ε)y0
n)y0

n dt = 0.

Note that ∫ b

0

(θyn − (λk + ε)y0
n)y0

n dt →

∫ b

0

(θ − (λk + ε))y2 dt

(recall y ∈ E(λk)). Choosing ε < θ − λk, we have

∫ b

0

(θ − (λk + ε))y2 dt = (θ − λk − ε)‖y‖2
2.

We may assume that βn 6= 1 for all n ≥ 1 or otherwise we have a sequence of non-

trivial solutions and we are done (see (3.10). Hence, we can find n0 ≥ n1 such that

(1 − βn)

∫ b

0

(θyn − (λk + ε)y0
n)y0

n dt > 0 for all n ≥ n0.
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From (3.13) it follows that

(3.14) βn

∫ b

0

( N(xn)

‖xn‖
− λk y0

n

)
y0

n dt < 0 for all n ≥ n0.

Since y ∈ E(λk), we have
‖x0

n‖

‖xn‖
→ 1 as n → ∞.

So, by virtue of hypothesis (H f )(v), we have that

0 < βnγ1 ≤ βn

∫ b

0

( f (t, xn(t)) − λkxn(t))x0
n(t) dt for all n ≥ n0.

Therefore,

(3.15) 0 <
βnγ1

‖xn‖2
≤ βn

∫ b

0

( N(xn)

‖xn‖
− λk y0

n

)
y0

n dt for all n ≥ n0.

Comparing (3.14) and (3.15), we reach a contradiction.

Case 2 β = 1 and g(t) = λk+1 a.e. on T. We treat this case similarly to Case 1, using

this time the second part of hypothesis (H f )(v).

Case 3: β ∈ [0, 1) or (g 6= λk and g 6= λk+1). In this case we have

λk < βg(t) + (1 − β)θ < λk+1 a.e. on T.

From (3.12) we have

{
−y ′ ′(t) = (βg(t) + (1 − β)θ − (1 − β)ε)y(t) a.e. on T,

y(0) = y(b), y ′(0) = y ′(b).

If we chose ε > 0 small, from [1, Proposition 2] we deduce that y = 0, a contradic-

tion to the fact that ‖y‖ = 1.

So in all three cases we have reached a contradiction. This means that the claim

is true. Because of the claim and the homotopy invariance of the Leray–Schauder

degree, we have

(3.16) dLS(∇ϕ, BR, 0) = dLS(I −V−1
ε ◦ (θI), BR, 0) for all R ≥ R0.

But since θ ∈ (λk, λk+1), from the Leray–Schauder index formula (see [14, p. 619])

we have

(3.17) dLS(I −V−1
ε ◦ (θI), BR, 0) = (−1)k for all R > 0.

From (3.16) and (3.17), we conclude that

dLS(∇ϕ, BR, 0) = (−1)k for all R ≥ R0.
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Now we are ready for the multiplicity result concerning problem (1.1).

Theorem 3.7 If hypotheses (H f ) hold, then problem (1.1) has at least two nontrivial

solutions x0, u0 ∈ C1(T).

Proof We choose 0 < ρ ≤ ρ0, 0 < r ≤ r0, and R ≥ R0 such that

Bρ ∩ Br(x0) = ∅ and Bρ, Br(x0) ⊆ BR.

Then from the additivity and excision properties of the Leray–Schauder degree map,

we have

dLS(∇ϕ, BR, 0) = dLS(∇ϕ, Bρ, 0) + dLS(∇ϕ, Br(x0), 0)

+ dLS

(
∇ϕ, BR \

(
Bρ ∪ Br(x0)

)
, 0

)
.

Using Propositions 3.3, 3.5, and 3.6, we have

(−1)k
= 1 + (−1) + dLS

(
∇ϕ, BR\

(
Bρ ∪ Br(x0)

)
, 0

)
.

Hence

dLS

(
∇ϕ, BR\

(
Bρ ∪ Br(x0)

)
, 0

)
= (−1)k.

Therefore, from the solution property of the Leray–Schauder degree, we infer that

there exists u0 ∈ BR\(Bρ ∪ Br(x0)). Hence u0 6= 0, u0 6= x0 such that V (u0) = N(u0).

Hence

−u ′ ′
0 (t) = f (t, u0(t)) a.e. on T, u0(0) = u0(b), u ′

0(0) = u ′
0(b), u0 ∈ C1(T).

Therefore we have shown that (1.1) has at least two nontrivial solutions

x0, u0 ∈ C1(T).
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