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Abstract

Entirely elementary methods are employed to determine explicit formulae for the
coefficients of commuting ordinary differential operators of orders six and nine which
correspond to an elliptic curve. These formulae come from solving the nonlinear
ordinary differential equations which are equivalent to the commutativity condition.
Most solutions tum out to be rational expressions in one or two arbitrary functions
and their derivatives. The corresponding Burchnall-Chaundy curves are computed.

1. Introduction

The theory of commuting ordinary differential operators had its beginnings
with the pioneering work of Burchnall and Chaundy [2, 3, 4] and Baker [1],
and after some time in dormancy, has recently enjoyed a revival of interest
with the application of commuting operators to completely integrable equations
[9, 10, 11, 13, 14, 15, 17, 18, 22]. In their application to finding solutions of the
Kadomtsev-Petviashvili (KP) equation for example, the basic idea is to search
for solutions which lie in a special stationary manifold given by the condition of
commutativity of two differential operators. It was in trying to make this idea
exact that Krichever and Novikov and others were led to investigate the problem
of finding explicit formulae for the coefficients of commuting operators whose
orders were not coprime. The KP equation itself,

\Uyy = (U, ~ \UUX ~ \UXXX)X ,
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for a function U(x, y, t) where x and y are space coordinates and t is time, is
of independent interest as a model for weakly dispersive waves in two space
dimensions. The search for solutions of this equation is also the source of our
motivation.

Burchnall and Chaundy showed that any two commuting ordinary differential
operators M and N satisfy identically an algebraic relation F(M, N) = 0
(F algebraic). We call such an (M, N) a commuting pair and say loosely
that the pair lies on, or corresponds to, the curve F. We do not review the
theory of commuting operators as this is adequately done elsewhere [2, 3, 4,
12, 18, 19, 22], but give a brief commentary on progress in the search for
their explicit formulae. As already mentioned, of most interest in applications
is the determination of the coefficients of commuting pairs (M, N) for which
r := gcd(ordM, ord/V) is greater than one. In this case the dimension of the
common eigenspace has the possibility of exceeding one, giving a rich geometry
of a higher dimensional vector bundle over the Burchnall-Chaundy curve F. It is
a result of Krichever [12] that the general solution to this problem is parametrized
by r— 1 arbitrary functions and some arbitrary constants. Some authors [19]
believe the presence of these arbitrary functions to be the main cause of the
difficulty of finding explicit formulae for commuting operators.

The case of r = 1 was solved completely by Burchnall and Chaundy and will
not be mentioned further. The case where r — 1 and F determines an elliptic
curve has been solved in three different ways by Dehornoy [5], Krichever and
Novikov [13] (with corrections by Grinevich [7]) and Griinbaum [8]. These
papers give different but equivalent forms of the coefficients of the most general
commuting pair of operators of orders four and six. Both Krichever and Novikov
[13,14] and Griinbaum [9] have successfully applied the forms of their solutions
to find associated explicit solutions of the KP equation. These authors reduce
the KP equation to the so-called Krichever-Novikov equation, a completely
integrable nonlinear partial differential equation in one less space dimension.

In this paper, we employ the computational approach of Griinbaum [8],
to study the problem of determining explicit formulae for the coefficients of
commuting pairs (L6, L9), differential operators of orders six and nine, which
lie on an elliptic curve. This might be thought of as the next most interesting
case, r = 3. In fact this problem has already been solved using geometric
methods by Mokhov [16, 17] and previously Dehornoy [5] had given a partial
solution. Even earlier, Dixmier [6] had given the first example of an r = 3
commuting pair with polynomial coefficients. With the problem already solved,
one might justifiably ask: why solve it again? The answer comes from the
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[3] Commuting differential operators of order 6 and 9 401

desire to use the explicit solution in applications, and in particular to apply it
to the KP equation. From this point of view, it is desirable to give a more
elementary characterization of the solution, in particular, one which avoids the
appearence of elliptic functions. We offer here such an elementary approach.
As justification for this attitude, we cite the success of Griinbaum in [9] for
r = 2 and the partial answer in [15] for r = 3.

There are three main steps constituting the computational approach, which
can be summarized as follows;

(i) by imposing that F be elliptic, identify, and then compute, L9 as the
differential operator part of an appropriate fractional power of L6,

(ii) compute the commutator [Lg, L6] and form the commutativity equations,
which are the nonlinear ordinary differential equations in the coefficients of L6,
obtained by equating the coefficients of each power of d/dx in the commutator
to zero, and

(iii) solve the commutativity equations derived in (ii).
The easy statement of our problem as the simple condition [L9, L6] = 0 is
maligned by the rather complicated nature of the commutativity equations arising
from step (ii). Although we do obtain explicit formulae for the coefficients of
commuting L6 and Lg which depend on two arbitrary functions, we pay the price
of being unable, in a computational way at least, to show that they are the most
general possible. This, in part, rests on our inability to completely perform step
(iii). Despite falling short on this score, the computational approach has none the
less a number of advantages. First, the appearance of the arbitrary functions and
constants in our solutions is very explicit. This makes the design of commuting
pairs with coefficients of a particular type, for example, polynomial, rational,
periodic, very easy. One has only to choose the arbitrary functions and constants
appropriately. Second, Griinbaum's computational approach is simplicity itself.
Nothing more complicated than the pseudo-differential calculus of I. Schur [20],
based on the Leibnitz rule, is needed to carry out steps (i) and (ii). Because of
this, this approach readily lends itself to implementation by computer. Finally,
the method is easy. Once the commutativity equations are computed, solutions
of them are relatively easy to find. This is particularly true in certain degenerate
cases where all that is required is to solve second order linear differential
equations.

In Section 2, we perform steps (i) and (ii) and set up the five nonlinear
ordinary differential equations for the coefficients of L6 which are equivalent to
the requirement that [Lg, L6] = 0. It is shown that these differential equations
are easily integrated once, and that all but one of five integration constants
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appearing in this process must be taken to be zero if the Burchnall-Chaundy
curve F is elliptic. Sections 3 and 4 are devoted to step (iii). Section 3 solves
completely the case where L6 has no second derivative term. This is one of
the easy cases mentioned above. In Section 4, the commutativity equations are
further manipulated by a transformation of the last coefficient of L6. It is then
possible to obtain solutions of the commutativity equations for the case where
L6 has no first derivative term. A solution which depends on two arbitrary
functions is given by reducing the five nonlinear commutativity equations to a
single nonlinear integro-differential equation for one coefficient. This integro-
differential equation has appearing in its coefficients, the two arbitrary functions
parametrizing the solution. Also in this section, solutions for two special cases
together with some examples are given. Finally, the last section offers some
comments as to the appropriateness of a major assumption used in step (iii).

2. Commutativity equations

Let L6 be a general sixth order ordinary differential operator with locally
smooth coefficients a, (x). We write this operator with the standard normaliza-
tion in which the leading coefficient is 1 and the second coefficient is 0:

L6 = (D3 + a4D + Da4+a3)
2 + a2D

2 + D2a2+ axD + Dax+ a0, (2.1)

where D — d/dx. We will need to work with a sixth root Ll
6

/6, of L6, in
the ring of formal pseudo-differential expressions of the form C = Yl-oo c> D' •
Given such an expression, define the differential operator part C+ as the sum
of those terms of C with nonnegative powers of D, and the formal integral
operator part C_, by C_ = C — C+. According to the results of Schur [20],
any differential operator L9, of order 9, which commutes with L6 must be a
constant linear combination of the operators (LJ

6
/6)+ where 0 < j < 9. As

mentioned in the introduction, any two commuting differential operators lie on
some Burchnall-Chaundy curve. In this paper, we will consider only the case
where the Burchnall-Chaundy curve is an elliptic curve of the form,

L2
9 = Ll + glL6 + g0, (2.2)

for some constants g0 and gx. One can show by a careful consideration of the
powers of D which occur, that insisting on the curve (2.2) implies that only
j =9 appears in L9. We therefore take from now on:

L9 = (Lf) + . (2.3)
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[5] Commuting differential operators of order 6 and 9 403

With this L9, another way of writing the curve (2.2) is as

L\-L\ = -{L9(Lf)_ + (Lf )_L9}+, (2.4)

which is often a more convenient form for the purposes of computation. Calcu-
lating the commutator we get,

[L9, L6] = a{x)D4 + p(x)D* + y(x)D2 + 8{x)D + e(x), (2.5)

where a(x), fi(x), y(x), 8(x) and e(jc) are all differential polynomials in the
coefficients a,(x) of L6. If we assign the k-th derivative of a,, a\k), a weight
of 6 — i + k, then as is well known [22], the coefficient of Dj in (2.5) is
homogeneous of weight 13 — j . All together, these differential polynomials
contain 858 terms and so it is not possible to give their expressions here. From
(2.5) the condition for commutativity is, now,

a(x)=P(x) = y{x) = 8(x) = c(x) = 0. (2.6)

From the point of view of solving these nonlinear ordinary differential equations,
it is much more useful to work not with (2.6) but linear combinations of them
and their integrals and derivatives. It turns out that both a and ft — 2a' are
exact derivatives of differential polynomials which we denote by /„ and IPl

respectively. Define the new differential polynomials,

y, = y-3P[/2-na"/6
8, = 8 -Y[- 5/?;'/6 -2a4/8,/3 + 2a;//,,/3

-5a"V6 - 2a4a'/3 + 2a',a/3 + 2/3(a'3

-a(iv)/6 - aAa"/3 + « + a'3- a2/2)a/3 + « " + < + a'2/2)IJ3.
(2.7)

Here the prime denotes differentiation with respect to x. These combinations
have been chosen to simplify as much as possible the expessions for fix, yu

Si and €\. They also preserve the homogeneity and weight, and produce exact
derivatives, that is, the differential polynomials a, f}\, yx, 8U €i are the first
derivatives of certain other differential polynomials denoted by /„, 1^, IYl,
Is,, /e, respectively. In terms of these, the commutativity equations (2.6) are
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equivalent to

Ia + Ki = 0,

/ A +* 2 = 0,
l^+AatKJl + Ki = 0, (2.8)

/ , ,+204*2/3 + 2*3*1/3 + ^4 = 0,
/e, - a'jKi/9 - 4o2*,/9 + O2A:,/6 + a3K2/3 + K5 = 0,

where the K} are arbitrary integration constants. We will be concerned here only
with a very special choice of these constants which is forced by our assumption
that, when they commute, L6 and L9 lie on an elliptic curve.

LEMMA 1. Assume that [Lg, L6] = 0 where Lg is given by (2.3). Then L6 and
L9 lie on the curve (2.2) if and only if

Kx = K2 = K4 = K5 = 0 and K3 = 3gu

This is proved by explicitly expressing the coefficients of (Lg/2)_, given that
(2.8) holds, in terms of the Kh and then forcing the form (2.2) on (2.4). We
omit these somewhat complicated computations.

The constants Kj have an interesting interpretation if we introduce a formal
integral operator * = 1 + YlTifjMD~J s u c n t n a t ^ ' ^ e * = D6. If coeffi-
c ients / ;^) are defined by * ~ ' L 9 * = D9-J2T fj(x)D-j, then by conjugating
the commutator [L9, L6] with *I>, it is easy to show that L6 and L9 commute
if and only if all the fj are constant. In this case the commutativity equations
(2.8) are satisfied, and it can be shown that fj = —Kj/6 for j = 1 , . . . , 5. All
the other fj are determined recursively in terms of the first five. The choice
of constants given in Lemma 1 then implies that only powers of D~3 occur in

From now on, we adhere to the choice of constants in Lemma 1 and so will
be interested in obtaining all solutions of the nonlinear differential equations
represented by:

/« = Ik = 0, IYI +K3=0, ISl = Itl = 0. (2.9)

These equations are considerably shorter than those given by (2.6) but are still
too large to put into print. To finish this section, we give the explicit expression
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[7] Commuting differential operators of order 6 and 9 405

for L9 as computed from (2.3),

Lg = (D3 + a4D + Da4 + a3y+ 3a2D
5 + 3(al+5a'2/2)D4

+3(2a2a4 + 17a'2'/4 + la\ + ao/2)D3

+3(3a2a'4 + 3a'2a4 + 2axa4 + a2a3 + 3la'2"/S + 3a'[ + 3a'0/4)D2

+3(a2a'4' - a'2a'J2 + 3a'2'a4/2 + 2{axa4)' + a0a4 + (a2a3)'
+aia3 + 25a2

iv >/16 + af/2 + 2a'{' + 9< /8 )D
+ 3 ( - 5 f l X / 4 -<%<+ < « 4 / 4 -a'xa'4 + (.a0a4)'/2- a'2a3

-a'2'a3/4 + aoa3/2 + laf /32 + a2a'2/2 + axa2 +
(2.10)

Again giving ajk) a weight of 6 — / + k, the coefficient of D' in L9 is a
homogeneous differential polynomial of weight 9 — j .

3. The case a2 = 0

When a2 is identically zero in (2.1), the commutativity equations (2.9) as-
sume a particularly simple form. In this case, the problem of determining all
commuting operators of orders six and nine reduces to the solution of second
order linear differential equations, and we are therefore able to obtain the general
solution. In this solution, a\ is essentially the arbitrary function parametrizing
the commuting operators.

Letting a2 = 0 in (2.9) gives

Ia = -9
2(a'0a4)' - 9

2(aia'3 + 3a[a3)' + 9a] - 63a<l v ) /16 = 0, (3.1)

+ 5a\a'4" + 9 « + 8<X + 4afv)a4)

- 1 (2a'0a'3 + 3a^a3) + 6a{6) + 9a0a, = 0, (3.2)

3a4 + 9a[a3a'4 - a\a\a4 — 2a[a3a4 + 3a'[a3a4)

+3{a'<p4)'a4 + f (a.af} + 60'^' + \2d[a'z' + I4a';ra'3 + I5afv)a3)

+33flf/32 - 9a,a'[ + 9a2J4 = -K3, (3.3)

- 9 / 4 « a , - 2a'0a\) = 0, (3.4)

3{a\a'4'+ 2axa\a'4+ 2(axd[ - af)a4) + 3(a,afv)- a\a'[') + 9ao^/16

0. (3.5)
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The general solution of these equations is the next result.

PROPOSITION 2. Let g(x) be an arbitrary nonconstantfunction and suppose that
a2 = 0. Define the coefficients of L6 by

")2 K5xg + K52 - 3K*g
2/g'" , Hg")2 _,_ K5xg + K52 - 3K*lg
2/32

g
2-3K4lg'g"/8-Ku(K5lg

2/2+K52g-K2
4lg

3/32) + K

a2 = 0,
a\ = y/g~',

a0 = K4ig + K42,
(3.6)

where Kn, Kn, K4i, K42, K5U K52 are constants. Then [L9, L6] = 0 ifand only

if
2 2 - 2KUK4X) = 0. (3.7)

Moreover, when (3.7) holds, the elliptic curve (2.2) is given by

gl = -{K4lK5lK52 - 2K52 + KnK5l + 3K2
2/4 - 9Kx2K

2
4l/16),

go = K4lK52 — K4lK42K5iK52/2 + K42K52 — K}\K4\K52— K\\K
+3Kl2K4lK5l/2 - Kl/4 + 9K{2K

2
4lK42/32 - Kn + K2J4.

(3.8)
The formulae (3.6) under the condition (3.7) give the most general commuting
pair for which a2 = 0 and a\ ^ 0.

PROOF. The labelling Ktj generally refers to the y* integration constant arising

in the solution of the i'h commutativity equation in (3.1)—(3.5). Solving (3.4)

gives a0 in terms of ax. Next solve (3.5) for a4, and lastly, solve (3.1) for a3.

This solves three of the equations producing (3.6), and evaluating the left hand

side of (3.2) with the coefficients (3.6) gives, lPi = Q\ax, hence the algebraic

condition (3.7). Substituting into (3.3) gives /„ = Q\ao/2 — K42Q\/2 — Ru

where Rx is a constant. We therefore take Kj = Rx = 3gi to obtain a solution

to all the commutativity equations. The coefficients in (3.6) can now be used

together with (3.7) in (2.4) to compute go-

Special cases of the solution (3.6) have appeared in the literature before, and

we point out the correspondences.
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[9] Commuting differential operators of order 6 and 9 407

EXAMPLE. Let u(x) be an arbitrary nonzero function and set g'(x) = u2(x) in
(3.6). Taking Ku - K4l = K42 - K51 = K52 = 0 and Kx2 = a then gives
Mokhov's example (12) in [16], (see also [17, page 1307]). Further setting
u(x) — —1 and g(x) = x gives the famous example of Dixmier [6]. For both
of these examples, the elliptic curve from (3.8) is, L\ = L\ — a.

If we take ax = a2 = 0 in the commutativity equations (2.9), then the situation
is very simple. From (3.5), we conclude that if ax and a2 are identically
zero, then [L9, L6] = 0 iff a'o = 0. This solution is parametrized by the
two arbitrary functions a3 and a4, however, we will consider this case trivial,
since L6 and L9 are both constant coefficient polynomials in the operator S —
D3 + a4D + Da4 + a3. In fact, from (2.10), L9 = S3 + 3/2a0S and the curve
(2.2) can be obtained by eliminating 5.

4. The case a2 # 0

The main cause of the complexity of the commutativity equations is that in
general, a2 ^ 0. Assuming this is so, (2.9) can be simplified somewhat by the
introduction of two auxiliary functions which we now introduce.

Let h (x) be any (fixed) nonconstant function such that

a2 = h', (4.1)

and define a new coefficient uo(x) by

a0 = 8a2a4/3 + 5a'2'/6 - 2h2/3 + u0. (4.2)

The motivation behind this last definition comes from the case ax = 0 where
it is possible to solve the equation /^ = 0 explicitly and find precisely the
relation (4.2) but with u0 linear in h. As with (3.1), most of the terms in /„ are
derivatives (see (4.8) below). We therefore denote by /„ the formal integral of
/„, that is, the expression for which D Ja — la. In terms of this new integral, the
first equation in (2.9) is equivalent to

Ja + Kl2 = 0, (4.3)

where K\2 is an integration constant. Define two new expressions by

In = In+a'/6 + 2hJa/3,
I(2 = I(l + a2Ia/6.
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For the first of these, we find that

ln = 3(Xa'3 + 3X'a3) + a+ 2a4Ia/3, (4.5)

where
X = axa\ + 2a\a4 + a2a'3 + 3a'2a3/2 + a"' - axh, (4.6)

and a is a fairly complicated expression in which we use (4.2) to eliminate a0:

a = !«<vi) + | (2«X' + H< o< ^ o ) ( 4

^( a'2u'o - 4a2uyi)+9ul/4- 3ha4u'Q- 3h2u0

%78 - h4/3 + 6h!{a\+ a2u0-la2

+a\al + 5a2a'2a'4/2 + 5a2a'2'a4 - 5a'2
2a4/2 + 4a\a\ - 6a2a4

-9aia2a3 + x
2{a2a

(
2

iv) - a'2a'2' + a'2/2) + a\ - 6a,a;' + 3a',2.

3 2

Using (4.2) to eliminate «o from /„, 1^, ISt and I(2 as well, we find that a2 is an
integrating factor for most of the terms of the equation ISl = 0. With the defin-
itions (4.1), (4.2), (4.4), (4.5), (4.6), and (4.7), the commutativity equations
(2.9) are equivalent to the following set of integro-differential equations:

/„ = | ( 2 a 2 < + 9 a X ' + 1 5 a X +^a'2"a4)'+ I2(a2a4a'4+ a'2a
2)'

+6(.a2ha4)' + 6a2
2a4 - \{axa'3 + 3a\a3) + 3 a f / 4

\5a2a'2'+ 9a?/2 - 6a2h
2+ 9a2 - 63M^V )/16

9a2uo = O, (4.8)

IpJ3 = 2(Xa'4+ 2X'a4+ X'"+ xh) - \{a'3u'0+ 3a3ul/2) + 3a,u0

= 0, (4.9)

/ „ - 2a4IJ3 = 3(Xa'3 + 3X'a3) +a + 2hKl2/3 + K3=0, (4.10)

= X- I«2/ 2 ja?l2{u'>ax - 2u'0a[) - K4la
l
2>

2 = 0, (4.11)

= 0, (4.12)

where the H, in the last equation are differential operators acting on u0,

H2(u0) = (u'0)
2 + l(-a2hu'0 + a2u0), (4.13)

H3(u0) = a'2u% - a'X = {a'2H[{u0) - a'2'Hx(uo))/a2,
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[11] Commuting differential operators of order 6 and 9 409

and Ki, Kn and K4i are constants. Our point of view in trying to solve the
commutativity equations (4.8) through (4.12) will be that a\ and a2 will play
the role of the arbitrary functions which parametrize the solution. By this
assumption, we mean that we will be searching for expressions for a3, a4 and uQ

in terms of a, and a2 (and their derivatives and integrals).
An interesting feature of the new commutativity equations is the special form

of (4.12). If //i(«o) were nonzero and known in terms of a\ and a2, which is
equivalent to knowing u0, then (4.11) gives x which can be put into (4.12) to
give a4 directly. Then the definition (4.6) can be used to solve a linear first
order differential equation to give a3. In this paper, we will only be concerned
with the situation in which this procedure is not possible. We therefore make
the following assumption for the remainder of the paper.

ASSUMPTION 4.14. Assume that Hi(u0) = 0.

Granted this assumption, the definition of Hi implies that u0 — K5ih + K52

for some constants K5i and Ks2. Substituting this «o into (4.11) and assuming
<zi is not proportional to a]12 gives

X = -3K5lal/4 + K4la
1
2
/2. (4.15)

Now putting this x m t o (4.12), using (4.13) and cancelling a factor a2 (which
is nonzero), gives that

±(Kl + 8K52/3)a2 - K4l (a^/a?2)' = 0. (4.16)

The case a\ = 0 When a\ is identically zero, we gain some simplification of
the commutativity equations (4.8) through (4.12). If in addition, the integration
constant K4l is nonzero, it is easy, in this case, to obtain the most general
commuting pair which depend on a single arbitrary function.

PROPOSITION 3. Let h(x) be an arbitrary nonconstant function, suppose that
a\ = 0 and assume that (4.14) holds. Define the coefficients of L6 by

h'" 3h'a

a3 = (K4lh + K42)/a
3
2
/2,

a2 = h',
ax = 0,
a0 = -h'"/2 + h"2/h'-2h2 + 3K5]h + K52 + SKll/3,
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where K\\, K4X, K5i and K52 are constants. Then [L9, L6] = 0 if and only if

<2. =9(^52 + 3 ^ / 8 ) =0 . (4.18)

If K4i ^ 0, then (4.17) under the condition (4.18) gives the most general
commuting pair for which ax = 0 and (4.14) holds. When (4.18) is satisfied,
the elliptic curve (2.2) is given by

go = K2
2 + 3K51K4lKn/2-K52K

2
i/2-4KuK

2J3 (4.19)

-KlJA + KUK2
2 - 4K2

uK52/3 + \6K\J21.

PROOF. If ax = 0, then from either (4.11) or (4.16), x = KAXa\12, and solving
this using (4.6) gives the expression for a3. If K4i ^ 0, then substituting for x
and #3 in (4.9) and integrating once, we obtain

(a2a4)' + a\l2(a\12)'" + a2h - \{\{u'oh/a2)' + \{KA2/K^u'0/a2)' - u'J2) = 0.

When //I(MO) = 0 and ax — 0, (4.16) gives the condition (4.18), and so u0 =
K51h — 3 A"|,/8. Putting this into the last relation produces the formula for a4. At
this point (4.9), (4.11) and (4.12) have been solved. The solution is then checked
in (4.8) to reveal that /„ = Q i a2, while if instead of (4.10) we use the equivalent
equationIyi +K3 = 0,wefind/)/1 = Qla0/2-(K52 + SKn/3)Qi/2-Rl where
/?! is a polynomial given by R\ = 3g\. Thus taking K$ = Rt = 3gj gives a
solution of all the commutativity equations provided Q\ =0. Using (4.17) and
(4.18) in the right-hand side of (2.4) gives the expression for go-

This proof uses in ah essential way that K4X ^ 0, to obtain the formula for o4.
If K4X = 0, then (4.9) actually implies (4.14). A statement about the generality
of (4.17) in this case however, cannot be made, but some insight can be gained
from the next case we treat where ax and a2 are entirely arbitrary.

When (4.18) is satisfied, we get for aQ (cf. (4.2));

a0 = 8<W3 + 5a'2'/6 -\{h- \K5X)\ (4.20)

so that K$i amounts to no more than a translation of h. In view of (4.1), K5i
may thus seem like an irrelevant constant; however, we carry it along as it has
a use in later examples.
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The case of ax and a2 arbitrary In this part we operate under the assumption
that«! and a2 must be the two independent arbitrary functions parametrizing the
commuting operators L6 and L9, and look for corresponding solutions of the
commutativity equations. We therefore make a loose definition of independence
of arbitrary functions. We will say that a\ and h (or a\ and a2 given (4.1)) are
independent arbitrary functions if the requirement that (4.16) hold for all x
implies K4l = 0.

If ax and a2 are independent arbitrary functions, then (4.16) gives K4l = 0
and K52 = —3K^/S. We note here that there are two interesting cases when
K4i is not forced to be zero, namely a\ — a2 and a\ = a2

2h. These two cases
will be considered in the next part. We now get from (4.11), x — —3K5\ai/4.
Substituting this x and «o = K5yh — 3K^/S into (4.9) produces a copy of (4.11)
(with K4l — 0). Thus (4.9) and (4.11) are the same equation and so there are
only three equations to solve. Since (4.11) is linear and first order in both a4

and a3, it can be solved for a3 and thus this variable can be eliminated. This is
the idea behind the next result.

PROPOSITION 4. Let h(x) and g'(x) be independent arbitrary functions with h!
not identically zero and assume that (4.14) holds. Define the'coefficients ofL6

by

h'" 3/J"2 3g'2 Kn + \K5xh-\h2

° + + W + U4'

g'(h
2-lK5lh-2Ku)8"' g"h" g' (h'" h"2\ g»

h< 2ha 2h\h' ha) h»

If
h12

a\ = g',

a2 = h',

a\ =

a0 = l
(4.21)

where Ku, K42 and K5X are constants. Then [L9, L6] = 0 if and only ifv4 solves
the equation

0 = (a2

-9aia2
l faia2

l/\a2v4y + 4(h - JK^a^2 fa2v4 - 9axa^K42

+OK5XKU+ \Kn)a2
xl2h + (if6K

4
5l- \K^Kn+4K2

n+ K3)a2
l/2,

(4.22)
with a\ = g' and a2 = h!'.
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PROOF. The definition of a3 and a4 in terms of v4 can be derived by an iterative
interplay between (4.8) and (4.11). We assume, as in the case ax = 0, that
the 3«26)/4 term in (4.8) is cancelled by the appropriate terms in a4; hence
a4 = -a'2'/(2a2) + 3a?/(8a|) H . Substituting this into (4.11) gives the first
few terms of a3 and again reverting to (4.8), a4 must have the — 3a2/(2al) term
to cancel the first term in a3. From (4.11), a3 hence gains a 2a\/a\. Continuing
in this way leads to the first two expressions in (4.21) where v4 represents
unknown terms in a4.

The independence of a\ and h implies from (4.16) that K4l = 0. With
K4X = 0, u0 = KSih — 3Kj{/S and with a3 and a4 as given in (4.21), the
equations (4.9), (4.11) and (4.12) are solved still with v4 arbitrary, leaving only
(4.8) and (4.10) to determine v4. We concentrate on (4.10). Putting x and u0

into (4.10) gives a result which can be simplified by subtracting Ar
51/2 times

(4.3) from it. Doing this and evaluating the resulting equation with the above
expressions for a3 and a4 gives the integro-differential equation (4.22) for v4.
If L6 and Lg are to commute, then apart from v4 solving (4.22), any solution of
this equation must give a solution of (4.8). Solving (4.22) implicitly for v4 and
substituting into (4.8) we get, /„ = 0 and in fact /„ = — Kn so the solution is
consistent with (4.3).

The general solution of (4.22) seems difficult to find. A transformation of
the dependent variable via u4 = —2a2v4/3 and the independent variable via
t = f* a2

i/2 suggests that elliptic functions are involved, but this is difficult to
make explicit. It also poses a considerable computational problem to compute
the elliptic curve (2.2) given only that v4 solves (4.22). We do not attempt
this here; however, given that there would normally be two new integration
constants entering in the solution of (4.22), it is reasonable to expect the curve
to be nonsingular.

EXAMPLE. Certain obvious solutions of (4.22) are apparent. If C is an arbitrary
constant, then v4 = C/a2 is a solution provided we choose Kl2 = —9/2(Kn +
C)K5UK42 = 0andK3 = -(4(ATn +C)2 - K5lKl2/2 + 8\K^/256). Hence if
C is taken to be nonzero, it amounts only to a translation of Kn. Thus we lose
no generality by taking C = 0, i.e. v4 = 0, (and K42 = 0) in (4.21). The elliptic
curve for L6 and L9 is then given by

L2
9 = (L6 + 2b)(L6-bf, (4.23)

where b = (9Kjx + 32A"u)/48. A translation of h indeed shows that when
t>4 = 0 the formulae (4.21) depend only on the single constant b. That (4.23)
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is singular in this case is somewhat disappointing; however, this example was
used with some success in an application to the Kadomtsev-Petviashvili equation
in [15]. The outcome of this work has a strong connection with the results of
Painleve' analysis as done by Weiss [21].

Two special cases Here we consider separately each of the two special cases
noted above. If a\ is a linear combination of a2

2 and a2
/2h then (4.16) does not

imply that K4i — 0. If ax = a2
2, then K4X remains arbitrary, while if a{ = a2

2h,
then K4\ is bound within an algebraic relation with K5l and K52.

If ax = a]12, then the integral term in (4.11) vanishes under (4.14) to give
X = K4\a

x
2

12. For all but one exceptional value of K41, the most general
commuting differential operators can easily be found.

PROPOSITIONS. Let h(x) be an arbitrary nonconstant function and assume
(4.14) holds. Define the coefficients of L6 by

_h^_ 3h^ Ku + \Kslh - \h2

UA ~ 2h' Sha h!
h2 + (K4X - \K5l)h + K42

(4.24)
a2 = h',

ax = *Jh',
a0 = 8h'a4/3 + 5h'"/6-2:(h-3-iK5l)

2,

where Ku, K4l and K5l are arbitrary constants. Then [L9, L6] = 0 and the
elliptic curve is given by

&x = V256^51 ~^~ 4 ^ 5 1 ^ " "~ 4^51^41 — 3AT42 + K^ + 3 AT,, — 2Kn),

SO = 2048 ^51 + h K\ 1 ^51 ~ M K^ Kl\ + K K*2Kll + ~k K4l K5\ + 2 KU K5\

54" ^51+ 2^41^42^51 ~ 2

g 3 4 27 3

(4.25)
If K4X + 3K5l/4 ^ 0 then (4.24) give the most general commuting pair for

which ax = a\12 and (4.14) holds.

PROOF. Putting a] = a]12 in (4.11) gives x = KA\OX
2

12. Using now the definition
(4.6), we get

{a2a4)' + (al/2a3)' + a)>2{.a\*2)'" - a2h = K4la2.
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From (4.16), K52 = — 3K2
l/S and hence the formula for a0. Substituting for

X in (4.9), eliminating via (4.11) the terms which contain a4, and cancelling a
factor of K4l + 3K$l/A yields

-{al/2a3)' + la2h + (tf4, - f ATs,)a2 = 0.

This gives a$ and then the previous equation gives the formula for a4. Equation
(4.8) is automatically satisfied and so is (4.10) provided K3 is taken to be three
times the expression for gi given in (4.25). Again g0 can be computed from
(2.4).

If a\ = a2
2h, then provided K4i is nonzero, we can also obtain the most

general commuting operators under the assumption (4.14).

PROPOSITION 6. Let h{x) be an arbitrary nonconstant function and assume
(4.14) holds. Define the coefficients of L6 by

h' '
3h" K42 + {KAX - 2Ku)h - \K5lh

2 + 3h3

+"3 ~ 2hn'2 + W1 ' (4.26)
a2 = h',

a0 = 8

where K\\, K4\, K42, K5l and K52 are constants. Then [L9, L6] = 0 if and only

if
lK2

5l-2K4l=0. (4.27)

If K4\ ^ 0 then (4.26) under the condition (4.27) give the most general com-
muting pair for which ax = ax

2
l2h and (4.14) holds. When (4.27) is satisfied,

the elliptic curve is given by

g\ — "(4^52 ~ 2^11^52 — 4^42^51 + ^41 + 6^11^41 + 3^11)'

gO = " ^ 5 2 + ^11^52 ~ 5^41^ 5 2 ~ 3/^11^41^52 — ^KnK52 — 54"

(4.28)
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PROOF. When a, = al
2

/2h, (4.27) follows from (4.16) since again by (4.14),
u0 = K5Xh + K52. Equation (4.11) gives x = - | ^ 5 i « i + K4xa\n. Putting this
X into (4.10), using (4.27) and cancelling a factor of K4X, we find

(a2a4)' + ax
2'

2{al
2'

2)'" + 4a2h - ±K5Xa2 = 0,

which gives the expression in (4.26) for a4. Setting (4.6) equal to the explicit x
in this case and using the formula for a4, then gives a3. The resulting solution
is then found to solve (4.8) provided (4.27) holds, and again (4.10) gives the
curve parameter gx = K3/3. g0 once more comes from (2.4).

Each of the results in Propositions 3, 5 and 6 contain statements as to the
generality of the solutions. This generality is determined by a condition on
the integration constant K4X. An obvious question is to ask what happens in
the cases when the condition guaranteeing generality fails. We conclude by
considering this question and give some examples.

The three special circumstances of interest are:
(i) ax = 0 and K4l = 0,

^ /

(iii) ax = a2
1/2h and K4X = 0.

All of these are in fact covered by the result of Proposition 4. When K4X = 0,
which was assumed in the derivation of (4.22), (i) and (iii) are covered by
inserting the special forms of ax into (4.21) and (4.22). Hence any solution
of (4.22) in these cases leads to commuting operators via the formulae (4.21),
and all commuting operators are obtained by solving (4.22). When ax — a2

2,
we get x = K4Xa\n. Now K4X = —3AT51/4 means that x — -3K5la

l
2
/2/4 =

—3#51ai/4, which is exactly the x used in the derivation of (4.22) from (4.21).
Hence for (ii), all commuting pairs are given by solving (4.22) with a\ replaced
by a2

2 and the coefficients of L6 are given by the corresponding reduction of
(4.21).

For the particular choice of ft = JC, it is easy to obtain interesting solutions of
(4.22) in the above three special cases.

EXAMPLES. For each of the examples below, we fix h = x and so a2 = 1. For
this choice, (4.22) reduces to

< + Avl - 4{x - \K5X)xv4 + 8Klxv4 - 9a, faxv'4 + 4(JC - f tf51) IvA

-9axK42 + (3K5lKn + \Kn)x + ^K^ - \KnKsx +AK2
U + K3 = 0.

(4.29)
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We give only the formula for v4 which solves the corresponding case of (4.29)
and the elliptic curve for L6 and L9. The formulae for a4, a3 and «o may be
generated by substituting for au a2, h and v4 in (4.21). Our examples all have a
similar form.

(i) When ax = 0 and K4X = 0 , the function

v4 = - § ( x - lK5l)~
2+K(x - \K5X)2 - ±K2

5l - Ku

is a solution of (4.29) provided K takes one of the values 0 or 2/3, and the
constants satisfy

Kn = | ( 2 K - 1)(4JC - l)Ar5
3,, K3 = - 1 2 + 10K.

For this case, the differential operators lie on the curve

Ll = L\ + (^K-A)U + Kl2.

(ii) When a{ = a\12 = 1 and K41 = -3K5]/4, the function

v, = -\(x - lK5l)-
2 ! 2 ±l

is a solution of (4.29) provided K again takes one of the values 0 or 2/3 and the
constants satisfy

- l)K3
5l - 81AT5,/16,

K3 = 9K42-9Kn + 10/c- 111/16- 81 Kl/32.

The differential operators lie on the elliptic curve

L\ = L\ + {3K42 SKU + UK-Z- %Kl) U

+(KA2 - Kn - ±Klf - 5K/2 + 165/64.

It is clear from both the curve and the formulae for a4 and a3 which come from
(4.21), that one of K\ i or K42 may be assumed to be zero since they appear only
in the combination K42 — Kn.

(iii) When ax = a\/2h = x and K4X = 0, the function

^ = (x ^ ) +K(X K) K K
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is a solution of (4.29) provided K takes one of the values 0 or 13/6 and the
constants satisfy

Kn = 27*42/2 + 8 1 ( 8 K 2 / 2 1 9 7 - 3 K / 3 3 3 8 + 1/208) ATf,,

K3 = 10/c-39+27/i:42/(:5i/4+81(48/<:2/28561-35/<:/8788 + 81/43264)/i:5
4
1.

The elliptic curve here is given by

where K^ is as given, and

( 5
2i(! - 291K42/W832+32499/i:5

4
1/4499456), if * = f,

if/c=O.

It is obvious that these three examples cannot be obtained from (4.17), (4.24)
or (4.26) respectively, by simply making the appropriate replacements for a\, a2,
h and K4l in those formulae. These examples can also be generalized slightly
by taking h = Kx where K is a constant. If one then allows the constants
to depend on extra variables y and t, the expressions for a4 can be made into
quadratically growing single pole rational solutions of the KP equation [15].

5. Final remarks

All of the solutions given in the last section were obtained under the assump-
tion (4.14), i.e. they all have H\(u0) = 0. As remarked earlier, if //I(M0) i=- 0
then the possibility exists of solving (4.12) directly for o4. To do this in a way
which keeps ax and a2 the arbitrary functions in the solution, we need to know
H\(u0), or equivalently UQ, in terms of a{ and a2. Since such an expression
for «0 is not obvious from the commutativity equations themselves, one altern-
ative is to look for a w0 which when put into (4.12) will produce an a4 of a
similar form to the one in (4.21). Then the expression for a3 can be obtained
from (4.11) and the solution checked in the remaining equations. For example,
setting Hi(u0) = a\n allows us to solve for u0 and hence x fr°m (411), and
the expression for a4 from (4.12), has the same first two terms as in (4.21).
Unfortunately the resulting expressions for a3 and a4 do not solve the commut-
ativity equations. Of course, there may be other choices of H\ (u0) for which
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this process does work. Support for this general idea comes from the similar
looking nature of all the solutions above. They all have the form

/ " 3 / " 2

a + +

for some arbitrary function / . If solutions for which Hi(u0) ^ 0 exist, it is
reasonable to expect them also to have this form. Also, this similarity of the
solutions might be explained by the use of Darboux transformations.

We have not been able to prove the existence or otherwise of solutions for
which Hi («0) ¥" 0- F° r solutions which do satisfy //] (M0) = 0, the situation
is no better. We have made next to no progress toward finding the general
solution of (4.22). As hinted earlier, it may indeed not be possible to achieve
one of the primary aims of the computational approach: the avoidance of elliptic
functions. In this regard, it would be of great interest to see how the explicit
formulae above compare with those of Mokhov which are written entirely in
terms of the Weierstrass p-function. This seems a computationally intensive
task which is beyond the current resources of the author.

It is fair to say that the computational approach here has been somewhat less
successful than in the case r = 2 [8].
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