percentage of the cohort than the O level.
We seem to have arrived at the present situation because it was thought necessary to teach everybody mathematics, and that everybody was capable of learning mathematics. I would question both: certainly there is a requirement for most people to have a facility with number, but how many actually need mathematics beyond arithmetic and very simple algebra? Perhaps we should take a leaf from the classicists' book and provide a 'Classical Civilisation' course - call it 'Mathematics for Living' - which is designed for all the cohort, and a 'Latin' course - call it 'Mathematics' which can then have a rigorous approach to the subject. It could cover the material in the present mathematics and additional mathematics syllabi, and provide a sound footing for the A level course. I already hear cries about disadvantaging the less able, but the present system does the opposite: it does nothing to challenge the more able, and provides a poor foundation for their further studies.

Reference

1. Tony Gardiner, The Art of Knowing, Math. Gaz. 82, 495 (November 1998), pp. 354-372.

Yours sincerely,
PETER MILDENHALL
Bury Grammar School, Tenterden Street Bury BL9 OHN

DEAR EDITOR,

Let $\tau(n)$ be the number of positive integers not exceeding n that are expressible as the sum of two squares. For small values of n, the ratio $\rho(n)=\tau(n) / n$ is around 0.35 . For example, $\rho(50)=0.36, \rho(100)=0.35$, $\rho(150) \approx 0.37$ and $\rho(200)=0.36$. Does this relation continue to hold for larger values of n ? Perhaps a reader knows of an asymptotic formula or could test the result further using a computer.

Yours sincerely,
Canon D. B. EPERSON
Hillrise, 12 Tennyson Road, Worthing BN11 4BY
DEAR EDITOR,
J. R. Goggins has pointed out a mistake (my typing error) in the article on Napoleon triangles [2]. Both entries $30-\theta$ in family A on page 416 should be $30-2 \theta$, the sextet being $(\theta, 30-2 \theta, 90+\theta ; 2 \theta, 30-2 \theta, 30)$.

Using an improved search program, my computer has found another adventitious set - $(15,30,51 ; 24,27,33)$ - bringing the total to 39 .

Adventitious angles occur in other contexts. Some years ago C. E. Tripp investigated quadrangles with integral angles [4]. These are related to the sextets by transformations such as that illustrated in Figure 9 of my article. Also J. F. Rigby has drawn my attention to a paper discussing the angles associated with triples of concurrent diagonals of regular polygons [3]. These are related both to Tripp's and my adventitious angles. Rigby's results demonstrate the existence of rational adventitious sextets that are not in any

