
10 

Spinning charges 

The Lorentz model includes by necessity the inner rotation of charges and, beyond 
the translational degrees of freedom, one has to determine its effective dynamics. 
This will lead to a derivation of the Bargmann-Michel-Telegdi (BMT) equation 
from a microscopic basis including an expression for the gyromagnetic ratio. We 
will also discuss the Abraham model with spin, a little-explored territory, since it 
is more easily controlled mathematically and it teaches us how the BMT equation 
is modified when Lorentz invariance is no longer available. 

10.1 Effective spin dynamics of the Lorentz model 

Let us recall the equations of motion for an extended charge, where for the moment 
the interaction with the self-field is ignored, 

p = f, s + f!pw · s = t . (10.1) 

Here the external force f, respectively the external torque t, are defined through 
(2.92), respectively (2.95). Equation (I 0.1) must be supplemented by 

p = mgu, s = hw, (10.2) 

which define the bare gyrational mass mg and the bare moment of inertia h. Both 
depend on lwl. 

We assume now that the external field tensor is slowly varying, by replacing 
F(q) by the scaled field tensor .sF(.sq) in (2.92), (2.95). Note that this prescription 
automatically includes slow variation in time. f and t simplify in the limit of small 
.sand, on the macroscopic scale, (10.1) becomes 

p = eF · u, s + f!pw · s = 11(F · w)j_ (I 0.3) 
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120 Spinning charges 

with the magnetic moment 

fL = ~e J d3xcp(x)x2 (10.4) 

and a_i = (g + u ® u) ·a. Since lwl is conserved, the translational motion is au­
tonomous, whereas the spin follows the local fields as they are encountered. 

As a next step we have to include the coupling to the self-field. In principle the 
scheme of chapter 7 has to be repeated, but we prefer to take the static short -cut. 
The energy-momentum relation for the Lorentz model was computed in chapter 4. 
Thus we stipulate that the bare gyrational mass mg is renormalized to mg + mf and 
the bare moment of inertia to h + h; see ( 4.43), ( 4.45), respectively ( 4.49), ( 4.51 ). 
This means that instead of (1 0.2) we have 

p = (mg + mf)u, s = (h + h)w. (10.5) 

Equation (10.3) together with (10.5) is the effective dynamics in the adiabatic limit 
on the Hamiltonian level neglecting radiation damping. 

We want to compare our spin dynamics with the BMT equation which reads 

. g e j_ 
w + f!pw · w = 2m (F · w) , (10.6) 

where m is the experimental mass and g the gyromagnetic ratio, which like the 
charge is an intrinsic property of the particle. Using the fact that f!pw is determined 
by Newton's translational equations of motion one arrives at the perhaps more 
familiar three-vector form for the angular velocity, 

w = _!_w x [(~- 1 + ..!:..)n - (~- 1)-Y-c-2 (v · B )v 
me 2 y ex 2 1 + y ex 

- (~- _Y_)c- 1v x E J. (10.7) 
2 1 + Y ex 

Here v, Eex, Bex are to be evaluated along the given orbit. To compare (10.6) with 
(1 0.3) one uses (1 0.6) and notes that, since lw I is a constant of motion, 

w + f!pw · w = _IL_(F · w)j_. 
h+h 

Therefore the gyromagnetic ratio of the Lorentz model is given by 

2M mg + mf 
g=-

e h+h 

(10.8) 

(1 0.9) 

The magnetic moment fL depends on the charge distribution, all other terms in 
(1 0.9) on the mass distribution. Through their variation any value of g can be real­
ized, unless the charge and mass form factors are equal to each other, as assumed 
already. In the case of a uniformly charged sphere [ball] of radius R the integrals 
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10.2 The Abraham model with spin 121 

in (10.9) can be evaluated with the result (the first term refers to a sphere and 
[ ... ] to a ball) 

11=leR2 , [ =leR2], (10.10) 

m" = mb-1-arctanhwR, [ = mb 3 
3 (wR- (1- (wR)2)arctanhwR)], 

b wR 2(wR)-

I e2 ( 2 ) [ I e2 ( 6 4 ) J ( 10. I I ) 
mf = -- I+ -(wR)2 = -- - + -(wR)2 (10.I2) 

2 4rr R 9 ' 2 4rr R 5 35 ' 

I ( I + (wR)2 ) 
h = mb 2w2 - 1 + wR arctanhwR , 

[= mb~ 3 
3 (3wR- (wR) 3 + ( -3 + 2(wR)2+(wR)4)arctanhwR)], 

2w 4(wR)-

2 e2 [ 4 e2 J (10.I3) 

h = 9 4rr R ' = 35 4rr R · (10.I 4) 

In the limite --+ 0, gsphere decreases from 1 to 2/3 and gball from 1 to 2/5 as wR 
increases from 0 to 1. In the opposite limit mb --+ 0, one obtains 

3 I 2 2I I 2 
gsphere = 2 + 3(wR) , gball = 10 + S(wR) . (10.I5) 

10.2 The Abraham model with spin 

Abraham models the charge as a nonrelativistic rigid body with mass distribution 
mbcp and charge distribution ecp, which for notational simplicity we take to be 
proportional to each other. A complete mechanical description must specify both 
the center of mass, q (t), and the angular velocity, w(t) E JR3, relative to the center. 
The spinning charge generates the current 

j(x, t) = (v(t) + w(t) x (x- q(t)))ecp(x- q(t)), (10.I6) 

which satisfies charge conservation, since cp is radial. Therefore the Maxwell equa­
tions have a modified source term and read 

atB(x, t) = -\7 x E(x, t), 

OtE(x, t) = \7 x B(x, t)- (v(t) + w(t) x (x- q(t)))ecp(x- q(t)), 

\7 · E(x, t) = ecp(x- q(t)), \7 · B(x, t) = 0. (10.I7) 
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122 Spinning charges 

The momentum of the center of mass is mbv(t) and the angular momentum 
relative to q (t) is 

(10.18) 

Therefore Newton's equations of motion for the translational degrees of freedom 
become 

~mbv(t) =fd3xecp(x- q(t))[E(x, t) + (v(t) + w(t) x (x- q(t))) x B(x, t)] 
dt 

and for the rotational degrees of freedom 

~h w(t) = J d3xecp(x- q(t))(x- q(t)) 
dt 

(10.19) 

x [E(x, t) + (v(t) + w(t) x (x- q(t))) x B(x, t)]. (10.20) 

If in addition there are external forces acting on the charge, then E and B in 
(1 0.19), (1 0.20) would have to be replaced byE+ Eex and B + Bex. respectively. 

The Abraham model of section 2.4 is obtained by formally setting w(t) = 0. 
Note that this is not consistent with Newton's torque equation (1 0.20), since 
w(t) # 0, in general, even for w(t) = 0. 

The Abraham model with spin conserves the energy 

(10.21) 

the linear momentum 

(10.22) 

and in addition the total angular momentum 

(10.23) 

Of course, also the spinless Abraham model is invariant under rotations and there 
must exist a correspondingly conserved quantity, only it does not have the standard 
form of a total angular momentum, which from a somewhat different perspective 
indicates that inner rotations must be included. 

In the by now established tradition, we assume that the external forces are 
slowly varying and want to derive in this adiabatic limit an effective equation of 
motion for the particle including its spin. As a first step of this program we have 
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10.2 The Abraham model with spin 123 

to determine the charge solitons. We set 

q(t) = vt, w(t) = w, E(x, t) = E(x- vt), B(x, t) = B(x- vt) (10.24) 

and have to determine the solutions of 

-v ·'VB=- 'V x E, - v · 'V E = 'V x B- (v + w x x)ecp, 

'V · E = ecp, 'V · B = 0, (10.25) 

0 = I d3xecp(x)[ E(x) + (v + w x x) x B(x) J, (10.26) 

0 =I d3xecp(x)x x [E(x) + (v + w x x) x B(x) J, (10.27) 

for which we turn to Fourier space. The inhomogeneous Maxwell equations 
(I 0.25) are then solved by 

with 

and 

E I (k) = -i[k2 - (k. v)2r 1 (k- (k. v)v)ecp(k)' 

E2(k) = -[k2 - (k. v)2r\w X k)(v. 'Vk)ecp(k)' 

Bl(k) = i[k2 - (k. v)2r\k X v)ecp(k)' 

B2(k) = -[k2 - (k. v)2r 1 (k X (w X 'Vk))ecp(k). 

Note that E1, B1 are odd, and E2, B2 are even ink. 

(10.28) 

(10.29) 

(10.30) 

(10.31) 

(10.32) 

Since the integral over an odd term vanishes, a zero Lorentz force results in the 
condition 

-I d3k(jJ*[k2 - (v. k)2r 1cw x k)(v. vk)(jJ 

-I d3k(jJ*[k2 - (v. k)2r 1v x (k x (w x vk))(j} 

+I d3k[k2 - (v. k)2r 1 ((w X 'Ilk)~) X (k X v)cp 

=-I d3k~[k2- cv. k)2rllkl-lcp;: 

x ((w xk)(v·k) +vx (k x (w xk))- ((w xk) ·v)k) =0 

for every v and w, using the fact that (jJ is radial. 

(10.33) 
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124 Spinning charges 

The Lorentz torque requires more work. Using again the fact that the integral 
over an odd term vanishes, we have 

i J d3ke$"*(Y'k x E1 + Y'k x (v x BJ) + Y'k x ((w x i\lk) x B2)) (10.34) 

= -e2 f d3klkl- 1$;'[k2 - (k · v)2r1cp{k X (k- (k · v)v) 

-k X (v X (k X v))) + e f d3klkl- 1$;'k X ((w X Y'k) X B2) 

= e J d3klkl- 1$;'k x (V'k(w · B2)- w\lk · B2) 

= -e J d3klkl- 1$;' x (k x w)\lk · B2. 

For the divergence of B2 we obtain 

and therefore zero Lorentz torque results in the condition 

J d3kiV'kCiJI 22[k2 - (k · v)2r2(k x w)(w · k- (v · w)(v · k)) = o. (10.36) 

Taking into account that cp is radial, the torque vanishes only if either w II v or 
w_iv. If v = 0, the torque always vanishes. For w oblique to v Eqs. (10.17)­
(10.20) have no soliton-like solution. 

Physically the charge distribution is rigid, but the electromagnetic fields are 
Lorentz contracted along v. This mismatch yields a nonvanishing torque unless 
w II v, respectively wl_v. Clearly, the mismatch is an artifact of the semirelativis­
tic Abraham model. As discussed in the previous section, for a relativistic ex­
tended charge distribution there is a charged soliton for every v and w. Because in 
the Abraham model some charge solitons are "missing", an analysis of the adia­
batic limit is hampered at an early stage and we do not really know what happens. 
Through radiation damping the spin could be forced to remain parallel to v(t). 

There could be an effective dynamics separately for the parallel and perpendicular 
components of w(t). Only one particular case lends itself to a more detailed analy­
sis. We simply make sure that q(t) = 0 for all t, e.g. by taking Eex = 0, Bex = EB 
with B a spatially constant, possibly time-dependent vector, and suitable initial 
conditions for the Maxwell field. Then the Abraham model without external forces 
has a stationary solution for every w and the adiabatic limit is meaningful and of 
interest. We take up this problem in the following section. 

In the quantized version of the Abraham model, the Pauli-Fierz Hamiltonian to 
be discussed in chapter 13, the spin couples differently and the Lorentz torque is 
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10.3 Adiabatic limit and the gyromagnetic ratio 125 

not the quantization of the right-hand side of (10.20). The Pauli-Fierz model has 
a two-fold degenerate ground state for every fixed total momentum (smaller than 
some critical value Pc). Associated to this subspace there is an adiabatic evolution 
which admits an arbitrary spin orientation. Thus through quantization one regains 
some features of the relativistic model. 

10.3 Adiabatic limit and the gyromagnetic ratio 

We consider a spinning charge sitting forever at the origin and hence choose 
Eex = 0, Bex = t:Bo with a constant Bo, the initial E field odd, and the initial 
B field even in x. Then the equations of motion simplify. We recall them for com­
pleteness, 

(]rB(x, t) =-V' x E(x, t), (]rE(x, t) = V' x B(x, t)- (w(t) x x)e<;?(x), 

(10.37) 

V' · E(x, t) = e<;?(x), V' · B(x, t) = 0, (10.38) 

together with Newton's rotational equations of motion 

h~w = e J d3x<;?(x)x x (E(x, t) + (w(t) x x) x (t:Bo + B(x, t))). (10.39) 
dt 

To obtain the effective dynamics let us first argue statically. The angular mo­
mentum, s, of the charge soliton is the sums = Sb +Sf with Sb = hw and 

Sf = f d3 XX X (E X B) (10.40) 

forE, B the charge soliton field at v = 0 and w. Inserting from (10.28)-(10.32) 
we obtain 

Therefore 

s = (h + h)w. 

The external torque is J-t x Bex with the magnetic moment 

J1 = fLW, fL = ~e f d3x<;?(X)x2 , 

and thus the spin precession reads 

d 
-s = J-t X Bex , 
dt 

d 
(h + h)-w = fLW X Bex. 

dt 

(10.41) 

(10.42) 

(10.43) 

(10.44) 
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126 Spinning charges 

The conventional definition of the gyromagnetic ratio g is through 

d e 
-w = g -w x Bex , 
dt 2m 

(10.45) 

where m is the mass of the particle; compare with the BMT equation (10.7) for 
small velocities. Equating (10.44) and (10.45) we deduce the effective g-factor of 

the Abraham model as 

Fore --+ 0 we obtain g = 1, as it has to be. In the opposite limit, mb --+ 0, only 
the second summands survive. We did not discover any simple bounds, but for a 
uniformly charged sphere and ball the integrals have already been computed at the 
end of section 1 0.1. One obtains with R = Rep the radius of the sphere, respectively 
ball, 

1 + (e2 j4rr Rmb)(2j3) 1 + (e2 j4rr Rmb)(4j5) 
gsphere = 1 + (e2 j4rrRmb)(1j3)' gball = 1 + (e2 j4rrRmb)(2/7) · (10.47) 

Thus gsphere--+ 2, respectively gball--+ 14/5, for Rmb--+ 0. For g = 2 the spin 
and orbital precession are exactly in phase, whereas for g = 1 the spin turns once 

during two cyclotron revolutions. 
To provide dynamical support we follow the scheme of chapter 7. One integrates 

(10.37), (10.38) and inserts in the Lorentz torque taking into account that the initial 

fields decay quickly. Then 

d 
h-w(t) = EJLW(t) x Bo + Nself(t), 

dt 

where, after some rearrangement, the retarded torque simplifies to 

t 2 2 f 3 ~2 Nself(t) = Jo ds3e d· kl\lkcpl 

(10.48) 

x (-(cos lkl(t- s))w(s) + l~l (sin lkl(t- s))w(t) x w(s)). 

(1 0.49) 
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10.3 Adiabatic limit and the gyromagnetic ratio 127 

Let us denote the solution to (10.48) by w£(t) = w(8t). We insert this ansatz in 
(10.49) and Taylor-expand. Then 

t-It 2 I N~elf(8- 1 t) = Jo ds3e2 d3kiVkiPP(- (cos lkl(8- 1t- s))w(8s) 

+_!_(sin lkl(8- 1t- s))w(8t) x w(8s)) 
lkl 

t-it 2 I ~ Jo ds3e2 d3kiVkiPP(- (cos lkls)(w(t)- 8sw(t) 

1 1 
+ 282s 2w(t)) + lkl(sin lkls)w(t)(w(t) 

-8sw(t) + ~82s 2w(t))). (10.50) 

Let 

fp = 100 
dttP I d3kiVkiPPI~I sinlklt, lp = 100 

dttP I d3kiY'kqJJ 2 coslklt. 

(10.51) 

Then, using the fact that (if is radial, 

Io =I d3kiY'kiP1 2 1kl-2 , h = 0, 

h = - 1 ld3xld3x'<p(x)<p(x')x ·x'lx -x'l = --1 ld3k1Vk(/il 2 1kl-4 , 
4rr 2rr 

(10.52) 

and 

lo = 0, lp = -pfp_1, p = 1, 2, .... (10.53) 

Therefore to order 8 2 

£ () 2 2 "() 212 () ""() N;elf t = -83e low t + 8 3 e hw t x w t , (10.54) 

and inserted in (10.48) 

1 
h8W(t) = 8JLW(t) X Bo- 8hW(t) + 82-e2 hw(t) X w(t)' (10.55) 

3 

where h = 2e2 Io j3 in agreement with the static result (I 0.41 ). 
Beyond the renonnalization of h we have also obtained the radiation reaction 

w(t) x w(t). As for the translational degrees of freedom only the solution on the 
center manifold is of physical relevance. To compute the effective dynamics we 
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128 Spinning charges 

regard (10.44) as the unperturbed dynamics and reinsert in (10.55). To be some­
what more general let us take Bo to be time dependent and varying on the slow 
time scale. One obtains 

(h + h)w = f-lW x Bo + 8e2 (!-lh/3(h +If) )(w(w · Bo) + (w x CBo x w))). 

(10.56) 

Since w 2 is conserved under (10.56), the radiation reaction only modifies the fre­
quency of gyration to order 8. A second-order term like w would lead to friction in 
the effective equation. As can be seen from (I 0.53), its prefactor h vanishes and 
radiation damping appears only at order 8 4 through 14 ·w·. 

Notes and references 

Section 10.1 

BMT is an acronym for Bargmann, Michel and Telegdi (1959). The BMT equa­
tion is explained in Jackson (1999). Bailey and Picasso (1970) is an informative 
article on how the BMT equation is used in the analysis of the high-precision mea­
surements of the electron and muon g-factor. The BMT equation with g = 2 is 
the semiclassical limit of the Dirac equation (Rubinow and Keller 1963; Bolte 
and Keppeler 1999; Spohn 2000b; Panati et al. 2002a). Appel and Kiessling 
(200 1) compute the effective parameters for a charge distribution concentrated on 
a sphere. 

Just as for translational degrees of freedom, one way to guess the effective spin 
dynamics is to impose Lorentz invariance. In addition, one could require that the 
equations of motion come from a Lagrangian action. In full generality, including 
an electric dipole moment, this program is carried out by Bhabha (1939), Bhabha 
and Corben (1941) with earlier work by Frenkel (1926). Alternative approaches 
are compared in Corben (1961) and Nyborg (1962). Concise summaries are Barut 
(1964), who discusses also how the BMT equation fits into the general scheme, 
Teitelbom et al. (1980), and Rohrlich (1990). A more microscopic approach would 
be to carry out the adiabatic limit for the Lorentz model of section 2.5. In Nodvik's 
version of the model such an expansion is pushed to the order where translational 
and rotational degrees of freedom couple (Nodvik 1964). 

The Lorentz model simplifies if initial data are assumed such that the particle 
moves at constant velocity. Then translational and rotational degrees of freedom 
decouple. Appel and Kiessling (2002) study the existence of solutions and their 
long-time limit. In the adiabatic limit, compare with section 1 0.3, the angular mo­
mentum responds to an external torque through the effective gyromagnetic ratio 
of (10.9). 
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Section 10.2 

The nonrelativistic model of a rotating charge is introduced by Abraham (1903) 
and studied by Herglotz (1903), Schwarzschild (1903), and Thomas (1927). 
Schwarzschild ( 1903) notes that a stationary solution exists only if w is either 
parallel or orthogonal to v. Kiessling (1999) remarks that the standard form of 
the total angular momentum is conserved only if the inner rotation of the charged 
particle is included. 

Section 10.3 

Grandy and Aghazadeh (1982) compute the gyromagnetic ratio to order e2 . The 
validity of the equations of motion (10.56) is proved in Imaikin et al. (2004). 
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