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Abstract. LetA′ be a complete characteristic(0, p) discrete valuation ring with absolute ramifica-
tion degreee and a perfect residue field. We are interested in studying the categoryF FA′ of finite
flat commutative group schemes overA′ with p-power order. Whene = 1, Fontaine formulated the
purely ‘linear algebra’ notion of afinite Honda system overA′ and constructed an anti-equivalence
of categories betweenF FA′ and the category of finite Honda systems overA′ whenp > 2. We
generalize this theory to the casee 6 p − 1.
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Introduction

This paper lays the foundations for generalizing Ramakrishna’s work [16] on de-
formations of Galois representations. The motivation is the problem of proving the
Shimura–Taniyama Conjecture in nonsemistable cases, and this requires extending
the results of [16] to cases with ramification allowed. The application of our group
scheme results to the deformation theory of Galois representations is given in [4]
(below, we will formulate a simplified version of the main result of [4]). In [CDT],
these deformation-theoretic results are used to establish the Shimura–Taniyama
Conjecture for elliptic curves overQ which acquire semistable reduction over a
tamely ramified extension ofQ3 (and in [BCDT] the remaining ‘wild’ cases of
the conjecture and handled by using [breuil], which generalizes the results of this
paper via much more sophisticated techniques). At the end of this Introduction, we
make some remarks on these matters.

First, let’s describe the basic setting which we will consider. Let(A′,m) be
a complete mixed characteristic discrete valuation ring with perfect residue field
k having characteristicp, and letA = W(k). We are interested in studying the
categoryF FA′ of finite flat commutativeA′-group schemes withp-power order.
Whenp > 2 andA′ = A, Fontaine constructs in [8] a fully faithful, essentially
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240 BRIAN CONRAD

surjective functor fromF FA′ to the categorySHf

A′ of finite Honda systems overA′,
whose objects consist of finite-lengthW(k)-modules with various extra structures.
Fontaine’s central tool is the theory he develops in his book [7]. He obtains a similar
result whenp = 2 for unipotent group schemes. But what if one does not require
e(A′) = 1?

It follows from [17, Cor. 3.3.6(1)] that the categoryF FA′ is Abelian whenever
e = e(A′) < p − 1, using scheme-theoretic kernel as the kernel, so it is natural
to ask if Fontaine’s results can be extended to cover this general case. We have
developed such a generalization and following Fontaine, we call the corresponding
categorySHf

A′ of module structuresfinite Honda systems overA′. Whene 6 p−1,
we define categoriesSHf,u

A′ andSHf,c

A′ of unipotentandconnected finite Honda sys-
tems overA′ and obtain similar results, extending those of Raynaud and Fontaine
for such ramification values.

Whene < p − 1, we define a contravariant additive functorLMA′: F FA′ →
SH

f

A′ (Theorem 3.4) which we prove is fully faithful and essentially surjective
(Theorem 3.6). The Abelian category structure onSH

f

A′ is made explicit too (The-
orem 4.3). We have similar results for the full subcategories of unipotent and
connected objects whene 6 p − 1. For e = 1, we recover Fontaine’s original
construction.

The full details of the proof of Fontaine’s result in the unramified case have
never been published ([8] is a brief announcement outlining the main steps of the
proof). These details are essential for an understanding of the more general argu-
ments, so we begin by writing them out fully in Section 1. We use ideas introduced
by Fontaine in [7] in order to generalize everything to the case in whiche 6 p−1.
The calculations required for the casee > 1 are far more cumbersome than in the
unramified case and some of our arguments will only work whene > 1, so we first
present thee = 1 proof. It should be emphasized that [7] is vital for everything that
we do.

We construct a ‘base change’ functor for finite Honda systems (Theorem 4.8)
and we verify that this construction is compatible with base change of finite flat
group schemes (of course only allowing base changes which preserve thee 6 p−1
condition). The base change formalism has some interesting applications. For ex-
ample, it can be used to prove a theorem about good reduction of Abelian varieties
(Theorem 5.3). Also, this formalism allows us to translate generic fiber Galois
descent into the language of finite Honda systems, thereby laying the groundwork
for generalizing the work of Ramakrishna [16] to ramified situations.

This second application is briefly described in Section 5 and is more fully
developed in [4]; it is concerned with a deformation-theoretic study of certain con-
tinuous representations̄ρ: Gal(Q̄p/Qp) → GL(Fp). Fix a finite extensionK/Qp

inside ofQ̄p, with e = e(K/Qp) satisfyinge 6 p− 1. We assume that̄ρ|Gal(Q̄p/K)

is the generic fiber of a finite flat group schemeG overOK which is connected and
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FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION 241

has a connected Cartier dual. There is also the mild technical hypothesis that ifM

is the Dieudonné module of the closed fiber ofG, then the sequence of groups

0→ M/VM
F- M/pM = M → M/FM → 0

should be exact (this is automatically satisifed ifG is thep-torsion of ap-divisible
group). For the motivating application to the study of modularity of certain elliptic
curves overQ, these conditions are satisfied. As long asρ̄ has trivial central-
izer, there is a universal deformation ringRK(ρ̄) classifying deformationsρ of
ρ̄ to complete local noetherianZp-algebrasR with residue fieldFp such that
ρ|Gal(Q̄p/K)

modmn
R is the generic fiber of a finite flat group scheme overOK for all

n > 1. In [4], we use the results in this paper to prove the following theorem.

THEOREM. The representation̄ρ has trivial centralizer andRK(ρ̄) ' Zp[[T1, T2]].
We also obtain in [4] similar results in somewhat more general settings.
After the writing of this paper was completed, the author found that the general

problem of extending Fontaine’s results on finite flat group schemes to a setting
with e > 1 has been considered before, in [18]. However, the methods and results
in [18] are very different from ours. Let us explain this point more carefully. We
develop a theory which classifies group schemes in terms of ‘intrinsic’ finite-length
module data. This theory makes it possible to do explicit calculations, even if we
are interested in studying maps between group schemes (as opposed to studying
a single group scheme). Such computability is essential in the proof of the de-
formation theory result mentioned above. The theory in [18], which applies under
less restrictive conditions on the ramification, is motivated by the theorem of Oort
which asserts that any object inF FA′ arises as the kernel of an isogeny ofp-
divisible groups. The classification of finite flat group schemes in [18], which uses
very different techniques of proof, is given in terms of pairs of finite free modules
with maps between them [18, pp. 16–18].

That is, in some sense [18] works with a presentation of a finite-length mod-
ule rather than directly with the finite-length module itself. This leads to serious
difficulties once one tries to study maps between group schemes. For example, if
G andG′ are two objects inF FA′ and01 → 02, 0′1 → 0′2 are isogenies ofp-
divisible groups overA′ with respective kernelsG andG′, then it is not generally
true that any mapf :G → G′ in F FA′ is induced by a compatible pair of maps
01 → 0′1, 02 → 0′2. Thus, any attempt to study morphisms inF FA′ by means
of [18] requires frequently ‘changing the presentation’, and this makes explicit
computations difficult or impossible to carry out.

The approach in [18], on the other hand, is useful in the study of lifting questions
for a single fixed group scheme. For example, for anye > 1 andp > 5, the theory
in [18] enables one to construct ‘lifts to characteristic 0’ of any object inF Fk.
This is something our approach cannot establish fore > p − 1. Due to absent-
mindedness of the author, this paper is appearing in print somewhat later than it
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should have. It therefore seems appropriate to discuss subsequent developments.
In [breuil], Breuil constructs a ‘linear algebra’ theory for finite flat group schemes
(subject to some flatness conditions onp-power torsion levels, and withp > 2)
without any restrictions on the ramification. Whene < p− 1, Breuil’s category of
‘linear algebra’ objects is equivalent to (but not literally the same as) the category
studied in this paper. However, whereas our theory is given in terms of filtered
modules over a discrete valuation ring, Breuil’s more general theory works with
filtered modules over thep-adic completion of a certain divided power envelope
and depends upon achoiceof uniformizer. In the case ofp-torsion objects, Breuil’s
category can be identified with a simpler category of finite-length filtered modules
over a small artin ring. This theory provides the necessary local tools to com-
plete the proof of the remaining ‘wild’ cases of the Shimura–Taniyama Conjecture
[BCDT].

There are several reasons why the results in this paper still seem to be of in-
terest (if one is in a situation with low ramification). First of all, the methods are
certainly much more elementary; e.g., there is no use of the techniques of crys-
talline cohomology. Also, we makeno flatness restriction on thep-power torsion
levels and the intrinsic description of base charge (preserving the low ramification
condition) is very simple, whereas base charge in the setting of [breuil] is somewhat
complicated; this is mainly due to the fact that the theory in [breuil] depends upon
a choice of uniformizer of the base. However, the main distinction between the
two approaches is seen if one wants to do explicit calculations with group schemes
which arenot necessarilykilled byp (over bases with absolute ramification degree
e < p − 1). Without ap-torsion hypothesis, the theory in [breuil] is well-suited to
theoretical considerations and analysis ofp-divisible groups, but it does not seem
amendable to explicit calculations at general ‘finite level’. At some future time, this
problem will no doubt be overcome. In the meantime, we should be grateful that
the local calculations in [BCDT] only require working with objects killed byp.

Summary of some results of Fontaine

Fontaine’s book [7] is absolutely essential in everything that we will do. It develops
the foundations for Dieudonné modules as we will use them and also supplies the
results on formal group schemes which will be the starting point for our study
of finite flat group schemes. As a convenience to the reader we will now give an
overview of the basic results and notation that we take from [4]. We will only
formulate the results in the most common cases of application for our arguments,
but the reader should keep in mind that much greater generality is needed in order
to carry out the proofs of the main results in [7], including ones we will invoke
later on (e.g., Fontaine’s classification ofp-divisible groups).

Let k be a perfect field with characteristicp > 0. For any finitek-algebraR,
we define theR-valued Witt covectorsCWk(R) to be the set of sequencesa =
(. . . , a−n, . . . , a0) of elementsai ∈ R indexed by non-positive integers, withai
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nilpotent for largei. This is to be thought of as analogous toQp/Zp. LettingSm ∈
Z[X0, . . . , Xm, Y0, . . . , Ym] denote themth addition polynomial forp-Witt vectors
[7, pp. 71–72], and choosinga,b ∈ CWk(R), the nilpotence condition ensures that
the sequence

{Sm(a−n−m, . . . , a−n, b−n−m, . . . , b−n)}m>0

is stationary. Denoting the limit byc−n, it is true thatc = (c−n) ∈ CWk(R) and
defining a + b =def c makesCWk(R) into a commutative group with identity
(. . . ,0, . . . ,0) [7, Prop. 1.4, Ch. II]. ForR = k′ a finite extension ofk,CWk(k

′) is
exactlyK ′/W(k′), withK ′ the fraction field ofW(k′).

We topologizeCWk(R) by viewing it as a subset of the product space
∏
n60R,

where each factor is discrete. This makesCWk(R) a topological group. Moreover,
it admits a unique compatible structure of topologicalW(k)-module such that for
all x ∈ k, with Teichmüller lift [x] ∈ W(k), we have

[x] · a= (. . . , xp−na−n, . . . , xp−1
a−1, a0).

The operationsF, V :CWk(R)→ CWk(R) given by

F(a) = (. . . , ap−n, . . . , ap0 ), V (a) = (. . . , a−n−1, . . . , a−1)

are additive, continuous, satisfyFV = VF = p, and with respect to theW(k)-
module structure areσ andσ−1-semilinear respectively, whereσ :W(k) → W(k)

is the Frobenius morphism.
In other words,CWk(R) is a module over the Dieudonné ringDk = W(k)[F, V ]

generated by two commuting variables with the usual relationsFV = VF = p,
Fα = σ (α)F , V α = σ−1(α)V (for α ∈ W(k)), and there is a compatible structure
of topologicalW(k)-module with respect to whichF andV act continuously. We
abbreviate this by saying thatCWk(R) is a topologicalDk-module(though note
that we do not put a topology onDk). This is all functorial inR. For proofs, see [7,
pp. 79–82]. WhenR = k′ is a finite extension ofk, the topology andDk-module
structure onCWk(k

′) ' K ′/W(k′) are as usual.
If R is a complete local noetherianW(k)-algebra with residue field a finite

extension ofk, we define the topologicalDk-module

ĈWW(k)(R) = lim←− CWk(R/m
n
R),

wheremR is the maximal ideal ofR. This is a Hausdorff topologicalDk-mod-
ule, functorial inR. In fact, if R is any separated and complete topological
W(k)-algebra with a base of open ideals, one can define a topologicalDk-module
ĈWW(k) (R) functorially inR [7, Ch. II, Prop. 2.3]. However, due to pathologies
which arise from the relation between product topologies and direct limit topolo-
gies [12, Exer. 40A], one needs to be extremely careful when dealing with such
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generalR. The only such pathologicalR that will really arise for us are rings
such as the valuation ring ofCp, with thep-adic topology (the problem is that the
quotients of this ring by powers ofp do not have a nilpotent nilradical). This ring
only arises in formulating an ‘explicit’ dictionary between ‘linear algebra data’ and
Galois representations; since this is not relevant to our classification theorems, we
won’t address this issue any further.

The functorCWk on finite k-algebras is pro-represented by a formal affine
commutativek-group scheme, denoted̂CWk [7, Sect. 4.2, Ch. II]. IfR is a com-
plete local noetheriank-algebra with residue field a finite extension ofk, then
ĈWk(R) = ĈWW(k)(R). For anyp-formal commutative group schemeG overk –
i.e., one for whichG ' lim−→ G[pn] (e.g., a finite flat commutativek-group scheme

with p power order, or ap-divisible group overk) – we define theDieudonné mod-
ule M(G) = Hom(G, ĈWk), the group of formalk-group scheme maps fromG
to ĈWk. This is motivated by the functorG Hom(G,C×) ' Hom(G,Qp/Zp)
for finite Abelianp-groups. The action ofDk on the functorCWk gives rise to an
action ofDk on M(G). One can also define a suitable topology onM(G) with
respect to which it is a topologicalDk-module [7, Sect. 1.2, Ch. III]. All of the
standard properties of the classical Dieudonné module theory are proven in [7,
Ch. III] based on this definition. The main result of this theory is that the functor
M sets up an antiequivalence of Abelian categories betweenp-formal commutative
group schemes overk and certain topologicalDk-modules. There are various spe-
cializations of this theorem to finite commutativek-group schemes withp-power
order, connected commutativep-formal k-group schemes, etc.

The main result in [7] is that one can ‘enhance’ this theory to classifyp-
divisible groups over suitable bases (up to isogeny or isomorphism, depending on
ramification) in terms of ‘linear algebra’ data.

NOTATION. Throughout this paper, we fix a perfect fieldk with characteristicp >
0 and letA denoteW(k) andK its fraction field. The Dieudonné ringA[F, V ] of k
as introduced above is denotedDk. Note that fork 6= Fp, this is not commutative.
We let (A′,m) be the valuation ring of a finitetotally ramifiedextensionK ′ of K,
with e = e(A′) = [K ′:K] the absolute ramification index ofA′. The category of
finite flat commutative group schemes overAwith p power order is denotedF FA,
andF F c

A , F F u
A are the full subcategories consisting of connected and unipotent

(i.e., connected Cartier dual) objects, respectively. We defineF Fk, F FA′ , etc. in a
similar manner.

A p-adic A′-ring is a flatA′-algebra which isp-adically separated and com-
plete. The main examples to keep in mind are power series ringsA′[[X1, . . . , Xn]],
finite flat A′-algebras, and the valuation ring of the completion of an algebraic
closure ofK ′.
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1. Finite Flat Group Schemes: The Casee = 1

We wish to develop a ‘linear algebra’ theory of finite flat group schemes. It will
always be assumed that the absolute ramification indexe = e(A′) satsifiese 6
p − 1. Our aim is to construct an equivalence of categories betweenF FA′ (resp.
F F c

A′, F F u
A′) and a certain category of ‘linear algebra data’ whene < p−1 (resp.

e 6 p − 1).
In the casee = 1, a theorem in this direction has been proven by Fontaine. His

brief announcement [8] sketches the outline of the proof, but omits some technical
details. This section is just a technical exposition of Fontaine’s announcement and
contains nothing new (note that we formulate the main result to include connected
group schemes whenp = 2, but the argument is essentially the same as Fontaine’s
in the unipotent case). Some of these details are essential for understanding the
motivation behind the generalization we will prove. Therefore, in the interest of
completeness (and since the arguments in the casee = 1 are far simpler to explain),
we will first review Fontaine’s proof in full detail for the casee = 1. Then this
method will be generalized in the sections which follow.

It may be instructive to first explain the general strategy. Whene < p − 1,
Fontaine constructs an essentially surjective, fully faithful contravariant additive
functorLMA′ from the category ofp-divisible groups overA′ to a certain category
of ‘linear algebra data’ in which the objects are pairs(L,M) with L a finite free
A′-module andM a finite freeA-module, together with various extra structures
and properties required [7, Ch. IV, Sect. 5, Prop. 5.1(i)]. The construction of such
a functor depends heavily on the conditione < p − 1. Whene 6 p − 1, the
method applies to connected and unipotent objects. Forarbitrary e, Fontaine can
only describe the category ofp-divisible groups overA′ up to isogeny [7, Ch. IV,
Sect. 5, Prop. 5.2]. One can think of the constraint one as being related to forcing
the convergence of thep-adic logarithm onm, which is relevant because in some
sense, the failure of Fontaine’s method to yield a fully faithful functor for largee

is related to the failure of the torsion points of ap-divisible group overA′ to inject
into the torsion points of the closed fiber for largee. A large radius of convergence
for the logarithm can ensure such injectivity (though the logarithm is not explicitly
used in Fontaine’s arguments).

The functorLMA′ on p-divisible groups suggests that objects inF FA′ which
occur insidep-divisible groups overA′ ought to correspond to analogous ‘linear
algebra data’ in which theA andA′-modules have finite length. Whene = 1,
Fontaine carries out this idea while simultaneously showing that for oddp all
objects inF FA occur inside ap-divisible group overA, and similarly forF F u

A

and unipotentp-divisible groups for allp. It is a (nontrivial) theorem thatevery
object inF FA′ occurs in ap-divisible group overA′ (with no conditions one or
p). This suggests that we should try to use Fontaine’s classification ofp-divisible
groups overA′ in conjunction with a generalization of his method for analyzing
F FA usingp-divisible groups in order to describeF FA′ via ‘linear algebra data’.
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We will not use the theorem about embedding objects inF FA′ into p-divisible
groups overA′, though our methods rederive this result in the cases we consider.

Briefly, the underlying principle is summed up as follows.Smoothfinite-
dimensional commutative formal group schemes overA′ are extensions of etale
ones by connected ones, with the connected ones having as their affine ring a
formal power series ring in finitely many variables. This is how Fontaine is able
to get decisive results on such formal group schemes [7, Ch. IV, Sect. 4.8, Thm. 2].
Sincep-divisible groups are special examples of such formal group schemes and
they provide a convenient setting in which objects inF FA′ arise ‘in nature,’ a
classification theory forp-divisible groups overA′ can be expected to lead to a
classification theory for finite flat closed subgroup schemes ofp-divisible groups
(and fortunately all objects inF FA′ arise in this way). Thus, the result of Serre and
Tate [19, Prop. 1] that connectedp-divisible groups are necessarilysmooth(in the
formal sense) is the main starting point for everything that follows.

Let’s now derive Fontaine’s results in the casee = 1. Choose an objectG in
F FA, with M = M(Gk) the Dieudonné module of the closed fiberGk of G. By
viewing formal k-group scheme homomorphismsG → ĈWk as just formalk-
scheme homomorphisms, we get a natural embedding of theDk-moduleM as a
finite-lengthA-submodule of the topologicalDk-moduleCWk(Rk), whereR is
the finite flatA-algebra which is the affine ring ofG (the induced topology onM
is exactly thep-adic topology). We denote byRk andRK the closed and generic
fibers respectively ofR overA. Also, 1 will be our notation for a comultiplic-
ation map (1G, 1Gk , etc.). LetL = LA(G) ⊆ M denote kernel of theA-linear
composite map

M ↪→ CWk(Rk)
wR- RK/pR,

wherewR is the continuousA-linear map given by

wR((a−n)) =
∑
n>0

p−nâp
n

−n modpR,

with â−n ∈ R any lift of a−n ∈ Rk. For a proof thatwR is well-defined,A-linear,
and continuous, see [7, Ch. II, Sect. 5.2].

The motivation for considering this particularL will become clear in the argu-
ments below. At this point it should be remarked that the topology issues involved
are far too cumbersome to review here, but a careful reading of [7] shows that all
formal manipulations we will carry out with limits and infinite sums are valid. For a
ring like R, which is a finite flatA-algebra, the topology we use onR is itsp-adic
one. Also, the topology we use onRK is its natural topology as a finite-dimensional
K-vector space and the topology we use onRk is the discrete one.

Observe that sinceM/FM is killed by p, there is a naturalk-linear map
L/pL → M/FM. We are now ready to establish some essential properties of
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the pair(L,M). It should be pointed out that the first of the properties we prove is
quite natural to expect; cf. [7, Ch. IV, Prop. 1.6].

THEOREM 1.1. The naturalk-linear mapL/pL → M/FM is an isomorphism
and the restriction ofV toL ⊆ M is injective.

Proof.We first need to prove the following sufficient criterion for an element of
CWk(Rk) to actually lie inM: if a ∈ CWk(Rk), wR(a) = 0, andV a ∈ M, then
a ∈ M (in this proof, we reserve the boldface font for covectors, and sometimes for
elements ofM when we wish to emphasize their nature as covectors). In order to
prove this, we writea = (a−n) and becauseM is by definitionthe group of formal
k-group scheme homomorphisms fromGk to ĈWk, we need to verify that

(1Gk(a−n))
?= (a−n ⊗ 1)+ (1⊗ a−n).

SinceV is additive andV a ∈ M by hypothesis, applyingV does yield an equality.
Hence, it remains to compare the 0th-coordinates on both sides, which is to say
that we must check

1Gk(a0)
?= lim

m→∞ Sm(a−m ⊗ 1, . . . , a0⊗ 1;1⊗ a−m, . . . ,1⊗ a0),

in Rk⊗k Rk ' (R⊗AR)k. Here,Sm is the usualmth-coordinate addition polyno-
mial for p-Witt vectors (and indeed this sequence in the discreteRk ⊗k Rk in we
are taking a limit does eventually becomes constant).

SincewR(a) = 0, in RK we have
∑

n>0p
−nâp

n

−n = py for somey ∈ R.

Replacingâ0 by â0 − py, we may assumey = 0. That is,â0 = −∑n>1p
−nâp

n

−n.
NowG is a lift of Gk as agroup scheme, so1Gk(a0) ∈ (R ⊗A R)k is represented
by the element1G(â0) ∈ R ⊗A R. SinceR ⊗A R is ap-adicA-ring (i.e, a flat
A-algebra which is separated and complete with respect to thep-adic topology),
the addition formulas for̂CWA(R ⊗A R) permit us to define

L−m( â ) = lim
N→∞ SN(â−N−m ⊗ 1, . . . , â−m ⊗ 1;1⊗ â−N−m, . . . ,1⊗ â−m)

in R ⊗A R, wherêa= (â−n) ∈ ĈWA(R). We are given that for allm > 1,

1G(̂a−m) ≡ L−m( â)modp(R ⊗A R).

We need to prove this whenm = 0.
Combining our expression for̂a0 in terms of theâ−n for n > 1 with the above

congruences form > 1, it suffices to show that the element∑
n>0

p−nL−n( â)p
n ∈ (R ⊗A R)K
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lies inp(R ⊗A R). In other words, we wish to prove

wR⊗AR((L−n( â)modp(R ⊗A R)))
?= 0.

However,by definition

(L−n( â )modp(R⊗A R)) = (a−n ⊗ 1)+ (1⊗ a−n).
SincewR⊗AR is additive, we conclude that

wR⊗AR((L−n( â )modp(R⊗A R))) = wR⊗AR(a−n ⊗ 1)+ wR⊗AR(1⊗ a−n).
This is equal towR(a)⊗ 1+ 1⊗ wR(a) in

(R ⊗A R)K/p(R ⊗A R) ' (RK/pR)⊗A (RK/pR) and wR(a) = 0,

so we are done.
Now that we have established a criterion for membership inM, we can begin

the proof of the theorem. First, let’s prove thatpL = (FM) ∩ L, so the map
L/pL → M/FM is at least injective. Since one inclusion is obvious, choose
a ∈ (FM) ∩ L, soa = Fb with b ∈ M. Defineb = (. . . , b−n+1, . . . , b0, b1) ∈
CWk(Rk), with b1 ∈ Rk to be chosen later andb = (b−n) = V b. Observe that
pb = FV b = Fb = a, so if wR(b) = 0 thenV b = b ∈ M implies (by our
criterion) thatb lies inM, thus inL, and soa ∈ pL as desired.

It remains to chooseb1 ∈ Rk so thatwR(b) = 0. If b̂−n ∈ R is a lift of b−n (so
we defineâ−n = b̂p−n) andb̂1 ∈ R is a lift of b1, thenwR(b) is represented by the
element ofRK given by

b̂1+
∑
n>1

p−nb̂p
n

−n+1 = b̂1+ 1

p

∑
n>0

p−nâp
n

−n.

The sum
∑

n>0p
−nâp

n

−n is a representative forwR(a), which vanishes inRK/pR,
so this sum lies inpR. Thus, we can choose

b̂1 = − 1

p

∑
n>0

p−nâp
n

−n ∈ R,

and this ensureswR(b) = 0, as desired.
The surjectivity ofL/pL ↪→ M/FM will be proven by a length calculation. In

order to compute the relevant lengths, and in order to prove the injectivity of the
restricted semilinear mapV :L → M, we will show that the natural mapL[p] ⊕
kerV → M[p] is a surjection. Choosex = (x−n) ∈ M[p], so xp−n = 0 for
all n > 1 (recallp = FV ). We will prove that there exists a decomposition (in
CWk(Rk)) x = y+ (. . . ,0, . . . ,0, z), with yp−n = 0 for all n > 1 andwR(y) = 0.
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Note that if this holds, theny−n = x−n for all n > 1, soV y = V x ∈ M and so by
our criteria above,y ∈ M and soy ∈ L. Furthermore, sincepy = VFy = 0, we
havey ∈ L[p]. Since this also forces(. . . ,0, . . . ,0, z) = x−y ∈ M, the existence
of a decomposition as indicated above is sufficient in order to establish the desired
surjectivity.

Hence, we want to findy, z ∈ Rk such that

x = (. . . , x−n, . . . , x−1, y)+ (. . . ,0, . . . ,0, z)
with wR(y) = 0, wherey denotes the first covector on the right side. Clearly
if y ∈ Rk exists so thatwR(y) = 0, then equating 0th-coordinates shows the
existence ofz. In other words, it suffices to check that ifx̂−n ∈ R is a lift of x−n
for n > 1, then

∑
n>1p

−nx̂p
n

−n ∈ R, where the sum a priori lies inRK . We can
then sety to be the reduction modulopR of the negative of this sum.

But xp−n = 0 for all n > 1, so we have for suchn that

p−nx̂p
n

−n = p−n(x̂p−n)pn−1 ∈ ppn−1−nR.

Combining this withpn−1 − n > 0 for all n > 1 then completes the proof that
L[p]⊕ ker V → M[p] is surjective. This surjection yields the length relation
`A(L/pL) > `A(M/pM) − `A(M/VM), so in order to prove thatL/pL ↪→
M/FM is an isomorphism, it is sufficient to check that the sequence

0→ M/VM
F- M/pM → M/FM → 0,

which is at least right exact, is in fact exact. Sincep = FV , this is clearly equiv-
alent to the assertion that the kernel ofF lies in the image ofV . This is a very
special property ofM (e.g., it implies thatαp/k cannot arise as the closed fiber of
an object inF FA, though this is also clear by [15, Sect. 2, Rem. 3]).

To verify this exactness, suppose for somex ∈ M ⊆ CWk(Rk) that Fx =
0, so xp−n = 0 for all n > 0. We want to find somey ∈ Rk so thaty =
(. . . , x−n+1, . . . , x0, y) lies inM (so thenx = V y is in the image ofV ). Thanks
to the criteria for membership inM, it is enough to findy so thatwR(y) = 0.
If x̂−n ∈ R is a lift of x−n, then as above we see that forn > 1, p−nx̂p

n

−n+1 ∈
pp

n−1−nR ⊆ R. Thus, simply definey = −∑n>1p
−nx̂p

n

−n+1 modpR.
We may now also conclude that`A(L/pL) = `A(M/pM) − `A(M/VM), so

the surjectionL[p] ⊕ kerV � M[p] is an isomorphism. This clearly implies that
V |L is injective and the injectionL/pL ↪→ M/FM is an isomorphism. 2

Thanks to this theorem, we are motivated to make the definition (following
Fontaine).

DEFINITION 1.2. A finite Honda system overA is a pair(L,M) whereM is a
Dk-module with finiteA-length andL ⊆ M is anA-submodule such thatV |L is
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injective and the naturalk-linear mapL/pL→ M/FM is an isomorphism. These
objects form a categorySHf

A in an obvious manner. The full subcategorySHf,u

A of
unipotent finite Honda systems overA consists of those objects(L,M) for which
the action ofV onM is nilpotent. The full subcategorySHf,c

A of connected finite
Honda systemsconsists of those objects(L,M) for which the action ofF onM is
nilpotent.

LEMMA 1.3. The categorySHf

A is Abelian. For a morphismϕ: (L1,M1) →
(L2,M2), kerϕ = (L′,M ′), whereM ′ = ker(M1→ M2) andL′ = L1∩M ′. Also,
cokerϕ = (L′′,M ′′), whereM ′′ = coker(M1 → M2) andL′′ is the image of the
composite map ofA-modulesL2→ M2→ M ′′. This category is also Artinian.

The same statements are true forSHf,u

A and SHf,c

A . The forgetful functors
SH

f,c

A , SH
f,u

A → SH
f

A are exact.
Proof. One way to prove this is to observe that by [9, Prop. 8.10], we have an

equivalence of categories betweenSHf

A and the category denotedMFf,2A,σ,p,tor (in
[9]), with explicit functors in both directions. Now simply examine the proof in
[9, Prop. 1.8] that this latter category is Abelian (and Artinian). Similar arguments
apply in the unipotent and connected settings.

A direct proof could also be given by translating the arguments in [6, Sect. 1]
through the above equivalence of categories, but this is unnecessary and so we
won’t bother with it. 2

The above lemma can also be deduced from the main results below. This will be
explained after Corollary 1.6 and will be useful in the proof of our generalization
to cases withe > 1.

Theorem 1.1 allows us to define the functorLM = LMA: F FA → SH
f

A

via LM(G) = (LA(G),M(Gk)). This is an additive contravariant functor. Since
unipotence and connectedness can be detected on the closed fiber, we can ‘restrict’
LM to get an additive contravariant functorLMu = LMu

A: F F u
A → SH

f,u

A , and
LMc = LMc

A is defined similarly. The main theorem in the present setting (e = 1)
is the following.

THEOREM 1.4. If p > 2, thenLM is fully faithful and essentially surjective. The
same is true forLMu andLMc for all p.

In other words,LM (resp.LMu, LMc) is an equivalence of categories for
odd p (resp. for allp) in the usual weak sense. That is, we don’t yet claim to
construct an explicit quasi-inverse functor, but for all practical purposes we can
regardLM (resp.LMu) as an equivalence of categories (this is also the sense in
which Fontaine uses this notion in [7, Ch. IV] and [8]). With further work, one can
construct explicit quasi-inverses. We’ll say more about this later. It is because the
group schemesµ2 andZ/2 overZ2 have isomorphic generic fibers that we need a
restriction forp = 2.
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Before proving Theorem 1.4, we record two corollaries as noted in [7]. These
are special cases of Raynaud’s result [17, Cor. 3.3.6] (together with an analogous
argument whene = 1 = p − 1), and Raynaud’s proof of the first corollary below
is by somewhat different methods.

COROLLARY 1.5. If p > 2, thenF FA is stable under the formation of scheme-
theoretic kernels and is an Abelian category. A morphism is a kernel if and only
if it is a closed immersion and is a cokernel if and only if it is faithfully flat. The
formation of the cokernel of a closed immersion is as usual.

For all p, the same statements are true forF F u
A andF F c

A (the full subcategory
of connected objects). Moreover, the forgetful functors fromF F u

A and F F c
A to

F FA are exact for oddp.
Proof.We give the argument for oddp andF FA. The arguments forF F u

A and
F F c

A are done similarly.
By Theorem 1.1 and Lemma 1.3,F FA is an Abelian category. Iff :G→ G′ is

a morphism andK denotes the (abstract) kernel object in the Abelian category
F FA, then a consideration of Dieudonné modules on the closed fiber and the
definitionof LM shows that the natural mapKk → ker(fk) is an isomorphism,
with ker (fk) denoting the scheme-theoretic kernel offk. Thus, the mapK → G

is a closed immersion on the closed fiber and so is a closed immersion. This factors
through the scheme-theoretic kernel kerf ↪→ G, so we get a closed immersion
K ↪→ kerf of finite A-group schemes which is an isomorphism on the closed
fibers. SinceK is alsoflat over A, a standard argument shows this map is an
isomorphism. The rest is now easy. 2
COROLLARY 1.6. If p > 2, then the functor which associates to eachG in F FA

its generic fiberK-group schemeGK is a fully faithful functor. For arbitraryp, the
same statement is true for the categoriesF F u

A andF F c
A .

Proof. Faithfulness is clear by flatness. Now supposep > 2 and we’re given a
morphismf :GK → HK of K-group schemes. We want it to arise from a morph-
ismf :G→ H in F FA. Let KK = kerfK and letK denote the scheme-theoretic
closure of this inG. Thus,K is a finite flat closed subgroupscheme ofG andfK
factors through(G/K)K ' GK/KK . We see now that we may replaceG byG/K
and so without loss of generalityfK is a closed immersion. By Cartier duality, we
may assume that the dual offK is a closed immersion, so a consideration of orders
shows thatfK is an isomorphism.

By Corollary 1.5, a morphism inF FA is an isomorphism if and only if the
induced map on generic fibers is an isomorphism. Now use Raynaud’s result on
the existence of a ‘maximal’ prolongation ofGK overA to obtain the desiredf
[17, Prop. 2.2.2].

The same arguments apply toF F u
A andF F c

A for anyp. 2
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As we noted above, Raynaud independently deduces Corollary 1.5 and from
this one can readily obtain both Corollary 1.6 and (more importantly) Lemma 1.3
by formal arguments based on Theorem 1.4 (see the proof of Theorem 4.3 for
how this is carried out in a more general setting). In order for this not to be cir-
cular, note that the proof of Theorem 1.4 below doesnot use Lemma 1.3. This
clarifies the comment following Lemma 1.3 and will also be the means by which
we deduce the analogue of Lemma 1.3 in the general casee 6 p − 1, as the
analogue of Corollary 1.5 fore 6 p − 1 is proven independently by Raynaud.
One could perhaps avoid using Raynaud’s results in the proof of the analogue of
Lemma 1.3 fore 6 p − 1, instead using just linear algebra manipulations, but
we’ll need Raynaud’s explicit formulas anyway in the proof of Theorem 1.4 and
its generalization fore 6 p − 1.

We now are ready to prove Theorem 1.4.

Proof of Theorem1.4. The proof consists of five steps. The formulation of these
steps is due to Fontaine [8]; here, we supply some extra technical details. For now,
if p = 2 we shall requireG to beunipotent. We will come back to the connected
case at the end.

Step1. LetS be a finite flatA-algebra. Then we claim that the reduction map
G(S)→ G(Sk) = Gk(Sk) is injective (this is false forG = µ2, S = Z2).

Before checking this, note that this not only permits us to identifyG(S) with a
subgroup ofGk(Sk) in a manner which is functorial in bothG andS, but it also
implies (by Yoneda’s Lemma) that the functorG Gk from F FA to the category
of finite commutativek-group schemes is a faithful functor. SinceLM(G) encodes
the Dieudonné module ofGk , it follows thatLM is at least faithful for oddp and
LMu is faithful for all p.

In order to verify Step 1, we can extend the base to the completion of the strict
Henselization ofA, so we may suppose thatk is algebraically closed andA is
strictly Henselian. Also, if 0→ G′ → G→ G′′ → 0 is a short exact sequence in
F FA and the assertion is true forG′ andG′′, then it is trivially true forG. Hence,
the method of scheme-theoretic closure reduces us to the case in which the generic
fiberGK is a simple finite commutative group scheme overK with p-power order.

By [17, Prop. 3.2.1, Prop. 3.3.2],G is anF-vector scheme withF a finite field
of order equal to that ofG. Choosingr so thatF has sizepr , [17, Cor. 1.5.1,
Prop. 3.3.2(1), Prop. 3.3.2(3)] implies that as anA-scheme,

G ' Spec(A[X1, . . . , Xr ]/(Xp

i − δiXi+1)),

whereδi ∈ A satisfies ordA(δi) 6 p − 1 for all i and some ordA(δi0) < p − 1.
Here we adopt the convention that the set of indices are a principal homogenous
space forZ/r, and the final condition withi0 is where we have used the unipotence
hypothesis in casee = 1= p − 1 (see the proof of [17, Prop. 3.3.2(3)]).

Chooseg ∈ G(S) vanishing inG(Sk), sog corresponds to a choice ofx1, . . . , xr
∈ pS satisfyingxpi+1 = δixi (and again we view the indices as a principal ho-
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mogenous space forZ/r). Iterating this condition, we obtainxp
r

i = δxi, with
δ = ∏

δi ∈ A satisfying ordA(δ) < r(p − 1). Writing xi = pyi for yi ∈ S and
usingpr − r(p − 1) > 1,A-flatness ofS allows us to cancelp’s to getyi ∈ pyiS
for all i. Thus,yi ∈ ⋂m>1p

mS = 0, so g(IG) = 0. That is,G(S) → G(Sk) is
injective.

Step2. For eachg ∈ G(S), with S a finite flatA-algebra, we get maps
gK : RK → SK andgk: Rk → Sk, the latter giving rise toCWk(gk):CWk(Rk)→
CWk(Sk).

The commutative diagram ofA-modules

CWk(Rk)
CWk(gk)- CWk(Sk)

RK/pR

wR

?
gK - SK/pS

?
wS

(with wS defined by the same formula aswR) shows (via Step 1) that we can
identifyG(S) with a subgroup of

G(S)
def= {γ ∈ Gk(Sk)|CWk(γ )(L) ⊆ kerwS},

in a manner which is functorial in bothG andS. ClearlyG is a functor from finite
flat A-algebras toAb in an obvious manner. Recall thatGk(Sk) is isomorphic to
HomDk (M(Gk), ĈWk(Sk)) [7, Ch. III, Sect.1.5, Prop. 1.2]

ThoughG is a priori just a subgroup functor of the functorG on finite flatA-
algebras, we’ll show below thatG(S) = G(S) and so the natural transformation
G→ G is an isomorphism of group functors.

Step3. If 1 < p− 1 andf :0→ 0′ is an isogeny ofp-divisible groups overA
with G isomorphic to the kernel, then we claimG ' G in Step 2. The same holds
for all p if 0, 0′, andG are all unipotent (i.e., have connected duals).

In order to show thatG(S) ⊆ G(S) fills up the entire group, we need to use Fon-
taine’s classification ofp-divisible groups overA. More precisely, by [7, Ch. IV,
Sect. 1.10, Rem. 2,3] (which covers both the case 1< p−1 and the unipotent case
when 1= p − 1), for any finite flatA-algebraS, we have functorially as groups
that0tor(S) =def lim−→ 0[p

n](S) is identified via reduction with

{γ ∈ 0k(Sk)| the composite mapLA(0) ↪→M(0k)

⊆ ĈWk(O(0k))
ĈWk(γ )- ĈWk(Sk)

wS- SK/pS is 0},
(recall thatĈWk(Sk) = CWk(Sk) sinceSk is a finite k-algebra), and likewise
for 0′tor(S). The A-submodule of ‘logarithms’LA(0) ⊆ M(0k) has a some-
what complicated definition as anA-module mapping toM(0k) [7, p. 167], and
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[Ch. IV, Prop. 1.1] shows thatLA(0) is finite and free as anA-module, with
LA(0) → M(0k) injective (here we use thatM(0k) is a finite freeA-module, as
0k is ap-divisible group [7, Ch. III, Sect. 6.1, Rem 3]). In particular, this functorial
description of torsion implies that the natural map of groups0′tor(S)→ 0′k(Sk) is
injective.

Now chooseg ∈ Gk(Sk). Of courseG(S) ↪→ 0tor(S). AssumeCWk(g)(L) ⊆
kerwS (i.e., g ∈ G(S)). We need to showg ∈ G(S). We first make the crucial
claim thatM(0k) � M(Gk) takesLA(0) over intoLA(G). In fact, this is the
reason for definingLA(G) as we did in the first place. To prove this claim, simply
observe that the given closed immersion of formalA-group schemesi:G ↪→ 0

gives an element of0(R) which lies in0tor(R) (G is annihilated by its order!), so
by the description of0tor(R) above, we getpreciselythe desired condition.

The functoriality ofĈWk now implies thatiSk (g) ∈ 0k(Sk) satisfies the condi-
tions describing0tor(S). Thus, there is someγ ∈ 0tor(S) such thatγk = iSk (g), so
(fS(γ ))k = fSk (iSk (g)) = 0 (recallG = kerf ). But fS(γ ) lies in0′tor(S), which
injectsinto 0′k(Sk) via reduction. Hence,fS(γ ) = 0.

Exactness of the sequence 0→ G(S) → 0(S) → 0′(S) implies thatγ =
iS(g0), for someg0 ∈ G(S), soiSk ((g0)k) = γk = iSk (g). That is,g = (g0)k is in
G(S), viewed inside ofGk(Sk). This shows thatG(S) = G(S).

We note in passing that if0 and 0′ are unipotent, thenG is automatically
unipotent.

Step4. Let(L,M) be an object inSHf

A with p 6= 2. We claim there is an object
G(L,M) in F FA which is the kernel of an isogeny ofp-divisible groups overA and
for which (L,M) ' LM(G(L,M)); in other words,LM is essentially surjective. If
p is arbitrary and(L,M) is an object inSHf,u

A , we make an analogous claim with
G(L,M) in F F u

A the kernel of an isogeny of unipotentp-divisible groups. Beware
that we don’t (yet) claim to constructG(L,M) in a manner which is functorial in
(L,M).

This step is the heart of the proof and is the most important detail omitted in
[8]. First, we will construct a short exact sequence ofDk-modules

0→ M2→ M1→ M → 0,

with M1 andM2 finite freeA-modules (so by [7, Ch. III, Sect. 6.1, Rem. 3],Mi '
M(0i) for 0i a p-divisible group overk). In addition, we will chooseM1 and
M2 with topologically nilpotentV action (i.e., with0i unipotent) whenM has
nilpotentV action (i.e., whenM is the Dieudonné module of a unipotent finite
commutativek-group scheme). Obviously we only need to constructM1� M and
then can setM2 to be the kernel. We exploit Cartier duality in order to decompose
M into a product of étale-connected, connected-étale, and connected-connected
components, so it suffices to consider these three cases separately (and just the
first and third cases are needed in the unipotent setting). See [7, Ch. III, Sect. 1.7]
for the definitions of the notions ofétaleandconnectedin the setting of suitable
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Dieudonné modules; one can also see from the arguments in [7, Ch. III] that these
notions are compatible with the functor between finite flat commutativek-group
schemes ofp-power order and their Dieudonné modules. By [7, Ch. III, Sect. 5.3,
Cor. 2], one can also explicitly translate Cartier duality of finite flat commutativek-
group schemes withp-power order into the language of their Dieudonné modules.

If M is étale, then letM1 be a freeA-module of finite rank, together with a
surjection ofM1 ontoM inducing an isomorphism modulop. SinceF :M → M

is a Frobenius-semilinearautomorphism, we can lift it to a Frobenius-semilinear
automorphismF1 ofM1. DefiningV1 = pF−1

1 gives anM1 of the desired sort (with
V1 topologically nilpotent). IfM has an étale dual, we can proceed similarly using
V in place ofF . There remains the connected-connected case, soV n = Fn = 0 for
some suitably largen. ChoosingA-module generators ofM allows us to take for
M1 a product of finitely many copies ofA[F, V ]/I , with I the left ideal generated
byFn−V n. ThisM is a finite freeA-module having topologically nilpotentF and
V actions.

Next, we will constructA-submodulesLi ⊆ Mi such that the naturalk-linear
mapsLi/pLi → Mi/FMi are isomorphisms,M2 ↪→ M1 takesL2 over into
L1 (we donot claim L2 = M2 ∩ L1), and the image ofL1 underM1 � M is
preciselyL. It is this construction that will use the injectivity ofV |L. In particular,
we’ll have a mapψ : (L2,M2) → (L1,M1) in the categoryHd

A whenp 6= 2 [7,
Ch. IV, Sect. 1.10, Rem. 1] and in the categoryHd,u

A in the unipotent case [7, loc.
cit.]. Recall thatHd

A is the category of pairs(L,M) with L anA-submodule of a
Dk-moduleM such thatM is finite free with rankd as anA-module and the natural
k-linear mapL/pL → M/FM is an isomorphism (the definition of morphism is
obvious, as are the definitions of the corresponding ‘unipotent’ and ‘connected’
full subcategoriesHd,u

A ,Hd,c
A ).

Suppose for the moment that we have carried out the construction ofL1 andL2.
Let’s see how to use this to constructG(L,M) of the desired sort. When 1< p − 1,
we can let0i/A be the ‘unique’p-divisible group overA (up to isomorphism)
such that inHd

A, (Li ,Mi) ' LMA(0i). When 1 6 p − 1 and we are in the
unipotent setting, we can uniquely choose such0i which are unipotent. Here we
are invoking the main classification theorem [7, Ch. IV, Sect. 1.2, Thm. 1], but
see [7, Ch. IV, Sect. 1.2, Sect. 1.10] for the definition ofLMA as just used; the
discussion in Step 3 shows that, in a reasonable sense, this is compatible with the
notion ofLMA onF FA (and similarly in the unipotent case); also see Lemma 4.12
below. Thus, there is a unique morphismf :01 → 02 of p-divisible groups such
thatLMA(f ): (L2,M2) → (L1,M1) is the mapψ we mentioned above. On the
closed fibers, which satisfy(0i)k ' 0i, the induced morphismfk corresponds to
the mapM2 = M(02) → M(01) = M1, which is our original inclusion. As
this is injective with a cokernelM that has finiteA-length, the morphismfk is an
isogeny. Therefore,f is itself an isogeny and so is ‘formally faithfully flat’ overA
(i.e., ‘faithfully flat’ with respect to the functor̂⊗A on ‘profinite’A-modules in the
sense of [7, Ch. I, Sect. 3]).
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Hence,G
def= kerf is an object inF FA (in particular, it isflat overA) and

M ' M(Gk). When01 and02 are unipotent, so isG. Under theDk-module
isomorphismM 'M(Gk), we claim thatLA(G) corresponds toL. SinceL1→ L

is surjective, certainlyL lies inside ofLA(G) (see the discussion in Step 3). But
the commutative diagram ofk-vector spaces

L/pL - LA(G)/pLA(G)

M/FM

'
? ∼- M(Gk)/FM(Gk)

?
'

shows that the top row is an isomorphism, whenceLA(G) does correspond pre-
cisely toL, so(L,M) ' LM(G). LetG(L,M) = G.

Now let’s see how to constructL1 andL2 as described above. The first thing
we need to do is to check that an abstract object(L,M) in SHf

A enjoys some
properties noted earlier (in the proof of Theorem 1.1) for the essential image of
LM. More precisely, we claim that the kernel ofF lies in the image ofV and
L[p] ⊕ kerV = M[p].

In order to establish this decomposition ofM[p], note that there is certainly an
injection from the left side to the right side (V |L is injective!) and so a comparsion
of the length of both sides (usingL/pL ' M/FM) yields the inequality

`A(M/FM)+ `A(M/VM) 6 `A(M/pM).

In order to establish the reverse inequality, just note that the sequence

0→ M/VM
F- M/pM → M/FM → 0,

is always right exact. Hence, we not only get the decomposition ofM[p], but
the equality of lengths shows that the right exact sequence above is in fact exact.
However, this exactness is equivalent to the other claim the kernel ofF lies in the
image ofV .

With these initial observations settled, lete1, . . . , er ∈ M1/FM1 be a basis
for the image ofM2/FM2, with representativesei ∈ M2 ⊆ M1. Let er+1, . . . , en
extend this to a full basis ofM1/FM1, so their images inM/FM give a basis of
M/FM �

∼
L/pL. Note that we are implicitly using the obvious fact that the

sequence

M2/FM2→ M1/FM1→ M/FM → 0

is exact. We may (and do) choose representativeser+1, . . . , en ∈ M1 so that their
images inM lie in L and constitute a minimalA-basis ofL. DefineL1 =∑Aei .
ClearlyL1/pL1 ' M1/FM1 andL1 ↪→ M1� M has image preciselyL.
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We now seek to findεr+1, . . . , εm ∈ M2∩FM1 so thate1, . . . , er , εr+1, . . . , εm
is a basis ofM2/FM2 and allεj lie in L1 (note thate1, . . . , er now denote elements
of M2/FM2 and notM1/FM1, but this won’t cause any confusion). Defining

L2 = Ae1+ · · · + Aer + Aεr+1+ · · ·Aεm
will complete our construction. More generally, choose anyε ∈ M2 ∩ FM1. It
suffices to shows that its image inM2/FM2 can be represented by an element of
M2 which lies inL1.

Well, ε = Fy with the projectionP :M1 � M killing ε, soP (y) ∈ kerFM .
We claim, however, thatVM(L[p]) = kerFM . Indeed, ‘⊆’ is clear and ifFx = 0,
thenx lies in the image ofV , sayx = V z for z ∈ M. Butpz = FV z = Fx = 0,
soz ∈ M[p] = L[p] ⊕ kerV . Thus, we can takez ∈ L[p]. Consequently,

P (y) = V
 n∑
j=r+1

ajP (ej)

 , so

y ≡ V
 n∑
j=r+1

ajej

 modM2.

Applying F , we obtain

ε = Fy ≡
n∑

j=r+1

ajpej modFM2,

which then gives what we sought to prove.

Step5. We will now show thatG(S) = G (S) for all finite flatA-algebrasS.
Note that the formula forG (S) and some compatibility checks then will imply
thatLM is fully faithful for odd p andLMu is fully faithful for all p, thereby
completing the proof of Theorem 1.4.

Forp 6= 2 and(L,M) = LM(G) (resp. for arbitraryp and(L,M) = LMu(G)),
chooseG(L,M) as in Step 4 so thatLM(G(L,M)) ' LM(G) (resp. so thatLMu

(G(L,M))' LMu(G)). By Step 3,G' G(L,M) as functors on finite flatA-algebras,
soG ↪→ G(L,M) as group functors. But the induced map on closed fibers corres-
ponds to the isomorphism of Dieudonné modulesM((G(L,M))k) 'M(Gk), so the
map on closed fibers is an isomorphism. Hence, by flatness overA, the map of
A-group schemesG → G(L,M) is an isomorphism also. From this it follows that
G(S) = G (S) and we are done with the case of oddp and unipotentG for p = 2.

Step6. The casep = 2 andG connected.
We saw above that for any oddp and anyG in F FA, or forp = 2 and unipotent

G, there is an isomorphismG ' G(LA(G), M(Gk)), soG arises as the kernel of
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an isogeny ofp-divisible groups overA. Now supposep = 2 andG is connected.
The dualĜ is unipotent, so is the kernel of an isogeny ofp-divisible groups over
A. The dual isogeny has kernel isomorphic tô̂G ' G, so there is a short exact
sequence of formalA-group schemes 0→ G → 01 → 02 → 0. Moreover,G
lands inside of the connected component of01, so we can easily suppose the0i are
connected.

Now we invoke Fontaine’s classification ofp-divisible groups in the connected
case overA for p = 2. The definition of the functorG is slightly different in
this case. SinceG is connected,M(Gk) has a nilpotentF -action, soM(Gk) ↪→
CWk(Rk) lies in the ‘connected factor’CWc

k (Rk) = CWk(rRk
), whererRk

denotes
the nilpotent maximal ideal given by augmentation. Since every element ofrRk

lifts
to an element of the augmentation idealrR of R, andwR is well-defined, we can
define a variant continuous group mapwεR:CWk(rRk

) → RK/prR using liftings
to the augmentation ideal in the formula forwR.

Observe that the composite ofwεR with projectionRK/prR → RK/pR is
exactlywR and the two maps have thesamekernel (sincerR is anA-module
direct summand ofR)! We now interpretLA(G) as the kernel ofwεR, since it
is this map which will have a more useful analogue in the setting of connected
p-divisible groups forp = 2. It follows from [7, Ch. IV, Prop. 1.4′] (and the
definitions preceding this Proposition) that an analogue of [7, Ch. IV, Sect. 1.10,
Rem. 2] is true. More precisely, supposep = 2, 0 is a connectedp-divisible
group overA, andS is ap-adicA-ring with rS the ideal of topologically nilpotent
elements. There is a functorial identification of the group0tor(S) with the group of
all Dk-linear mapsγ :M(0k)→ CWk(rS/prS), for which the composite map

LA(0) ↪→M(0k)
γ- CWk(rS/prS)

wcS- SK/prS

is zero. Here,wcS is a ‘connected’ variant onwS defined with the same formula, but
using liftings to the idealrS ; cf. [7, pp. 181–2] (where slightly different notation is
used).

We define the functorG on p-adicA-rings S to be given by the group ofDk-
linear maps

G(S) = {γ : M(Gk)→ CWk(rS/prS)|wcS ◦ γ (LA(G)) = 0}.
Pick any exact sequence 0→ G → 01 → 02 → 0 with 0i connected. The
induced exact sequence ofDk-modules

0→M((02)k)→M((01)k)→M(Gk)

induces a mapLA(01) → LA(G) for the same reasons as used earlier. Also, the
exactness of

0→ G(S)→ (01)tor(S)→ (02)tor(S)
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and the above functorial description of torsion in a connectedp-divisible group for
p = 2 gives rise to an injective mapjG,S:G(S) → G(S), which is functorial in
S and is independent of the choice of ‘resolution’ ofG by connectedp-divisible
groups; from this, functoriality ofjG,S in G is clear also.

Now we show that the inclusionG(S)→ G(S) is also surjective. In the earlier
discussion, we used injectivity of ‘passage to closed fiber’ on ‘points’, which is
not true anymore (again, recallµ2 over Z2). But an alternate argument based on
the modified definition ofG will work, as we now explain. Chooseg ∈ G(S), so
composing withπ : M((01)k)�M(Gk) gives an elementγ = g ◦π ∈ (01)tor(S).
If γ vanishes in(02)tor(S), then it comes from an element ofG(S) which is easily
seen to map tog underjG,S . Since the composite map

M((02)k)→M((01)k)→M(Gk)
g- CWk(rS/prS)

is certainly zero, we get the desired vanishing.
The isomorphism of functorsG ' G onp-adicA-rings, together with naturality

in the connectedG, yields full faithfulness ofLMc for p = 2. Essential surjectivity
is proven by exactly the same argument as we used in Step 4 above. 2

For its independent interest, we now record a corollary mentioned above.

COROLLARY 1.7. For p > 2, anyG in F FA arises as the kernel of an isogeny of
p-divisible groups overA. The same statement is true with unipotent and connected
group objects for allp.

Next, note that for oddp and anyG in F FA (resp. for arbitraryp andG in
F F u

A ), bothG andG make sense as functors onp-adicA-rings and as such there
is a natural mapG→ G.

COROLLARY 1.8. G(S) ' G(S) for all p-adicA-rings S.
Proof. Note thatG(S) makes sense, becausewS makes sense, using the same

formula as whenS is finite flat overA; [7, Ch. II, Sect. 5.1, Sect. 5.2] has a
discussion of this. For oddp, let 0 → 0′ be an isogeny ofp-divisible groups
overA such thatG is the kernel. In the unipotent setting with arbitraryp, choose
suchp-divisible groups which are unipotent (the connected case forp = 2 was
settled above, so we ignore this case now). The mapG(S) → 0(S) is injective,
with image inside of0tor(S), and by [7, Ch. IV, Sect. 1.10, Rem. 3],0tor(S) →
0tor(Sk) is injective. From this it easily follows thatG(S)→ G(Sk) is injective, so
G(S)→ G(S) is injective.

Consequently, Step 1 is now valid forall p-adicA-rings S. But this step was
the only reason to restrict to finite flatA-algebras rather than top-adicA-rings
above (as this restriction was needed in order to permit the base extension argument
involving passage to the strictly Henselian case). All other steps in the proof of
Theorem 1.4 go through forp-adicA-rings once Step 1 does. One simply replaces

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001788509055


260 BRIAN CONRAD

‘finite flat A-algebra’ with ‘p-adicA-ring’ everywhere and the references to [4]
remain applicable. 2

Note that as we promised earlier, Lemma 1.3 was never used in the proof of
Theorem 1.4. We’ll later return to this point in our discussion of the casee 6 p−1.

We conclude our discussion of thee = 1 case with an explicit description of
a quasi-inverse functor toLM for oddp and toLMu, LMc for arbitraryp. This
result is implicit in [8] but is not explicitly stated there (though it is given in a
slightly less precise form in [9, Prop. 9.12]). LetCK denote the completion of a
chosen algebraic closureK of K, with valuation ring(OCK , mCK). For arbitrary
p > 2 and(L,M) in SHf

A (or p = 2 and(L,M) in SHf,u

A ), define

ρ(L,M) = {φ ∈ HomDk (M, ĈWk(OCK/p))|φ(L) ⊆ kerwOCK
}

as aZ[Gal (K/K)]-module (via the canonical isomorphism Gal(K/K) ' Autcont

(CK/K)). Forp = 2 and(L,M) in SHf,c

A , defineρc(L,M) in a similar way, using
ĈW (mCK/pmCK ) andwcOCK

. Note that ifp = 2 andG is connected and unipotent,

there is a natural mapρc(L,M) → ρ(L,M) of Z[Gal (K/K)]-modules (sinceF is
nilpotent onM, anyφ ∈ ρ(L,M) has image in̂CWk (mCK/p OCK )).

THEOREM 1.9. Assumep 6= 2 or else that(L,M) lies in SHf,u

A or SHf,u

A . The
Abelian group underlyingρ(L,M) is finite p-group andGal(K/K) acts through the
quotient by an open normal subgroup. Consider the finite flat commutative group
schemeG(ρ(L,M)) ofp-power order overK which is canonically attached toρ(L,M)
(using our fixed choice ofK). This is the generic fiber of a canonically determined
objectG(L,M) in F FA if p 6= 2, and similarly withF F u

A if (L,M) lies in SHf,u

A

and p is arbitrary. In this way, we get a functor(L,M)  G(L,M) which is a
quasi-inverse toLM for oddp and which is a quasi-inverse toLMu for arbitrary
p.

If p = 2, the same assertions holds for connected objects, usingρc(L,M). If in
addition(L,M) is unipotent, thenρc(L,M)→ ρ(L,M) is an isomorphism.

Proof. Since (L,M) ' LM(G) for someG in F FA, with G unipotent if
(L,M) lies inSHf,u

A , ρ(L,M) ' G(OCK) as aZ[Gal(K/K)]-module (this is where
the definition ofρ(L,M) comes from). By Corollary 1.8, this can be identified with
G(OCK ) in a manner which is functorial inOCK – that is, as aZ[Gal(K/K)]-
module. Since this is canonically the same asG(K), we obtain the claim thatρ(L,M)
has an underlying Abelian group which is a finitep-group on which Gal(K/K)
acts continuously.

Becauseρ(L,M) ' G(K) as a Galois module, it follows from Corollary 1.5
and [17, Cor. 2.2.3(2)] that the affineK-algebra ofG(ρ(L,M)) contains aunique
finite (flat) A-subalgebra which has generic fiberG(ρ(L,M)) and which admits a
(necessarily unique, commutative,p-power order) group scheme structure over
A compatible with this generic fiber identification, with the added condition of
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unipotence or connectedness forp = 2. Also, if (L,M) lies in SHf,u

A for p > 2,
the resultingA-group scheme must be unipotent (resp. connected). DefineG(L,M)

to be the corresponding object inF FA (and it lies inF F u
A when(L,M) lies in

SH
f,u

A ). Note that the passage fromG(ρ(L,M)) to G(L,M) does not depend on our
choice ofK ; it is only the passage fromρ(L,M) to G(ρ(L,M)) that depends on this
choice.

It is now straightfoward to check that(L,M) G(L,M) is a functor of(L,M)
in an obvious manner and that this is a quasi-inverse toLM for odd p and to
LMu for arbitraryp. If we changeK , upon choosing an isomorphism between the
two algebraic closures we easily get an explicit isomorphism between the resulting
functors (the only point of the construction that really changes is the passage from
a Galois representation to a finite group scheme overK).

In the connected case withp = 2, the same arguments carry over forρc. Fi-
nally, if p = 2 and(L,M) is unipotent and connected, then aG in F F u

A with
LMu(G) ' (L,M) hasM(Gk) ' M, soG lies in F F c

A . Thus,LMc(G) '
(L,M) and we have a commutative diagram

G(OCK ) ' ρc(L,M)

G(OCK )

wwwww
' ρ(L,M).

?

This proves thatρc(L,M)→ ρ(L,M) is an isomorphism. 2

2. Defining Honda Systems whene 6 p − 1

We now wish to extend all of the arguments in Section 1 to the case wheree 6
p − 1. The first main point is to figure out what the definition of a Honda system
should be. Before getting into the details, we should emphasize that a potentially
serious technical problem for us whene > 1 is the fact that forG in F FA′ and
M =M(Gk), the sequence

0→ M/V
F- M/p→ M/F → 0,

which is always right exact, doesnot have to be exact. The fact that this is always
exact whene = 1 was critical for Fontaine’s argument in Section 1 to work (see
Step 4). The formulas of Oort-Tate in [15, Sect. 2, Rem. 3] show that whene > 1,
there always existsG in F FA′ with closed fiberαp/k, in which case the above
sequence is

0→ M
0- M

id- M → 0,

which is not exact. Fortunately, the casee > 1 has other significant features that
will enable us to circumvent this issue.
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Before giving the definitions (or, rather, the motivation), we need to recall a
crucial general construction, due to Fontaine, which attaches to aDk-module a
certainA′-module (note that it generally makes no sense to haveF or V operators
on anA′-module whene > 1 because Frobenius-semilinearity wouldn’t make any
sense). We will only discuss this construction in the casee 6 p − 1, as that’s all
we’ll need and quite fortunately it is possible to make things very explicit in this
case. This explicitness will be useful when carrying out various computations.

It should be emphasized that the computations in this section are very formal
and so if we consider the construction below without conditions one, the basic
formalism still goes through for tame extensions (though it does not coincide with
Fontaine’s general construction in [7, Ch. IV, Sect. 2] oncee > p − 1). In later
sections, the restrictione 6 p − 1 will be essential.

LetM be aDk-module. We defineM(j) to be theDk-module whose underlying
A-module isA ⊗A M, usingσ j :A ' A (σ denoting the Frobenius map), with
operatorsF(λ ⊗ x) = σ (λ) ⊗ F(x) andV (λ ⊗ x) = σ−1(λ) ⊗ V (x). Thus, we
obtainA-linear maps

Fj : M
(j+1)→ M(j), Vj : M

(j)→ M(j+1),

satisfyingFjVj = pM(j) , VjFj = pM(j+1) . We will only useM(0) = M and
M(1). We will not abuse notation by writingF , V for F0, V0, as this might cause
confusion with respect to issues ofA-linearity.

DEFINITION 2.1. We defineMA′ to be the direct limit of the diagram

m⊗A M VM- p−1m⊗A M(1)

A′ ⊗A M
?
ϕM0

�FM A′ ⊗A M(1)

ϕM1 ?

in the category ofA′-modules, whereϕM0 , ϕM1 are the obvious ‘inclusion’ maps
(which might not be injective!),VM(λ ⊗ x) = p−1λ ⊗ V0(x), andFM(λ ⊗ x) =
λ⊗ F0(x) (recall thatm is the maximal ideal ofA′).

More explicitly,MA′ is the quotient of(A′ ⊗A M) ⊕ (p−1m ⊗A M(1)) by the
submodule

{(ϕM0 (u)− FM(w), ϕM1 (w)− VM(u))|u ∈ m⊗A M,w ∈ A′ ⊗A M(1)}.

Forx ∈ A′ ⊗A M andy ∈ p−1m⊗A M(1), we let(x, y) denote the residue class in
MA′ represented by(x, y). Trivially M  MA′ is a covariant additive functor from
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Dk-modules toA′-modules. Whene = 1, the obviousA-module isomorphism
pA⊗A M ' M shows thatMA is isomorphic to the direct limit of the diagram

M
V0 - M(1)

M
?
p

F0 - M(1)

wwwww
in the category ofA-modules, and so the naturalA-module mapιM :M → MA

given byιM(m) = (m,0) is an isomorphism. This will motivate how we define and
study finite Honda systems overA′.

There are maps

ιM :A′ ⊗A M → MA′ and FM :p−1m⊗A M(1)→ MA′

of A′-modules, natural inM. Also, it is easy to check that theA′-linear maps

1⊗ V0:A
′ ⊗A M → A′ ⊗A M(1), p ⊗ id:p−1m⊗A M(1)→ A′ ⊗A M(1)

satisfy the necessary compatibilies to induce anA′-linear map

VM :MA′ → A′ ⊗A M(1)

on the direct limitMA′ . For accuracy these maps should be denotedιM,A′ , FM,A′ ,
andVM,A′ (and likewise we should have writtenVM,A′ ,FM,A

′
, ϕM,A

′
0 ,ϕM,A

′
1 above),

but we’ll only use the more precise notation when the less precise notation may
cause confusion (e.g., in our discussion of base change in Section 4). Also, observe
that viaιM,A:M ' MA, the mapFM,A is exactlyF0:M(1)→ M and the mapVM,A

is exactlyV0:M → M(1).
Using the naturalA-linear mapsM → A′ ⊗A M ιM- MA′ andM(1) →

p−1m⊗A M(1), it is easy to check that the diagram

M(1) F0 - M
V0 - M(1)

p−1m⊗A M(1)
?

FM - MA′
?

VM- A′ ⊗A M(1)
?

commutes.

WARNING. In [7, Ch. IV, Sect. 2.4ff],p−1m⊗A M(1) is denotedMA′ [1].
Before proceeding further, we should remark that sinceK ′/K is a tamely totally

ramified extension, we can choose a uniformizerπ of A′ such thatπe = pε for a
suitable unitε ∈ A×. Fix such a choice ofπ now and forever. This will be essential
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for many of our calculations, since it makes the matrix for multiplication byπ on
A′ extremely simple with respect to theA-basis 1, . . . , πe−1.

LEMMA 2.2. If `A(M) <∞, then

`A′(MA′) = `A′(p−1m⊗A M(1)) = `A′(A′ ⊗A M) = e`A(M).
Also, the functorM  MA′ is exact on the category ofDk-modules with finite
A-length.

Remark2.3. This extends [7, Ch. IV, Sect. 2.6, Cor. 1] to the finite-length case.

Proof.It is not hard to che ck ‘by hand’ thatM  MA′ is right exact as asserted.
Thus, exactness will follow from the length result. The essential point here and for
what follows is the simple observation that becauseA→ A′ induces an isomorph-
ism of residue fields, for anyA′-moduleN we have the equalitỳA′(N) = `A(N).
It is now obvious that̀ A′(p−1m ⊗A M(1)) = e`A(M) = `A′(A

′ ⊗A M). As for
`A′(MA′), which is at least a priori finite, we see from the explicit description of
MA′ that`A′(MA′) is equal to theA′-length of

{(u,w) ∈ (m⊗A M)⊕ (A′ ⊗A M(1))|ϕM0 (u) = FM(w), ϕM1 (w) = VM(u)}.
We will show that as anA-module, this is (non-canonically) isomorphic to
M ⊕ (M(1))

⊕(e−1)
, so`A′(MA′) = `A(MA′) = e`A(M) as desired.

In order to get theA-module isomorphism mentioned above, recall our uni-
formizerπ . Any u ∈ m⊗A M andw ∈ A′ ⊗A M(1) can be uniquely written in the
form

u =
e∑
j=1

πj ⊗ uj , w =
e−1∑
j=0

πj ⊗ wj,

with uj ∈ M, wj ∈ M(1). The conditionϕM0 (u) = FM(w) says that inA′ ⊗A M,

1⊗ pεue +
e−1∑
j=1

πj ⊗ uj = 1⊗ F0w0+
e−1∑
j=1

πj ⊗ F0wj,

so the precise conditions arepεue = F0w0 anduj = F0wj for 1 6 j 6 e − 1.
Meanwhile,ϕM1 (w) = VM(u) says that inp−1m⊗A M(1),

1⊗ εV0ue +
e−1∑
j=1

p−1πj ⊗ V0uj = 1⊗ w0+
e−1∑
j=1

p−1πj ⊗ pwj,

so the precise conditions areεV0ue = w0 andV0uj = pwj for 16 j 6 e − 1.
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Hence, we see that we are free to chooseue ∈ M andw1, . . . , we−1 ∈ M(1),
with everything else uniquely determined. This gives rise to the desiredA-module
isomorphism. 2
LEMMA 2.4. If `A(M) <∞, then

`A′(kerιM) = `A′(cokerιM) = (e − 1)`A(kerV ),

`A′(kerFM) = `A′(cokerFM) = `A(kerF)

and

`A′(kerVM) = `A′(cokerVM) = `A(kerV ).

Also, the kernels and cokernels ofFM andVM are annihilated bym (this is true
even without a finiteness assumption on`A(M)). Finally, the commutative diagram
above Lemma2.2 inducesk-linear isomorphisms

kerF0 ' kerFM, cokerF0 ' cokerFM,

and

kerV0 ' kerVM, cokerV0 ' cokerVM.

Remark2.5. This lemma extends [7, Ch. IV, Sect. 2.5, Cor. 2] to the finite-length
case.

Proof. Certainly `A′(kerιM) = `A′(cokerιM), since ιM is anA′-linear map
betweenA′-modules with the same finiteA′-length, and likewise forFM andVM .
We’ll now explicitly compute the lengths of the kernels.

By definition, kerιM = {ϕM0 (u)− FM(w)|ϕM1 (w) = VM(u)}. Writing

u =
e∑
j=1

πj ⊗ uj ∈ m⊗A M, w =
e−1∑
j=0

πj ⊗ wj ∈ A′ ⊗A M(1)

as usual,ϕM1 (w) = VM(u) says exactly thatw0 = εV0ue and, for 16 j 6 e − 1,
pwj = V0uj . In this case, we compute inA′ ⊗A M that

ϕM0 (u)− FM(w) = 1⊗ (pεue − F0w0)+
e−1∑
j=1

πj ⊗ (uj − F0wj).

But

pεue − F0w0 = pεue − F0εV0ue = ε(p − F0V0)ue = 0
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and for 16 j 6 e − 1,

V0(uj − F0wj) = V0uj − pwj = 0,

so easily

kerιM =

e−1∑
j=1

πj ⊗ u′j |V u′j = 0

 .
This enables us to see that

`A′(kerιM) = `A(kerιM) = (e − 1)`A(kerV ).

Meanwhile,

kerFM = {ϕM1 (w)− VM(u)|ϕM0 (u) = FM(w)}.

Doing a similar computation as above (in fact, just extending the one in the
proof of Lemma 2.2), we find

kerFM = {1⊗ w ∈ p−1m⊗A M(1)|F0w = 0}.

Note that if 1⊗ w ∈ kerFM , thenπ(1⊗ w) = p−1π ⊗ pw = 0, so kerFM

is annihilated bym and clearly`A′(kerFM) = `A(kerFM) = `A(kerF). The
description of kerFM also shows that the naturalk-linear map kerF0 → ker FM

is an isomorphism.
Let’s next check thatm annihilates cokerFM . Choosex ∈ M. We need to show

that for 1⊗ x ∈ A′ ⊗A M, π · ιM(1⊗ x) maps to 0 in cokerFM . This says that
ιM(π ⊗ x) is in the image ofFM . But this is obvious

ιM(π ⊗ x) = FM(V
M(π ⊗ x));

(the careful reader will note the harmless fact that the twoπ ⊗ x’s in the above
equality live in different tensor product modules; with this point clarified, above
we are implicitly usingπ ⊗ x = ϕ0

M(π ⊗ x)).
Observe also that forx ∈ M(1), ιM(1⊗F0x) = FM(ϕ

M
1 (1⊗ x)). This gives rise

to the naturalk-linear map

M/FM = cokerF0→ cokerFM,

induced by the commutative diagram above Lemma 2.2. This is a map between
k-vector spaces with the same dimension. In order to show that this map is an
isomorphism, we need only check that it is surjective. But this is obvious since the
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A′-linear composite mapA′⊗AM ιM- MA′ → cokerFM is surjective, with coker
FM annihilated bym.

Finally, we considerVM . By definition, cokerVM is the quotient ofA′ ⊗A M(1)

by theA′-submodule consisting of elements of the form

e∑
j=1

πj ⊗mj +
e−1∑
i=0

πi ⊗ V0ni,

with arbitrarymj ∈ M(1) andni ∈ M. Sincep = V0F0, this submodule is the same
as the submodule of elements of the form 1⊗V0µ+∑e−1

i=1 π
i ⊗µi, with arbitrary

µ ∈ M, µi ∈ M(1). It is now clear that cokerVM is killed bym and that as a vector
space overA′/m ' k,

cokerVM ' M(1)/V0(M) = cokerV0.

This map is easily checked to be an inverse to the natural map arising from the
commutative diagram above Lemma 2.2.

Now we check that kerVM is killed by m and that the naturalk-linear map ker
V0 → ker VM is surjective (and therefore is an isomorphism). Choose(u,w) ∈
(A′ ⊗A M)⊕ (p−1m⊗A M(1)) such thatVM((u,w)) = 0. Writing

u =
e−1∑
i=0

πi ⊗ ui, w =
e∑
j=1

p−1πj ⊗ wj

as usual, the vanishing condition says precisely that

e−1∑
i=0

πi ⊗ V0ui +
e∑
j=1

πj ⊗ wj = 0

in A′ ⊗A M(1). Thus,wj = −V0uj for 1 6 j 6 e − 1 andV0(u0 + F0εwe) = 0.
Using the ‘explicit’ defining conditions ofMA′ , we readily see that such an element
can also be represented by(u′,0) with V0u

′ = 0. Thus,

kerVM = ker(1⊗ V0)/{ϕM0 (u)− FM(w)|ϕM1 (w) = VM(u)},
where 1⊗V0:A′⊗AM → A′⊗AM(1) is the natural map. The submodule which we
are quotienting out by is nothing other than kerιM . Using our explicit desciption
above for kerιM , we see that kerVM is killed by m and is naturally isomorphic to
kerV0 as ak-vector space in the desired natural way. 2

We’re now almost ready to define what a finite Honda system overA′ is. Our
motivation is Fontaine’s classification ofp-divisible groups fore 6 p − 1 as
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mentioned earlier, together with the arguments we have already seen in the case
e = 1. First of all, observe that ifL ⊂ MA′ is anyA′-submodule, whereM is a
Dk-module, there are naturalk-linear maps

L/mL→ cokerFM and L[m] ⊕ kerVM → MA′ [m].
Also, we define theA′-linear isomorphism

ξM = ξMπ :A′ ⊗A M ' m⊗A M
by λ⊗ x 7→ πλ⊗ x. Of course this depends heavily on the choice ofπ , but if we
replaceπ by anyother uniformizer, this would only have the effect of composing
ξM with multiplication by an element of(A′)× onm⊗A M and so this would have
no effect on the image of anA′-submodule ofA′ ⊗A M underξM . For this reason,
the role ofπ here is actually irrelevant to the way in which we will useξM below
(though we will use the notationξMπ when it is needed to avoid confusion).

In the arguments whene = 1, the essential use of the condition thatV |L is
injective was to show thatV (L[p]) ⊆ kerF is an equality. It wasthis condition
which was what we needed in the proof of Theorem 1.3. SinceVM(ξM(ι

−1
M (L[m])))

(which does not depend on the choice ofπ used to defineξM !) is one generalization
of V (L[p]) and inside ofp−1m⊗A M(1) we have

VM(ξM(ι−1
M (L[m]))) ⊆ kerFM,

we might expect to require this to be an equality. Unfortunately this condition will
turn out to be too strong in general, but it holds in many cases of interest (e.g.,
pn-torsion of ap-divisible group overA′; cf. Theorems 3.3, 3.5, Corollary 4.11).

Before definingSHf

A′ , we make one final observation. The description of the
kernel kerFM in the proof of Lemma 2.4 shows that we have ak-linear map

kerFM → ker(M(1)/V0M
F0- M/p)

given by 1⊗ w → w modV0M. It is clear that this map annihilates the subspace
VM(ξM(ι−1

M (L[m]))), so we have a naturalk-linear map

kerFM/V
M(ξM(ι−1

M (L[m])))→ ker(M(1)/V0M
F0- M/p).

This will be used in Theorem 3.3.

DEFINITION 2.6. Afinite pre-Honda system overA′ is a triple(L,M, j) withM
aDk-module satisfying̀ A(M) < ∞, L an finite-lengthA′-module, andj : L →
MA′ an A′-linear map. These form anAbelian categoryPSHf

A′ in an obvious
manner (here we implicitly use the exactness assertion in Lemma 2.1, and it is
also important here that we do not requirej to be injective). Whene < p − 1,
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we define the category offinite Honda systems overA′ to be the full subcategory
SH

f

A′ consisting of objects(L,M, j) in PSHf

A′ such that the naturalk-linear map
L/mL → cokerFM is an isomorphism andVM ◦ j is injective (so in particular,
j is injective). Whene 6 p − 1, we define the category ofunipotent finite Honda
systems overA′ to be the full subcategorySHf,u

A′ in PSHf

A′ consisting of triples
(L,M, j) in which the action ofV onM is nilpotent,L/mL ' cokerFM , and
VM ◦ j is injective. The categorySHf,c

A′ of connected finite Honda systems overA′
is defined similarly, with a nilpotence condition on theF -action onM.

It is clear that whene = 1, the definitions ofSHf

A′ andSHf,u

A′ coincide with the
ones given previously; we should also mention that the notion of a finite pre-Honda
system is introduced primarily to simplify the exposition in certain places, when we
wish to discuss certain constructions prior to checking that they make sense within
the restricted categoriesSHf

A′ andSHf,u

A′ . Also, when discussing Honda systems,
we usually omit reference to the injective mapj and regardL as anA′-submodule
of MA′ .

We conclude this section with some observations that will be particularly useful
whene > 2.

LEMMA 2.7. Let (L,M, j) denote an object inPSHf

A′ such thatL/mL →
cokerFM is an isomorphism. ThenVM ◦ j is injective if and only if the natural
k-linear mapL[m] ⊕ kerVM → MA′ [m] is an isomorphism.

If M is anyDk-module(in particular, we do not requireM to have finiteA-
length) and2 6 e 6 p − 1, then there is a naturalk-linear isomorphismkerV0⊕
kerF0 ' MA′ [m] takingkerV0 into kerVM .

If e 6 p−1, the mapM ↪→ N is an injection ofDk-modules, and̀A(M) <∞,
then the naturalA′-linear mapMA′ → NA′ is injective.

Poof.The last part of the lemma is obvious whene = 1. When 26 e 6 p − 1,
it follows easily from the second part of the lemma. Under either case in the first
part,j is injective, so we may safely viewL there as anA′-submodule ofMA′ . The
‘if’ direction is obvious, so now assumeVM |L is injective. Thus, the mapL[m]⊕
kerVM → MA′ [m] is injective. By Lemma 2.4, the left side hask-dimension equal
to dimk kerF0 + dimk kerV0. Whene = 1, we have already seen in Step 4 of the
proof of Theorem 1.4 thatMA′ [m] = M[p] ' M/p has the samek-dimension. It
therefore suffices to prove the second part of the lemma.

Consider the natural map kerV0⊕ kerF0→ MA′ given by

(u,w) 7→ (1⊗ u, p−1πe−1⊗ w).

Note that this requirese−1> 1 in order to make sense. It is trivial to check that the
image of this map lies inside ofMA′ [m]. We will show that the resultingk-linear
map toMA′ [m] is an isomorphism.
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We first will check that the image is all ofMA′ [m]. Choose as usual

u =
e−1∑
j=0

πj ⊗ uj ∈ A′ ⊗A M, w =
e∑
j=1

p−1πj ⊗ wj ∈ p−1m⊗A M(1)

and assumem = (u,w) ∈ MA′ is killed bym. The conditionπm = 0 says that the
element(

1⊗ pεue−1+
e−1∑
j=1

πj ⊗ uj−1, p
−1π ⊗ pεwe +

e∑
j=2

p−1πj ⊗ wj−1

)

in (A′ ⊗A M)⊕ (p−1m⊗A M(1)) is equal to(
1⊗ (pεxe − F0y0)+

e∑
j=1

πj ⊗ (xj − F0yj ),

1⊗ (y0− εV0xe)+
e−1∑
j=1

p−1πj ⊗ (pyj − V0xj )

)
,

for suitablexj ∈ M andyj ∈ M(1). Choosingy1, . . . , ye−1 ∈ M(1) andxe ∈ M,
we readily see that we must have

y0 = εV0xe + εwe−1 and xj = uj−1+ F0yj

for 16 j 6 e−1, with the consistency conditionswj = −V0uj for 16 j 6 e−2
(a vacuous condition ife = 2) and

F0we−1 = −pue−1,−pεwe = V0u0.

These last two conditions are independent of each other sincee > 1. A simple
calculation shows thatm = (1⊗ u, p−1πe−1w), with u = u0 + εF0we andw =
−(we−1+V0ue−1). SinceV0u = 0 andF0w = 0, the desired surjectivity is proven.

Now choose(u,w) ∈ ker V0⊕ ker F0 which is sent to 0 inMA′ . Writing out
the explicit meaning of this condition, we see that there existx1, . . . , xe ∈ M and
y0, . . . , ye−1 ∈ M(1) such that

u = pεxe − F0y0, w = pye−1 − V0xe−1,

with the extra conditionsy0 = εV0xe andxj = F0yj for 16 j 6 e − 1. Thus,

u = F0(εV0xe − y0) = F0(0) = 0
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and

w = V0(F0ye−1 − xe−1) = V0(0) = 0. 2

3. A Functor on Group Schemes whene 6 p − 1

For anyG in F FA′, we defineLMA′(G) to be the object(LA′(G), M(Gk), j) in
PSH

f

A′, whereLA′(G) is the kernel of theA′-linear map

M(Gk)A′ → CWk,A′(Rk)
w′R- RK ′/mR,

with R the affine ring ofG/A′, CWk,A′(Rk) = (CWk(Rk))A′ , andj the inclusion.
The continuousA′-linear mapw′R is a generalization ofwR, defined in [4, p. 197],
and it is induced bywR and a natural surjectionA′ ⊗A CWk(Rk)→ CWk,A′(Rk).
By the last part of Lemma 2.7, we note that we can (and will) viewM(Gk)A′ as an
A′-submodule ofCWk,A′(Rk). BecauseK⊗AR ' K ′ ⊗A′R, no confusion should
arise from our use of the notationRK ′ for what Fontaine writes asRK in [4]. Since
e 6 p − 1, we also havemR = P ′(R) in the notation of [4, Ch. IV, Sect. 3.1].
ClearlyLMA′ is an additive contravariant functor fromF FA′ to PSH

f

A′ .
For ease of notation, we now fix a choice ofG in F FA′, with G in F F f,u

A′ or
F F f,c

A′ if e(A′) = p − 1. LetL = LA′(G) andM = M(Gk). We begin with a
length calculation.

LEMMA 3.1. `A′(V M(ξM(ι−1
M (L[m])))) = `A′(ιM(ι−1

M (L[m]))) 6 `A′(L[m]).

Remark3.2. Note thatVM ◦ ξM kills ker ιM (see the proof of Lemma 2.4
for an explicit description of kerιM). Thus, there is a surjectiveA′-linear map
from ιM(ι

−1
M (L[m])) to VM(ξM(ι−1

M (L[m]))) given byx 7→ VM(ξM(y)), where
y ∈ A′ ⊗AM is any element satisfyingιM(y) = x. This map depends on the choice
of π implicit in the definition ofξM = ξMπ . The length result we are about to prove
implies that this surjection is an isomorphism and when there is a full equality in
the lemma, then we haveL[m] ' VM(ξM(ι−1

M (L[m]))). We’ll later see that this
full equality holds forLMA′(G) if and only if the right exact sequence ofk-vector
spaces

0→ M(1)/V0M
F0- M/pM → M/FM → 0

is actually exact.

Proof.Since

`A′(V
M(ξM(ι−1

M (L[m]))))
= `A′(ξM(ι−1

M (L[m])))− `A′((kerVM) ∩ ξM(ι−1
M (L[m]))),
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but `A′(ξM(ι
−1
M (L[m]))) = `A′ (ι−1

M (L[m])) is equal to

`A′(ιM(ι
−1
M (L[m])))+ `A′(kerιM)

= `A′(ιM(ι−1
M (L[m])))+ (e − 1)`A(kerV ),

(by Lemma 2.4), it suffices to show

`A′((kerVM) ∩ ξM(ι−1
M (L[m]))) = (e − 1)`A(kerV ).

However, kerVM is given by
e∑
j=1

πj ⊗ uj ∈ m⊗A M|
e∑
j=1

p−1πj ⊗ V0uj = 0 in p−1m⊗A M(1)


and since the defining condition says precisely thatV0uj = 0 for 1 6 j 6 e, we
see that

`A′(kerVM) = `A(kerVM) = e`A(kerV ).

We will now show that(kerVM) ∩ ξM(ι−1
M (L[m])) consists of precisely those

elements in kerVM for whichu1 = 0, which gives what we need. For an element

e∑
j=1

πj ⊗ uj = ξM
 e−1∑
j=0

πj ⊗ uj+1


in kerVM , we haveV0u1 = · · · = V0ue = 0. Thus, we want to determine precisely
when the element

e−1∑
j=0

πj ⊗ uj+1 ∈ A′ ⊗A M

has image inMA′ which ism-torsion and inL.
Them-torsion condition isautomaticallysatsified, since

π · ιM
 e−1∑
j=0

πj ⊗ uj+1

 = ιM

 e∑
j=1

πj ⊗ uj


= ιM ◦ ϕM0
 e∑
j=1

πj ⊗ uj

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= FM ◦ VM

 e∑
j=1

πj ⊗ uj


= FM

 e∑
j=1

p−1πj ⊗ V0uj


= 0.

On the other hand,uj ∈M(Gk) ⊆ CWk(Rk) has the form

uj = (. . . ,0, . . . ,0, uj,0)

sinceV0uj = 0, so we easily compute that inRK ′/mR,

w′R ◦ ιM
 e−1∑
j=0

πj ⊗ uj+1

 = e−1∑
j=0

πj ûj+1,0 modmR,

wherêui,0 ∈ R is a a lift ofui,0. Beware that here and later we abuse notation and
do not indicate the presence of the injectiveA′-linear mapMA′ → CWk,A′(Rk)

betweenw′R andιM . ModulomR = πR, the right side is represented bŷu1,0 and
so vanishes if and only ifu1,0 = 0, which is to say thatu1 = 0. 2

The next result nicely explains the failure of the exactness of

0→ M/VM
F- M/pM → M/FM → 0

for Dieudonné modules of closed fibers of objects inF FA′ when e > 1. Also,
the essential calculation in the proof will be needed in the proof of the important
Theorem 3.4.

THEOREM 3.3. The inclusionVM(ξM(ι−1
M (L[m]))) ⊆ kerFM is an equality if

and only if the sequence

0→ M(1)/V0M
F0- M/pM → M/FM → 0,

which is always right exact, is actually exact. More generally, the4-term sequence

0→ kerFM/V
M(ξM(ι−1

M (L[m])))
→ M(1)/V0M

F0- M/p→ M/F → 0

is always exact.
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Proof. When e = 1, we saw in Section 1 that the theorem is true (in fact,
the inclusion is always an equality and the sequence is always exact), so we may
assume now thate > 1. In a couple of places below it will be crucial thate−1> 1.

Recall from the proof of Lemma 2.4 that

kerFM = {1⊗ w ∈ p−1m⊗A M(1)|F0w = 0}.

Our first step is to reformulate the condition that 1⊗ w ∈ ker FM lies in the
subspaceVM(ξM(ι−1

M (L[m]))). More precisely, we claim that this is equivalent to
the statement that for ourw ∈ M(1) with F0w = 0, there existw′ andw′′ in M
such thatV0w

′ = w, V0w
′′ = 0, and

w′R(ιM(πe−1⊗ ε−1w′ + 1⊗ w′′)) = 0.

First assume this latter statement. Then for 1⊗ w ∈ kerFM , we see that

πe−1⊗ ε−1w′ + 1⊗ w′′ ∈ ι−1
M (L)

andVM(ξM(πe−1⊗ ε−1w′ + 1⊗ w′′)) is equal to

VM(πe ⊗ ε−1w′ + π ⊗ w′′) = p−1πe ⊗ ε−1V0w
′ + p−1π ⊗ V0w

′′

= 1⊗ V0w
′

= 1⊗ w,
so 1⊗ w ∈ VM(ξM(ι−1

M (L))). But sincepw′ = F0V0w
′ = F0w = 0, we see that

π · ιM(πe−1⊗ ε−1w′ + 1⊗ w′′) = ιM(π
e ⊗ ε−1w′ + π ⊗w′′)

= ιM(1⊗ pw′)+ ιM(π ⊗ w′′)
= ιM ◦ ϕM0 (π ⊗ w′′)
= FM ◦ VM(π ⊗ w′′)
= FM(p

−1π ⊗ V0w
′′)

= 0,

so in fact 1⊗ w ∈ VM(ξM(ι−1
M (L[m]))).

Conversely, assume 1⊗w ∈ VM(ξM(ι−1
M (L[m]))), whence

1⊗ w = VM ◦ ξM
 e−1∑
j=0

πj ⊗ uj
 ,
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whereuj ∈ M and

ιM

 e−1∑
j=0

πj ⊗ uj
 ∈ L[m].

Thus,

1⊗ w = VM

 e∑
j=1

πj ⊗ uj−1

 = e∑
j=1

p−1πj ⊗ V0uj−1,

sow = εV0ue−1 = V0(εue−1) andV0uj = 0 for 06 j < e − 1. The calculation

π · ιM
 e−1∑
j=0

πj ⊗ uj
 = ιM

 e−1∑
j=0

πj+1⊗ uj


= ιM ◦ ϕM0
e−1∑
j=0

πj+1⊗ uj


= FM ◦ VM

 e−1∑
j=0

πj+1⊗ uj


= FM

 e−1∑
j=0

p−1πj+1⊗ V0uj


= FM(p

−1πe ⊗ V0ue−1)

= FM(1⊗ εV0ue−1)

= FM(1⊗w)
= 0

shows that them-torsion condition is superfluous, so it remains to see what con-
straints arise from the condition

w′R ◦ ιM
 e−1∑
j=0

πj ⊗ uj
 = 0.

If we can show that

w′R ◦ ιM
 ∑

16j<e−1

πj ⊗ uj
 = 0,
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then definingw′ = εue−1 andw′′ = u0 yields what we want. For 16 j < e − 1,
we haveuj = (. . . ,0, . . . ,0, uj,0) sinceV0uj = 0. Thus, ifûj,0 ∈ R is a lift of
uj,0, then the element

w′R ◦ ιM
 ∑

16j<e−1

πj ⊗ uj
 ∈ RK ′/mR

is represented by∑
16j<e−1

πj ûj,0 ∈ πR = mR,

thereby giving the desired vanishing.
Now that we have reformulated our main condition, pickw ∈ M(1) with F0w =

0. We must determine precisely when we can constructw′, w′′ ∈ M with the
properties described above.

Identifying M andM(1) as additive groups (viax 7→ 1 ⊗ x), we can write
w = (w−n) ∈ M ⊆ CWk(Rk), with w−n ∈ Rk satisfyingwp−n = 0. Our task is to
findw′ andw′′ in Rk such that the element

w′ def= (. . . , w−n+1, . . . , w0, w
′) ∈ CWk(Rk)

lies inM, as doesw′′ =def (. . . ,0, . . . ,0, w
′′) and, moreover,

w′R ◦ ιM(πe−1⊗ ε−1w′ + 1⊗ w′′) = 0.

Let ŵ−n ∈ R lift w−n andŵ′, ŵ′′ ∈ R lift w′ andw′′ respectively. The final
condition above says

ε−1πe−1

ŵ′ +∑
n>1

p−nŵp
n

−n+1

+ ŵ′′ ∈ πR.

But e − 1 > 1 (!), so ε−1πe−1ŵ′ ∈ πR and so the above condition is in fact
independentof ŵ′ (and evenw′), being equivalent to

ε−1πe−1

p

∑
n>0

p−n(ŵp−n)
pn + ŵ′′ ∈ πR.

Sinceε−1πe−1/p = π−1 and

p−n(ŵp−n)
pn ∈ p−n(πR)p

n = πpn−neR,
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with pn − ne > pn − n(p − 1) > 2 for n > 2 (and even forn > 1 if e < p − 1),
our condition is equivalent to

(pπ)−1ŵ
p2

−1+ π−1ŵ
p

0 + ŵ′′ ∈ πR.

Thus, we are forced to choosew′′ ∈ Rk to be represented by−((pπ)−1ŵ
p2

−1 +
π−1ŵ

p

0 ) ∈ R. Let’s check thatw′′ ∈ CWk(Rk) does lie inM = M(Gk). It is
enough to check that

1G(π
−1ŵ

p

0 ) ≡ (π−1ŵ
p

0 )⊗ 1+ 1⊗ (π−1ŵ
p

0 )modπ(R⊗A′ R)
and

1G((pπ)
−1ŵ

p2

−1)

≡ ((pπ)−1ŵ
p2

−1)⊗ 1+ 1⊗ ((pπ)−1ŵ
p2

−1)modπ(R⊗A′ R).
Equivalently, we want to show that

1G(ŵ0)
p ?≡ ŵ

p

0 ⊗ 1+ 1⊗ ŵp0 modπ2(R ⊗A′ R)
and

1G(ŵ−1)
p2 ?≡ ŵ

p2

−1⊗ 1+ 1⊗ ŵp2

−1 modpπ2(R ⊗A′ R).
Once we prove the result for̂w0, we can apply the same argument toVw ∈ M. It is
then straightfoward to keep track of powers ofπ in order to see that this gives the
desired result modulopπ2 for ŵ−1 (keep in mind thatF0w = 0 forcesŵp−1 ∈ πR).
So we now only consider the congruence forŵ0.

Sincew ∈ M, we have that inRk ⊗k Rk,

1Gk(w0) = lim
N→∞ SN(w−N ⊗ 1, . . . , w0⊗ 1;1⊗ w−N, . . . ,1⊗ w0),

whence

1G(ŵ0) ≡ lim
N→∞ SN(ŵ−N ⊗ 1, . . . , ŵ0⊗ 1;1⊗ ŵ−N, . . . ,1⊗ ŵ0)

modπ(R⊗A′ R).
BecauseSN ∈ Z[X−N, . . . , X0;Y−N, . . . , Y0] andp ∈ π2R (sincee > 1!), we
can raise both sides to thepth power so as to obtain

1G(ŵ0)
p ≡ lim

N→∞ SN(ŵ
p

−N ⊗ 1, . . . , ŵp0 ⊗ 1;1⊗ ŵp−N, . . . ,1⊗ ŵp0 )

modπ2(R ⊗A′ R).
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Combining the propertŷwp−n ∈ πR for all n > 0 with the fact thatSN is equal to
X0+ Y0 plus higher degree terms in theX−j andY−j for j > 0, it follows that

SN(ŵ
p

−N ⊗ 1, . . . , ŵp0 ⊗ 1;1⊗ ŵp−N, . . . ,1⊗ ŵp0 )
≡ ŵp0 ⊗ 1+ 1⊗ ŵp0 modπ2(R ⊗A′ R)

for all N > 1. Thus,w′′ as defined above is necessarily inM.
Therefore, we have shown that 1⊗ w ∈ ker FM lies in theA′-submodule

VM(ξM(ι−1
M (L[m]))) if and only if somew′ ∈ Rk can be chosen so thatw′ ∈

CWk(Rk) lies inM. That is,w is required to lie inV0M. This is equivalent to the
assertion that the sequence

0→ kerFM/V
M(ξM(ι−1

M (L[m])))
→ M(1)/V0M

F- M/pM → M/FM → 0

is exact.
It may be possible to prove Theorem 3.3 purely from the definition of a finite

Honda system (once Theorems 3.4 and 3.6 are proven), but it is not clear how to
do this.

THEOREM 3.4. (L,M) is an object inSHf

A′ whene < p − 1 and (L,M) is an
object inSHf,u

A′ (resp.SHf,c

A′ )whene 6 p−1andG is unipotent(resp.connected).
Proof. Without loss of generality,e > 2. First, we will prove that the natural

map

L/mL→ cokerFM

is injective, sò A′(L/m) 6 `A′(cokerFM). We will then show that the natural map

L[m] ⊕ kerVM → MA′ [m]

is surjective. By Lemma 2.4 and the second part of Lemma 2.7 (sincee > 2), this
surjectivity implies̀ A′(L/m) > `A′(cokerFM), so this inequality is forced to be an
equality and both maps above are isomorphisms. Using the first part of Lemma 2.7
then finishes the proof. The arguments we use are simply more elaborate versions
of the arguments used in the casee = 1, except we need to keep track of the powers
of π .

Choosè ∈ L ⊆ MA′ lying in the image ofFM , so there is an element

u =
e∑
j=1

p−1πj ⊗ uj ∈ p−1m⊗A M(1),
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such thatFM(u) = ` ∈ L. Choosingu′j ∈ CWk(Rk) such thatV0u
′
j = uj , this

says that

e∑
j=1

πjwR(u
′
j ) = 0

in RK ′/mR (here, we have used the isomorphism supplied by [7, Ch. IV,Sect. 2.7,
Prop. 2.5], applied to theDk-moduleCWk(Rk)). We need to construct some`′ ∈ L
such that̀ = π`′. We’ll show that we can chooseu′1 ∈ M (that is,u1 ∈ V0(M))
and then that this is enough to construct the desired`′.

Let û′i,−n ∈ R be a lift ofu′i,−n (= ui,−n+1 if n > 1), whereu′i,0 ∈ Rk can be
chosen at random for now. We’re given that inRK ′,

e−1∑
j=0

πj

( ∞∑
n=0

p−n(û′j+1,−n)
pn

)
∈ R,

so changinĝu′1,0 moduloR (i.e., changingu′1,0), we can even assume that inRK ′
we have the essential relation

e−1∑
j=0

πj

( ∞∑
n=0

p−n(û′j+1,−n)
pn

)
= 0.

Letting u′i ∈ ĈWA(R) denote the covector(û′i,−n), the above can be rewritten
as

e−1∑
j=0

πjŵR(u′j+1) = 0.

See [7, Ch. II, Sect. 5.1, Prop. 5.1] (and also [7, Ch. II, Sect. 5.6, Prop. 5.4 Remark])
for a discussion of̂wR: ĈWA(R)→ RK ′, defined analogously towR: ĈWk(Rk)→
RK ′. Define

L−m(u′i) = lim
N→∞

SN(û
′
i,−N−m ⊗ 1, . . . , û′i,−m ⊗ 1;

1⊗ û′i,−N−m, . . . ,1⊗ û′i,−m)
in R. We first claim that for alln > 1,

1G(û
′
j,−n)

pn ≡ L−n(u′j )p
n

modpnπ(R⊗A′ R).
Fix n > 1. Sinceuj ∈ M = Homgp−sch/k (Gk, ĈWk), we have that inRk ⊗k Rk,

1Gk(uj,−n+1) = lim
N→∞

SN(uj,−N−n+1 ⊗ 1, . . . , uj,−n+1;

1⊗ uj,−N−n+1, . . . ,1⊗ uj,−n+1),
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which says exactly that

1G(û
′
j,−n) ≡ L−n(u′j )modπ(R⊗A′ R).

Sinceπp = π · πp−1 ∈ pπR, ase 6 p − 1 (!), we can raise both sides to thepth
power in order to get

1G(û
′
j,−n)

p ≡ L−n(u′j )p modpπ(R⊗A′ R).
An easy induction now shows that

1G(û
′
j,−n)

pr ≡ L−n(u′j )p
r

modprπ(R⊗A′ R),
for all r > 1, so takingr = n gives what we claimed above.

This can be conveniently rewritten as

p−n1G(û
′
j,−n)

pn ≡ p−nL−n(u′j )pn modπ(R⊗A′ R),
but be careful to note that the terms in this congruence generally lie in(R ⊗A′
R)K ′ ' RK ′ ⊗K ′ RK ′ and not inR ⊗A′ R. Summing overn > 1, we obtain∑

n>1

p−n1G(û
′
j,−n)

pn

≡
∑
n>1

p−nL−n(u′j )p
n

modπ(R⊗A′ R).

From what we have so far, we may deduce that inRK ′ ⊗K ′ RK ′,

e−1∑
j=0

πj
∑
n>1

p−n1G(û
′
j+1,−n)

pn =
e−1∑
j=0

πj
∑
n>1

p−n1GK′ (û
′
j+1,−n)

pn

= 1GK′

 e−1∑
j=0

πj
∑
n>1

p−n(û′j+1,−n)
pn



= −1GK′

 e−1∑
j=0

πj û′j+1,0



= −1G

e−1∑
j=0

πj û′j+1,0

 ,
so in fact the element

e−1∑
j=0

πj
∑
n>1

p−nL−n(u′j )p
n ∈ RK ′ ⊗K ′ RK ′
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lies inR ⊗A′ R and moduloπ(R⊗A′ R) is congruent to

−1G

 e−1∑
j=0

πjû′j+1,0

 .
Sinceby definition

(L−n(u′j )) = (û′j,−n ⊗ 1)+ (1⊗ û′j,−n)

in ĈWA(R ⊗A′ R) andŵR is additive, inRK ′ ⊗K ′ RK ′ we applyŵR to get

L0(u′j )+
∑
n>1

p−nL−n(u′j )p
n = ŵR(u′j )⊗ 1+ 1⊗ ŵR(u′j ).

Therefore, moduloπ(R⊗A′ R), we have

1G

 e−1∑
j=0

πjû′j+1,0

 ≡ − e−1∑
j=0

πj
∑
n>1

p−nL−n(u′j+1)
pn

≡
e−1∑
j=0

πjL0(u′j )−
 e−1∑
j=0

πjŵR(u′j+1)



⊗1− 1⊗
 e−1∑
j=0

πjŵR(u′j+1)


=

e−1∑
j=0

πjL0(u′j )

(recall
∑
πjŵR(u′j+1) = 0). Hence,

1G(û
′
1,0) ≡ L0(u′1)modπ(R⊗A′ R),

which says exactly thatu′1 ∈ M (sinceu′1,−j = u1,−j+1 for j > 1 andu1 ∈ M, so
the 0th coordinate ofu′1 is all we need to check).

Now we definè ′ ∈ MA′ and we will show that̀ ′ ∈ L andπ`′ = `. In terms
of our original explicit description ofMA′ as a quotient module, define`′ to be the
element represented by1⊗ u′1,

e−1∑
j=1

p−1πj ⊗ uj+1

 .
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Thus,

w′R(`′) = wR(u
′
1)+

e−1∑
j=1

πjwR(u
′
j+1)

is represented by
∑e−1

j=0 π
jŵR(u′j+1) = 0, so`′ ∈ L. Also,

π`′ = (π ⊗ u′1,0)+
0,

e∑
j=2

p−1πj ⊗ uj


= (0, p−1π ⊗ V0u
′
1)+

0,
e∑
j=2

p−1πj ⊗ uj


= (0, p−1π ⊗ u1)+
0,

e∑
j=2

p−1πj ⊗ uj


= FM(u),

which is equal tò . This completes the proof of injectivity ofL/m→ cokerFM .
As we explained at the beginning, it remains to prove that the naturalk-linear

mapL[m] ⊕ kerVM → MA′ [m] is surjective. Sincee > 2, the second part of
Lemma 2.7 shows that it necessary and sufficient to prove that forw ∈ ker F0,
there existsu ∈ kerV0 such that the element(1⊗ u, p−1πe−1⊗ w) ∈ MA′ [m] lies
in L. We may writew = (w−n) in CWk(Rk), with w−n ∈ Rk satisfyingwp−n = 0
for all n > 0. Chooseu1, w1 ∈ Rk and consider

u = (. . . ,0, . . . ,0, u1), w̃ = (. . . , w−n+1, . . . , w0, w1) ∈ CWk(Rk),

soV u = 0 andV w̃ = w in CWk(Rk). In CWk,A′(Rk), we have

(1⊗ u, p−1πe−1⊗ w) = ιCWk(Rk)(1⊗ u+ πe−1⊗ w̃),
so

w′R((1⊗ u, p−1πe−1⊗ w))

= û1+ πe−1

( ∞∑
n=0

p−nŵp
n

1−n

)
modπR

inside ofRK ′/mR, with û1 ∈ R a lift of u1. Sincee > 2 andŵp−m ∈ πR for all
m > 0, clearlyπe−1p−n ŵp

n

1−n ∈ πR for n ≥ 3 andn = 0.

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001788509055


FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION 283

Thus, we are reduced to checking that for

u1 = −πe−1(p−1ŵ
p

0 + p−2ŵ
p2

−1)

= −ε−1((pπ)−1ŵ
p2

−1+ π−1ŵ
p

0 )modπR,

we haveu ∈ M (sincee 6 p− 1, the right side does lie inR). Sincee > 2, this is
exactlythe same calculation we did at the end of the proof of Theorem 3.3 (up to
the factor ofε−1 ∈ A′×, which can be cancelled at the start). 2
THEOREM 3.5. The sequence

0→ M/V
F- M/p→ M/F → 0

is exact if and only if there is equality in Lemma3.1. This exactness condition is
satisfied whenG ' 0[pn] for 0/A′ a p-divisible group.

Proof.Thanks to Theorem 3.3, all we have to verify is the short exact sequence
condition whenG is the full pn torsion of ap-divisible group. This is standard:
sinceM/p 'M(G[p]k), it is enough to pick0/k ap-divisible group and to check
that forM =M(0), the sequence

0→ M/V
F- M/p→ M/F → 0

is not just right exact but is actually exact. TheA-module underlyingM is finite
and free withp = VF , soF actsinjectively. Thus,Fm = pm′ = FVm′ yields
m = Vm′, as desired. 2

We now come to the essential result.

THEOREM 3.6.LMA′ is fully faithful and essentially surjective whene < p − 1.
This is also true forLMu

A′ andLMc
A′ whene 6 p − 1.

Proof.The argument is a generalization of the steps in the proof of Theorem 1.4.
As before, whene = p−1 we stick with the unipotent case for now, and will return
to the connected case at the end. First, let’s show that Step 1 holds for anyG in
F FA′ and any finite flatA′-algebraS. Essentially the same argument works for
e 6 p − 1, since Raynaud’s results [17, Sect. 3] apply whenevere 6 p − 1. More
precisely, because we are claiming Step 1 goes through for all objects inF FA′ for
e < p−1 and for all objects inF F u

A′ whene 6 p−1, as in the casee = 16 p−1
we can reduce the proof of the injectivity ofG(S)→ Gk(Sk) to the case whereA′
is strictly Henselian with algebraically closed residue fieldk andGK ′ is a simple
object in the category of finite commutativeK ′-group schemes. In this case, we
can argue exactly as we did in Step 1 in the proof of Theorem 1.4.

With the analogue of Step 1 pushed through, it is now straightfoward to see that
Step 2 makes sense for anyG in F FA′ , where we useCWk,A′ in place ofCWk ,
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w′R andw′S in place ofwR andwS respectively, and we define the functor from
finite flatA′-algebras toAb via the formula

G(S) = {γ ∈ Gk(Sk)|CWk,A′(γ )(L) ⊆ kerw′S}.
Via Fontaine’s classification ofp-divisible groups overA′ [7, Ch. IV, Sect. 5,

Prop. 5.1(i)], the assertion in Step 3 applies whenevere 6 p−1, using unipotence
conditions and the remark following [7, Ch. IV, Sect. 4.8, Lemma 4.10] in case
e = p − 1. It is only necessary to make minor notational changes in thee = 1
argument (CWk,A′ replacingCWk, etc.).

Next, we prove the analogue of the difficult Step 4. Choose an object(L,M)

in SHf

A′ if e < p − 1. If e = p − 1, choose an object(L,M) in SHf,u

A′ . We
will construct an objectG(L,M) in F FA′ (resp. inF F u

A′) which is the kernel of an
isogeny ofp-divisible groups overA′ (resp. of unipotentp-divisible groups over
A′) such that(L,M) ' LMA′(G(L,M)) in SHf

A′ (resp.(L,M) ' LMu
A′(G(L,M)) in

SH
f,u

A′ ) whene < p − 1 (resp. when(L,M) lies inSHf,u

A′ ).
As in thee = 1 argument, we can construct an exact sequence ofDk-modules

0→ M2
i- M1

P- M → 0,

with theMi free of finite rank overA, soMi ' M(0i) for 0i ap-divisible group
overk. If V acts in a nilpotent manner onM, we can choose the0i to be unipotent
p-divisible groups. Note that the sequence ofA′-modules

0→ (M2)A′
i′- (M1)A′

P ′- MA′ → 0

is not just right exact [7, Ch. IV, Sect. 2, Prop. 2.4], but actually exact. This
is simply because by the remark in [7, Ch. IV, Sect. 2.3], we have acanonical
isomorphism ofA′-modules

A′ ⊗A N + p−1
m⊗A FN ' NA′,

wheneverN is free of finite rank as anA-module (and the left side is viewed as
a sum inside ofK ′ ⊗A N). For notational ease, we now adopt Fontaine’s notation
XA′ [1] = p−1m⊗AX(1) for aDk-moduleX; see [7, Ch. IV, Sect. 2.4ff]. The natural
mapNA′ [1] → NA′ of A′-modules is injective and via the above isomorphism is
identified with the submodulep−1m ⊗A FN , so we can safely writeNA′/NA′ [1]
in place of cokerFN if we prefer (for suchN). Also, recall [7, Ch. IV, Sect. 2.5,
Cor 1] that there is even a canonicalk-linear isomorphismN/FN ' NA′/NA′ [1].
This is analogous to the isomorphism cokerF0 ' cokerFM in Lemma 2.4.

What we will now do is constructA′-submodulesLi ↪→ (Mi)A′ such that the
naturalk-linear maps

Li/mLi → (Mi)A′/(Mi)A′ [1] ' cokerFMi
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are isomorphisms,(M2)A′ ↪→ (M1)A′ takesL2 over into L1, and the image of
L1 under(M1)A′ � MA′ is preciselyL. Once theseA′-modulesL1 andL2 are
constructed, the rest of the argument is exactly like that in Step 4 in the casee = 1,
with minor changes in notation.

We constructL1 as in the casee = 1. That is, we can either use the isomorphism
cokerF0 ' cokerFM in Lemma 2.4 and its analogue above forM1 andM2 in
order to literally use thee = 1 construction word-for-word, or alternatively (which
amounts to the same thing) we choose

e1, . . . , er ∈ (M1)A′/(M1)A′ [1] ' cokerFM1,

giving a basis for the image of(M2)A′/ (M2)A′ [1], with representativesei ∈ (M2)A′
⊆ (M1)A′. Let er+1, . . . , en extend this to a fullk-basis of(M1)A′/ (M1)A′ [1] =
cokerFM1, so the images ofer+1, . . . , en in MA′/ MA′ [1] give ak-basis of

cokerFM
�∼ L/mL.

Therefore we may (and do) choose representativeser+1, . . . , en ∈ (M1)A′ so that
their images inMA′ underP ′ lie in L and constitute a minimalA′-basis ofL.
DefineL1 =∑A′ei .

The natural mapL1/mL1 → cokerFM1 is clearly an isomorphism and the
composite map ofA′-modulesL1 ↪→ (M1)A′ � MA′ has image preciselyL.

In order to constructL2 as in the casee = 1, the only issue is to check that any
x ∈ ((M1)A′ [1]) ∩ (M2)A′ can be represented in(M2)A′/(M2)A′ [1] by an element
of L1 ∩ (M2)A′. Then the construction ofL2 will go through as desired. At this
point, we can (and will) assumee > 1.

We have the exact sequence ofA′-modules

0→ A′ ⊗A M2+ p−1
m⊗ FM2

i′- A′ ⊗A M1 + p−1
m⊗ FM1

P ′- MA′ → 0,

with i′ the ‘inclusion’ map and (usingFM1 = F0M
(1)
1 )

P ′: λ⊗m+ µ⊗ F0m
′ 7→ (λ⊗P (m), µ⊗P (m′)).

Also, note that sincee > 1, we have (in obvious notation) theA-module decom-
position

(Mi)A′ = A′ ⊗A Mi + p−1m⊗A FMi

= (1⊗Mi)⊕ (p−1π ⊗ FMi)⊕ · · · ⊕ (p−1πe−1⊗ FMi).

We can suppose without loss of generality thatx ∈ A′ ⊗A M2 and by hypothesisx
(or rather,i′(x)) lies inp−1m⊗A FM1, which says

i′(x) = 1⊗ F0m+
e−1∑
j=1

πj ⊗mj,

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001788509055


286 BRIAN CONRAD

with mj ∈ M2 andm ∈ M(1)
1 , F0m ∈ M2. For 16 j 6 e − 1, we have

πj ⊗mj = p−1πj ⊗ pmj ∈ (M2)A′ [1],
so by alteringx, we can assume without loss of generality thatm1 = · · · = me−1 =
0, which is to sayi′(x) = 1 ⊗ F0m, wherem ∈ M(1)

1 andF0m ∈ M2. Since
P ′(i′(x)) = 0, we see that the element 1⊗ P (m) ∈ MA′ [1] maps to 0 inMA′ ,
which is to say that it lies in kerFM .

Consider the isomorphism

ψM = ψM
π :p−1m⊗A M(1) ' A′ ⊗A M(1)

given byψM(a ⊗ n) = πe−1a ⊗ n. If we combine the isomorphisms

kerV0⊕ kerF0 ' MA′ [m] and kerVM ⊕ L[m] ' MA′ [m],
we compute thatVM(L[m]) = VM(MA′ [m]) = ψM(kerFM). Thus, there ex-
ists somex ∈ L[m] such thatπe−1 ⊗ P (m) = VM(x). By the second part of
Lemma 2.7, we can writex = (1⊗ v, p−1πe−1⊗w) with v ∈ ker V0 andw ∈
kerF0. SinceVM(x) = πe−1 ⊗ w, it follows thatw = P (m). Therefore we get a
critical link betweenm andL, namely the element

(1⊗ v, p−1πe−1⊗P (m)) ∈ MA′

actually lies inL[m], with v ∈ kerV0.
By construction,(M1)A′ � MA′ takesL1 ontoL, so there exists aǹ1 ∈ L1

such that

P ′(`1) = (1⊗ v, p−1πe−1⊗P (m))

inMA′ . Inside of(M1)A′ = A′ ⊗AM1+p−1m⊗FM1, we can write (usingFM1 =
F0M

(1)
1 )

`1 = 1⊗ y +
e−1∑
r=1

p−1πr ⊗ F0zr ,

so

P ′(`1) =
(

1⊗P (y),
e−1∑
r=1

p−1πr ⊗P (zr)

)
.

Comparing our two formulas forP ′(`1), there existu ∈ m⊗AM,w ∈ A′ ⊗AM(1)

such that(
1⊗ (P (y)− v),

e−2∑
r=1

p−1πr ⊗P (zr)+ p−1πe−1⊗P (ze−1−m)
)

= (ϕM0 (u)− FM(w), ϕM1 (w)− VM(u)).
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However, inMA′ [1] we have

π · (ϕM1 (w)− VM(u))+ VM(ξM(ϕM0 (u)− FM(w)))
= πϕM1 (w)− VMξM(FM(w)) = 0,

and so inMA′ [1],

0 =
e−2∑
r=1

p−1πr+1⊗P (zr)+

+(p−1πe ⊗P (ze−1−m)+ p−1π ⊗ V0(P (y)− v))

=
e−2∑
r=1

p−1πr+1⊗P (zr)+

+p−1πe ⊗P (ze−1−m)+ p−1π ⊗ V0(P (y)),

sincev ∈ kerV0.
Thus, the elementsε ⊗ m = p−1πe ⊗ m,p−1π ⊗ V0y +∑e−1

r=1p
−1πr+1 ⊗

zr in (M1)A′ [1] have the same image inMA′ [1] underP ′. Now the sequence of
A′-modules

0→ (M2)A′ [1] → (M1)A′ [1] → MA′ [1] → 0

is the same as

0→ p−1
m⊗A M(1)

2 → p−1
m⊗A M(1)

1 → p−1
m⊗A M(1)→ 0,

which is exact sinceN  N(1) is exact from the category ofA-modules to itself
andp−1m is a flatA-module.

Therefore, the elementsε⊗m andp−1π⊗V0y+∑e−1
r=1p

−1πr+1⊗zr in (M1)A′ [1]
differ by an element of(M2)A′ [1], soεi′(x) = ε ⊗ F0m differs from

p−1π ⊗ F0V0y +
e−1∑
r=1

p−1πr+1⊗ Fzr

= π ⊗ y +
e−1∑
r=1

p−1πr+1⊗ Fzr = π`1

by an element of(M2)A′ [1]. In particular,π`1 lies in (M2)A′ inside of(M1)A′ . But
π`1 ∈ L1, so ε−1π`1 ∈ L1 ∩ (M2)A′ is the desired element which represents
x ∈ (M2)A′ in (M2)A′/(M2)A′ [1]. Note that sinceL1/mL1 ' cokerFM1 by con-
struction ofL1, the image ofx in L1 must a priori lie inmL1 = πL1. Thus, the
presence ofπ in the above representativeε−1π`1 for x is not unexpected.
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The argument for Step 5 goes through exactly as in the casee = 1.
Whene = p − 1 and we consider connected objects, the modifications to the

above argument exactly parallel the changes needed for the connected case with
p = 2 in the proof of Theorem 1.4. Note that in order to handle the variant onwS

which will arise, the inequalitypn − neq > 0 will arise for alln > 1, and this is
satisfied fore 6 p − 1. 2
COROLLARY 3.7. The additive functorF FA′ → F Fk given byG  Gk is
faithful whene < p − 1. The analogous additive functorsF F u

A′ → F F u
k and

F F c
A′ → F F c

k are faithful whene 6 p − 1.
Proof. A morphism of finite Honda systems(L1,M1) → (L2,M2) vanishes if

and only if the associated mapM1→ M2 vanishes.

4. Classification of Group Schemes whene 6 p − 1

We begin by recalling a result due to Raynaud, extending Corollary 1.5.

LEMMA 4.1 (Raynaud).If e < p−1, the categoryF FA′ is stable under formation
of scheme-theoretic kernels and is an Abelian category. A morphism is a kernel if
and only if it is a closed immersion and is a cokernel if and only if it is faithfully
flat. The formation of the cokernel of a closed immersion is as usual. The same
assertions holds forF F u

A′ andF F c
A′ if e 6 p − 1.

The functorG  GK ′ which associates to every object ofF FA′ its K ′-group
scheme generic fiber is a fully faithful exact functor whene < p − 1. The same is
true onF F u

A′ whene 6 p − 1.
A sequenceG′ → G→ G′′ in F FA′ for e < p − 1 (resp.in F F c

A′, F F u
A′ for

e = p − 1) is exact if and only if the closed fiber sequence is exact if and only if
the generic fiber sequence is exact.

Remark4.2. The analogue of Theorem 1.9 also carries over to thee 6 p − 1
setting by the same arguments which we used in thee = 1 case.

Proof.The second part follows from the first part, just as in the way we deduced
Corollary 1.6 from Corollary 1.5 earlier.

Now we consider the first part. Whene < p−1, this is essentially [17, Cor. 3.3.6
(1)], together with the fact that a closed subgroup scheme and a quotient of a
unipotent object is again unipotent (as this can be detected on the closed fiber,
where it follows from Cartier duality and the canonical splitting of the closed fiber
connected-étale sequence).

When e = p − 1 and we consider only unipotent objects, the proof of [17,
Cor. 3.3.6(1)] still goes through, since we may use [17, Prop. 3.3.2(3)] to carry
over [17, Thm. 3.3.3] to the present setting. The connected case then follows by
the exactness of Cartier duality.

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001788509055


FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION 289

Since passage to the generic fiber is an exact functor and all of our categories
are Abelian, the final part of the assertion comes down to the statement that a
morphismf :G1→ G2 is an isomorphism (resp. 0) if and only if this is true on the
closed fiber if and only if this is true on the generic fiber. For the generic fiber, use
full faithfulness ofG GK ′. For the closed fiber, the vanishing part follows from
faithfulness of passage to the closed fibers, while the isomorphism part follows
from Nakayama’s Lemma and flatness. 2

Now that we knowLMA′ andLMu
A′ are fully faithful and essentially surjective,

it follows from Lemma 4.1 thatSHf

A′ is an Abelian category whene < p − 1
and SHf,u

A′ , SHf,c

A′ are Abelian categories whene 6 p − 1. Of course,SHf

A′ ,
SH

f,u

A′ , andSHf,c

A′ are full subcategories of the Abelian categoryPSHf

A′, so there
are obvious candidates for what kernels and cokernels should be. More precisely,
it is reasonable to expect that the composite functorsF FA′ → PSH

f

A′ andF F u
A′ ,

F F c
A′ → PSH

f

A′ (for e < p − 1 ande 6 p − 1 respectively) are exact. We now
prove that this is indeed the case.

THEOREM 4.3. Whene < p − 1, the functorF FA′ → PSH
f

A′ is exact. When
e 6 p − 1, the functorsF F c

A′, F F u
A′ → PSH

f

A′ are exact. More precisely, if

ϕ: (L1,M1)→ (L2,M2)

is a morphism inSHf

A′ with e < p − 1 (resp.is a morphism inSHf,c

A′ , SHf,u

A′ with
e 6 p − 1), thenkerϕ = (L′,M ′) andcokerϕ = (L′′,M ′′) satisfy

M ′ = ker(M1→ M2), M ′′ = coker(M1→ M2)

and

L′ = (M ′)A′ ∩ L1, L
′′ = image(L2 ↪→ (M2)A′ � (M ′′)A′,

and the natural mapcoker(L1→ L2)� L′′ is an isomorphism.
Proof. We give the argument in the casee < p − 1. Whene 6 p − 1 and

we impose unipotence or connectedness conditions, the argument is proceeds in
exactly the same way.

LetGi be an object inF FA′ such thatLMA′(Gi) ' (Li,Mi), soϕ = LMA′(f )
for f :G2→ G1 a morphism in the categoryF FA′ .

Define (L′,M ′) = LMA′(cokerf ) and (L′′,M ′′) = LMA′(kerf ) to be the
respective images underLMA′ of the cokernel and kernel of the corresponding
morphismf in F FA′. It is easy to see thatM ′ andM ′′ are as claimed (on the
group scheme side, one simply notes that passage to the closed fiber commutes
with formation of short exact sequences, and then one applies theexactcontrav-
ariant Dieudonné-module functor to everything). Let’s (temporarily) defineL′ =
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(M ′)A′ ∩ L1 = ker(L1 → L2) and alsoL′′ = image(L2 ↪→ (M2)A′ � (M ′′)A′),
soL′ ⊆ L′ andL′′ ⊆ L′′. We must prove that these inclusions ofA′-modules are
equalities and thatL′′ is the cokernel ofL1→ L2.

For the assertion about kerϕ = (L′,M ′), clearly we can (and will) assume
thatf is a monomorphism. Since monomorphisms inF FA′ are the same thing as
closed immersions of group schemes, we see that the group schemeG1/G2 makes
sense inF FA′ and there is a naturalPSHf

A′-morphism ker(ϕ) = LMA′(G1/G2)→
(L′,M ′)which is an isomorphism on the Dieudonné module part. We wish to show
that this map must be an isomorphism inPSHf

A′ . If we let Ri denote the affine
ring ofGi and letR denote the affine ring ofG1/G2, then the map ofA′-algebras
R→ R1 is not only injective but is alsofaithfully flat. Therefore,mR = R∩mR1

[13, Thm. 7.5(ii)], so

RK ′/mR→ (R1)K ′/mR1

is injective. Combining this with the injectivity of(M ′)A′ → (M1)A′ (see Lemma
2.1), it follows easily from the commutative diagram

(M ′)A′ ⊂ - (M1)A′

CWk,A′(Rk)
?

- CWk,A′((R1)k)
?

RK ′/mR
?

⊂ - (R1)K ′/mR1

?

thatL′ = LA′(G1/G2) is given by

L′ =M((G1/G2)k)A′ ∩ LA′(G1) = (M ′)A′ ∩L1 = L′.

It remains to check that cokernels are what we think they are; that is,L′′ = L′′
andL1→ L2� L′′ is exact atL2. Since thek-linear mapL2/mL2→ cokerFM2

is an isomorphism, we at least see that thek-linear mapL′′/mL′′ → cokerFM ′′ is
surjective. However, this factors through the (abstract)k-linear mapL′′/mL′′ →
cokerFM ′′, which is an isomorphism, so the mapL′′/mL′′ → L′′/mL′′ induced
by the inclusionL′′ ⊆ L′′ is surjective. By Nakayama’s Lemma, we conclude
L′′ = L′′.

Finally, we check thatL1 → L2 � L′′ is exact atL2. Since we have already
proven thatL′′ = L′′ always holds, we may reduce to the case in whichf :G2→
G1 is an epimorphism, soM1 → M2 is injective andR1 → R2 is faithfully flat.
Our assertion amounts to the claim thatL2 ∩ (M1)A′ = L1, but this follows from
the same commutative diagram argument which we used above. 2
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It is clear that ife < p − 1 andG is in F FA′, then we can defineG in the
obvious manner as a functor fromp-adicA′-rings toAb in a manner analogous
to the earlier definition fore = 1 in Step 2 of the proof of Theorem 1.4. The
natural transformationG → G of functors onp-adicA′-rings (not just finite flat
A′-algebras) is an isomorphism. The same statement holds ife = p − 1 and we
requireG to be unipotent. The proofs in both cases are essentially the same as in the
casee = 1, except that we use the general formulation of Fontaine’s classification
of p-divisible groups (i.e., whene 6 p − 1) rather than the formulation in the
special casee = 1 6 p − 1. In particular, fore < p − 1 andG in F FA′ (resp. for
e = p−1 andG in F F u

A′), we can intrinsically recover fromLMA′(G) (resp. from
LMu

A′(G)) thegroup functorG ' G on finite flatA′-algebras. In fact, with a choice
of algebraic closureK of K we canfunctorially recover the groupschemeG; cf.
Remark for Lemma 4.1. Whene = p − 1 and we restrict attention to connected
objects, we have a similar result, though the definition ofG needs to be modified
in order to account for the different formulation of Fontaine’s classification of
connectedp-divisible groups in this case (just like forp = 2 earlier). In case
e < p − 1 and we look at connected objects, there is a natural map between the
two definitions ofG, compatible with the isomorphisms of each withG, so these
functors are all naturally identified. Similarly, ife = p − 1 and we considerG
which are simultaneously unipotent and connected, the two definitions ofG are
naturally isomorphic.

Note that by the second part of Lemma 4.1, we can viewF FA′ as a (very
mysterious) full Abelian subcategory of the Abelian category of commutative finite
K ′-group schemes ofp-power order whene < p − 1, and similarly forF F u

A′ ,
F F c

A′ whene 6 p− 1. If we are given some finite commutativeK ′-group scheme
with p-power order and know that it is the generic fiber of someG in F FA′ with
e < p − 1 (or in F F u

A′, F F c
A′ with e = p − 1), thenG is unique up to canonical

isomorphism and we can readily read off a small amount of information aboutG in
a special case (the argument is the same as the one needed to justify [9, Rem. 3.4])

THEOREM 4.4. Assume thatK ′ has residue fieldk = Fp (i.e.,K ′ is a finite
totally ramified extension ofQp). Letρ: Gal(K ′/K ′)→ Aut(M ) be the continuous
representation associated to the generic fiber of an objectG in F FA′, with G
unipotent or connected ife = p − 1. AssumeM = G(K ′) has the structure of a
finite-lengthO-module, compatible with the Galois action, whereO is a complete
mixed characteristic discrete valuation ring with a finite residue fieldF having
characteristicp. Prolong theO-action onGK ′ to one onG (by Lemma4.1). Then
there is a noncanonical isomorphism ofO-modulesM(Gk) ' M .

Proof.SinceM(Gk) andM are both finite-lengthO-modules, in order to show
that they are isomorphic it suffices to show that they have the same invariant factors.
The invariant factors of a finite-lengthO-moduleN are determined by the invariant
factors ofπON , together with the values of̀O(πON) and`O(N).
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If we let πOG denote the ‘image’ of the morphismπO:G→ G in the Abelian
categoryF FA′ whene < p − 1 (resp. in the Abelian categoriesF F u

A′ or F F c
A′

whene = p−1), thenπOM = (πOG) (K
′) and so forq = |F|, the order ofπOG is

q`O(πOM ), which is also equal to the order of(πOG)k. But sincek = Fp, this order
is equal to the cardinality ofM((πOG)k) (cf. [Ch. III, Prop. 3.4(i), Prop. 4.5(i)]),
which is equal toq`O(M((πOG)k)). In a similar manner, we havèO(M ) = `O(M(Gk)).
SinceM((πOG)k) ' πOM(Gk) by standard exactness arguments, it remains to
verify that the finite-lengthO-modulesπOM(Gk) ' M((πOG)k) andπOM '
(πOG)(K ′) have the same invariant factors. That is, we can work withπOG in
place ofG. However,πOG is a proper closed subgroupscheme ofG unlessG is
trivial, so we are reduced to the case whereG is trivial, which is itself a trivial
case. 2

Some other constructions onF FA′ which we wish to translate into the language
of finite Honda systems are Cartier duality and base change. Let us first consider
Cartier duality.

If M is aDk-module with finiteA-length, we defineM∗ = HomA(M,K/A) as
anA-module andF(ψ):m 7→ σ−1 (ψ(V (m)), V (ψ):m 7→ σ (ψ(F(m))). There
is a naturalDk-module isomorphismM ' M∗∗ as usual. ForG in F Fk with
Cartier dual̂G, Fontaine constructs in [7, Ch. III, Sect. 5.3, Cor. 2] an isomorphism
M(Ĝ) 'M(G)∗, natural inG.

We have not been able to fully justify a formulation of Cartier duality in terms of
finite Honda systems, but there is a reasonable candidate which we now describe.
LetM be aDk-module with finiteA-length. We will construct a symmetric pairing

MA′ ⊗A′ (M∗)A′ → K ′/p−1
mA′,

so we begin with a pairing

((A′ ⊗A M)⊕ (p−1
m⊗A M(1)))⊗

⊗A′((A′ ⊗A M∗)⊕ (p−1
m⊗A (M∗)(1)))→ K ′/p−1

mA′,

defined by

(λ⊗ x, p−1µ⊗ y)⊗ (α ⊗ ϕ, p−1β ⊗ ψ)
7→ α(λ · ϕ(x)+ p−1µ · ϕ(F0(y)))+ p−1β(µ · ψ(y)+ λ · ψ(V0x));

(here we have implicitly used a canonical isomorphism(M∗)(1) ' (M(1))∗). It
is straightfoward to check that we can pass to quotients and get a well-defined
symmetric pairing betweenMA′ and(M∗)A′ as desired.

In order to check that this is non-degenerate, we want to verify that the map

eM :MA′ → HomA′((M
∗)A′,K ′/p−1mA′)
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is an isomorphism. Applying⊗AW(k), we may assume (with a little compatibility
checking) thatk is algebraically closed. Also, by functoriality and exactness, we
may assume thatM is a simple object, soM = k with eitherF = V = 0 orF = 0,
V = σ−1 or V = 0,F = σ . By length comparsions, it is enough to check thateM
is injective. This is easy.

Given a finite Honda system(L,M) (connectedand unipotent if e = p −
1), we should define the dual Honda system(L∗,M∗), with L∗ ⊆ (M∗)A′ the
annihilator ofL ⊆ MA′ under the above pairing. If(L,M) = LMA′(G), then
Fontaine’s duality pairing betweenM(Gk) andM((Ĝ)k) = M(Ĝk) gives rise to
an isomorphismM(Ĝk)A′ ' (M(Gk)

∗)A′ , and the essential claim is that this takes
LA′(Ĝ) over toL∗. We do not see how to prove this, though clearly it is enough
(by a duality and length argument) to show thatLA′(Ĝ) lands inside ofL∗.

Now let us consider base change, which can be useful for descent considerations
(as we will see in the proof of Theorem 5.2). In this case, wecanprove things. We
first consider the simpler case of what we will callpseudo-étalebase change. Let
(A′, n) be a mixed characteristic complete discrete valuation ring with residue field
κ perfect of characteristicp. DefineA = W(κ) and suppose we are given a map
of ringsh:A′ → A′, necessarily local and faithfully flat, such thath(m)A′ = n.
In particular,e(A′) = e(A′) = e. We leth: k ↪→ κ denote the induced map on the
residue fields. When the above hypotheses are met, we say thath is pseudo-étale
(note that we allowh to be a nonalgebraic extension).

Fix such anh and chooseG in F FA′ (unipotent or connected ife = p − 1), so
G×A′A′ trivially lies in F FA′ (and is unipotent or connected ife = p−1). We wish
to explicitly define a ‘base change’ functorBh:PSH

f

A′ → PSH
f

A′, which takes
SH

f

A′ over intoSHf

A′ for e < p−1 and likewise for unipotent and connected Honda
systems whene 6 p−1. Whene < p−1 we want to haveBh◦LMA′ ' LMA′ ◦Bh,
whereBh: F FA′ → F FA′ is the usual base change functor. We also want a similar
statement in the unipotent and connected settings whene 6 p − 1. Later, we will
carry this out without a pseudo-étale hypothesis.

We begin with a few preliminary definitions.

DEFINITION 4.5. For aDk-moduleM and any perfect extensionh: k→ κ, define
Mh = A⊗A M as anA-module (usingW(h):A→ A = W(κ)) and define

FMh
(λ⊗ x) = σ (λ)⊗ FM(x), VMh

(λ⊗ x) = σ−1(λ)⊗ VM(x),
soMh is aDκ-module. For(L,M, j) in PSHf

A′ andh:A′ → A′ a pseudo-étale
extension as above, defineLh = A′ ⊗A′ L.

It is obvious, by the way, that there are naturalA-module isomorphisms
(M(j))h ' (Mh)

(j) compatible with theF andV maps, so we may unambiguously
writeM(j)

h
.

THEOREM 4.6. For a pseudo-étale extensionh:A′ → A′, there is a functorial
isomorphism ofA′-modulesA′⊗A′ (MA′) ' (Mh)A′ and a naturalA′-module map
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jh:Lh→ (Mh)A′ , with jh injective if and only ifj is injective. Whene < p−1, the
object(Lh,Mh, jh) in PSHf

A′ lies inSHf

A′ if and only if(L,M, j) lies inSHf

A′ , and
similarly for unipotent and connected Honda systems whene 6 p−1. The additive
covariant functorBh:PSH

f

A′ → PSH
f

A′, defined by(L,M, j)  (Lh,Mh, jh)

is exact and satisfiesBh ◦ LMA′ ' LMA′ ◦ Bh whene < p − 1 and satisfies
Bh ◦ LMu

A′ ' LMu
A′ ◦ Buh , Bh ◦ LMc

A′ ' LMc
A′ ◦ Bch, whene 6 p − 1 (with

Buh , Bch the restrictions ofBh to the categories of unipotent and connected objects
respectively).

Proof. Trivially, `A(Mh) = `A(M) < ∞ and also, sinceh is pseudo-étale,
A′ ⊗A′ m→ n is anisomorphism, so there is an obviousA′-module isomorphism

A′ ⊗A′ ((A′ ⊗A M)⊕ (p−1m⊗A M(1)))

' (A′ ⊗A Mh)⊕ (p−1
n⊗A M

(1)
h
).

Since A′ is A′-flat, we can pass to the quotient to obtain anA′-module map
A′ ⊗A′ (MA′) → (Mh)A′, which is certainly surjective. However, both sides have
the sameA′-length (namely,e`A(M)), so this is an isomorphism, visibly functorial
in M. The definition ofjh and the claim about its injectivity are obvious.

The above isomorphism is compatible with the isomorphismA′⊗A′ (MA′ [1]) '
(Mh)A′ [1] and this enables us to identifyFMh

with idA′ ⊗ FM . In this way, the
κ-linear map

Lh/nLh→ cokerFMh

is the same as applying the base extensionh to thek-linear map

L/mL→ cokerFM.

Also, via theA′-linear isomorphism

A′ ⊗A′ (A′ ⊗A M(1)) ' A′ ⊗A M
(1)
h

we may identifyVMh
◦ jh with the base change byh of VM ◦ j . Sinceh andh are

faithfully flat, we have proven that whene < p − 1, (Lh,Mh, jh) is an object in
SH

f

A′ if and only if (L,M, j) is an object inSHf

A′ , and likewise for unipotent and
connected Honda systems whene 6 p − 1.

We now must check that the functor(L,M)  (Lh,Mh) on Honda systems is
compatible with pseudo-étale base change on the group scheme side. We give the
argument in the general case whene < p − 1. The argument fore 6 p − 1 with
unipotence or connectedness hypotheses is essentially the same.

Let G in F FA′ have affine ringR and letG = G ×A′ A′ have affine ringS.
There’s a natural map ofDκ-modules

A⊗ACWk(Rk)→ CWκ(Sκ).
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This map clearly gives rise to a map ofDκ-modules with finiteA-length

A⊗A M(Gk)→M(Gκ)

and this is an isomorphism forκ/k finite, by [7, Ch. III, Sect. 2.2, Prop. 2.2(i)].
In fact, as Oda explains in [14, Cor. 3.16], this remains true without a finiteness
assumption on[κ: k], and so permits us to identifyMh with M(Gκ).

Since Oda’s definition ofM is not quite the same as Fontaine’s, for the con-
venience of the reader we now briefly explain how to directly deduce the fact that
for H any object inF Fk, A ⊗A M(H) → M(H/κ) is an isomorphism, granting
this whenκ/k is a finite extension. Without loss of generality, we may assume
κ is algebraically closed. We can always replacek by a suitable finite extension
inside ofκ (due to the result in the case of finite extensions). Since we may also
begin by assumingH is a simple object inF Fk, passing to a finite extension of
k and using compatibility with respect to formation of products reduces us to the
case in whichH is eitherαp, µp, or Z/p. It then remains to check that theκ-
linear mapκ⊗k M(H)→M(H/κ) between 1-dimensional spaces is nonzero. But
M(H)→M(H/κ) is visibly injective.

Next, note that our above constructions show that there is always a natural
(surjective) map ofA′-modulesA′ ⊗A′ (NA′) → (Nh)A′, for anyDk-moduleN ,
regardless of whether or not`A(N) is finite. By [7, Ch. IV, Sect. 2.6, Prop. 2.5],
this map is an isomorphism whenN = CWk(Rk). Since there is also a canonical
isomorphism ofA′-modules

A′ ⊗A′ (RK ′/mR) ' SK ′/nS,

whereK ′ is the fraction field ofA′, it follows that the isomorphism(Mh)A′ '
M(Gκ)A′ takesLh over toLA′(G).

In other words, we have constructed an isomorphism inPSH
f

A′

(Lh,Mh) ' LMA′(G×A′ A′)
functorial inG. SinceBh is trivially additive, covariant, and exact, we’re done.2

Now considerh:A′ → A′ which is a totally ramified finite extension and letn

be the maximal ideal ofA′. Choose a uniformizer5 of A′ so that5e(A′) = pε for
someε ∈ A×. We assume of course thate(A′) 6 p − 1.

Fix G in F FA′ if e(A′) < p − 1 (resp. inF F u
A′ or F F c

A′) if e(A′) = p − 1)
and let(L,M) = LMA′(G) (resp.LMu

A′(G),LM
c
A′(G)). Note thatA′ andA′ have

the same residue field andG = G ×A′ A′ has the same closed fiber asG andG is
unipotent ifG is. Thus, we can writeLMA′(G) = (L,M) if e(A′) < p − 1 (resp.
LMu

A′(G) orLMc
A′(G) = (L,M) if e(A′) = p−1), withL = LA′(G) ⊆ MA′ . We

wish to describeL in terms ofL andM, in a manner which is functorial inG.
There’s certainly a naturalA′-module mapJ :MA′ → MA′ , so there is anA′-

module mapJL: A′ ⊗A′ L→ MA′ .

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001788509055


296 BRIAN CONRAD

LEMMA 4.5. The image ofJL is just L and the induced map ofA′-modules
A′ ⊗A′ L→ L is an isomorphism.

Proof. Let R andS be the affine rings ofG andG respectively. SinceA/m '
A′/n, the natural mapsR/m→ S/n andRK ′/mR→ SK ′/nS are isomorphisms
and so are injective. Thus, the image ofJL lies in L, thanks to the commutative
diagram

MA′ - MA′

CWk,A′(Rk)
?

- CWk,A′(Sk)
?

RK ′/mR
?

⊂ - SK ′/nS.
?

We’ll show now that the mapαL: A′ ⊗A′ L→ L is an isomorphism modulon and
so therefore is surjective.

As k-modules we have(A′ ⊗A′ L)/n ' L/m, soαL modn is the top row in the
commutative diagram ofk-vector spaces

L/m - L/n

cokerFM,A′
?
'

- cokerFM,A′

'
?

M/FM

6'

= M/FM

'
6

and soαL modn is an isomorphism.
Now we prove thatA′ ⊗A′ L � L is injective. It suffices to prove injectivity

on n-torsion. Note that the mapp−1m ⊗A M(1) → p−1n ⊗A M(1) induced by
the inclusionp−1m ↪→ p−1n givesrise to ak-linear map kerFM,A′ → kerFM,A′,
which is anisomorphism, thanks to the explicit kernel formulas in the proof of
Lemma 2.4.

Using Theorem 3.4 and isomorphismsψM
π andψM

5 introduced in the proof of
full faithfulness in Theorem 3.6, we have the identifications ofk-vector spaces

L[m] ' VM,A′(L[m]) = ψM
π (kerFM,A′) �

∼
kerFM,A′

and

L[n] ' VM,A′(L[n]) = ψM
5 (kerFM,A′)

∼- kerFM,A′ .

Combining this with thek-vector space isomorphismIL:L[m] ' (A′ ⊗A′ L)[n]
given byx 7→ (πε)(5ε)−1⊗ x, it looks like we should have the desired injection
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on then-torsion. In order to justify this, we need only check that the diagram of
k-vector spaces

L[m] IL - (A′ ⊗A′ L)[n] - L[n]

VM,A′(L[m])
'
?

VM,A′(L[n])
?
'

kerFM,A′

'
6

∼ - kerFM,A′

6'

commutes. The careful reader will observe that although the mapIL depends on the
choices ofπ and5, the bottom maps in the left and right columns depend on the
choices ofπ and5 respectively (viaψM

π andψM
5 ), so it is not a priori unreasonable

to expect that the above diagram commutes.
Let’s check the commutativity. By Lemma 2.7, we may write an element of

` ∈ L[m] in the form` = (1⊗ u, p−1πe(A
′)−1⊗ w), with u ∈ M andw ∈ M(1)

satisfyingV0u = 0 andF0w = 0. The map down toVM,A′(L[m]) ⊆ A′ ⊗A M(1)

sends̀ to πe(A
′)−1⊗ w. Note that this isindependentof u. If we go across the top

row and down toVM,A′(L[n]), we obtain the element5e(A′)−1⊗w ∈ A′ ⊗AM(1).
Here we have used the ‘independence ofu’ remark and the easy identity

(πε)(5ε)−1πe(A
′)−1 = 5e(A′)−1.

Appending the natural isomorphisms kerF0 ' ker FM,A′ and kerF0 ' ker FM,A′
(from Lemma 2.4) to the bottom of the diagram and considering the elementw ∈
kerF0, the commutativity follows. 2

We are now in a position to define a base change functor without a pseudo-
étale hypothesis. Leth:A′ → A′ be a ring extension which induces an extension
h: k→ κ on (perfect!) residue fields. For an object(L,M, j) in PSHf

A′, we define
the object(L,M, j)h = (Lh,Mh, jh) in PSHf

A′ by using the definition ofMh as

given earlier andjh mapsLh
def= A′ ⊗A′ L to (Mh)A′ as anA′-submodule in the

following manner: there is a naturalA-linear mapM → Mh = A ⊗A M (where
A = W(κ)) which induces anA′-linear mapjM :MA′ → (Mh)A′ . There is a natural
mapjh:Lh→ (Mh)A′ defined usingj :L→ MA′ andjM . Whene(A′) < p−1 and
(L,M, j) is in SHf

A′, thenjh is injective and(L,M, j)h is in SHf

A′ by Lemma 4.7.
If e(A′) 6 p − 1 and(L,M, j) is in SHf,u

A′ , then we get the same assertion using
SH

f,u

A′ , and likewise in the connected case.
The construction ofBh in the pseudo-étale case is extended by the following

theorem, whose proof is clear in view of what we have already done.
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THEOREM 4.8.Supposee(A′) < p−1. For h as above,(L,M) in SHf

A′, (L,M)h
lies inSHf

A′. The additive covariant functorBh: SH
f

A′ → SH
f

A′ given by(L,M) 
(L,M)h is exact and satisfiesBh ◦LMA′ ' LMA′ ◦Bh, whereBh: F FA′ → F FA′
is the usual base change functor.

If h1:A′1→ A′2 andh2:A′2→ A′3 are two such base changes, then there are
natural isomorphismsαh1,h2: Bh1 ◦ Bh2 ' Bh1◦h2

which satisfy the ‘triple overlap’ compatibility; that is, the natural transformations

αh1,h2 ◦ Bh3 ◦ αh1◦h2,h3: B(h1◦h2)◦h3 → (Bh1 ◦ Bh2) ◦ Bh3

and

Bh1 ◦ αh2,h3 ◦ αh1,h2◦h3: Bh1◦(h2◦h3)→ Bh1 ◦ (Bh2 ◦ Bh3)

areequal.
If we relax the ramification to merely not exceedp−1, then the same assertions

are true for the full subcategories of unipotent group schemes and unipotent Honda
systems, as well as for the full subcategories of connected objects.

For any morphismϕ: (L1,M1) → (L2,M2) in PSHf

A′ , we shall letϕh denote
the induced morphismBh(ϕ): (L1,M1)h → (L2,M2)h in PSHf

A′. This notation
will be used throughout Section 5.

Now we prove some facts concerning finite Honda systems which are quite
critical in applications of the present work to the deformation theory of Galois
representations.

THEOREM 4.9. Whene < p− 1 andXi = (Li,Mi) are twop-torsion objects in
SH

f

A′ for which the sequences

0→ Mi/VMi
F- Mi/p = Mi → Mi/FMi → 0

are exact, anyp-torsionobjectX in PSHf

A′ which is an extension ofX2 byX1 in
PSH

f

A′ necessarily is an object inSHf

A′. If e 6 p− 1, the same is true withSHf,u

A′
or SHf,c

A′ replacingSHf

A′.
If e < p − 1, (L,M, j) is an object inPSHf

A′ , andM ' (A/pn)⊕r as an
A-module, then(L,M, j) lies in SHf

A′ if and only if the object(L[p],M[p], jp)
in PSHf

A′ lives inSHf

A′ (with jp the map naturally induced byj onp-torsion) and
L/p → MA′/p is injective. Ife 6 p − 1, then the same assertion is true with
SH

f,u

A′ or SHf,c

A′ replacingSHf

A′ .

Remark4.10. Note that the injectivity ofL/p → MA′/p holds ifL is anA′-
module direct summand ofMA′ . This is the case in the application of this result to
studying the deformation theory of Galois representations.
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Proof.Note that for anyX = (LX,MX, jX) as in the first part,jX is necessarily
injective. Also, for(L,M, j) as in the second part,j is clearly injective if and only
if jp is injective. Thus, throughout we may assume that allj -maps are injective and
we therefore omit reference to them in what follows.

We now prove ‘if’ in the second part of the theorem (‘only if’ is clear). Since
m-torsion lies inside ofp-torsion, certainlyL[m] ⊕ kerVM → MA′ [m] is an iso-
morphism. It remains (for the second part of the theorem) to check thatL/m →
cokerFM is an isomorphism.

TheDk-module isomorphismM/p ' M[p] induces anA′-linear isomorphism
(MA′)/p = (M/p)A′ ' (M[p])A′ and by the injectivity hypothesis, we have an
injectionL/p ↪→ (M[p])A′ ' MA′ [p] with the image landing inside ofL[p]. An
A′-length calculation shows that this is an isomorphism ontoL[p]. UsingL/m '
(L/p)/m, we get a commutative diagram ofk-vector spaces

L/m - cokerFM �
∼

M/F

(L[p])/m

'
? ∼- cokerFM[p]

?
�∼ M[p]/F

?

'

so the left arrow in the top row is an isomorphism.
Now consider the first part of the theorem. The commutative diagram ofk-

vector spaces

L1/m - LX/m - L2/m - 0

cokerFM1

'
?

- cokerFMX

?
- cokerFM2

?
'

- 0

M1/F

'
6

- MX/F

'
?

- M2/F
?
'

- 0

has an exact bottom row, so easily the middle row is also exact. Since the top row
is exact as well, we can conclude that the mapLX/m → cokerFMX

is surjective.
If M1/F → MX/F is injective, then it is easy to see that the left maps in each
row above are injective, from which the injectivity ofLX/m→ cokerFMX

would
follow.
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In order to prove thatM1/F → MX/F is injective, we will make essential use
of ourp-torsion hypothesis. More precisely, sinceMi = Mi/p andMX = MX/p,
we have the following commutative diagram with exact rows and columns:

0 0

M1/V
?

- MX/V
- M2/V

?
- 0

0 - M1

F

?
- MX

F

?
- M2

F

?
- 0

M1/F
?

- MX/F
?

- M2/F
?

- 0

0
?

0
?

0
?

(the main point is the injectivity ofM1 = M1/p → MX/p = MX). From this
diagram we see that the mapF :MX/V → MX/p = MX is injective, and also we
see that the rows all form short exact sequences if we fill in the missing 0’s on the
left. In particular,M1/F → MX/F is injective.

Since it is obvious thatVMX
◦ jX is injective, we are done. 2

We also have the following result concerning objects killed byp; this can be
useful when lifting certain finite group schemes from characteristicp to character-
istic 0 (cf. proof of Theorem 3.5).

COROLLARY 4.11. Let(L,M, j) be an object inPSHf

A′ which is killed byp and
has the properties thatj is injective,L/m→ cokerFM is an isomorphism, and

0→ M/V
F- M/p = M → M/F → 0

is an exact sequence. Ife = p−1, then assume thatV (resp.F) acts in a nilpotent
manner onM. Then(L,M, j) lies inSHf

A′ if e < p− 1 and it lies inSHf,u

A′ (resp.
SH

f,c

A′ ) if e = p − 1.
More precisely, ife < p − 1 thenLMA′ induces an anti-equivalence of cat-

egories between the full subcategory ofp-torsion objectsG in F FA′ for which the
sequence

0→M(Gk)/V
F- M(Gk)/p =M(Gk)→M(Gk)/F → 0
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is exact and the full subcategory ofp-torsion objects(L,M, j) in PSHf

A′ for which
L/m→ cokerFM is an isomorphism,j is injective, and the sequence

0→ M/V
F- M/p = M → M/F → 0

is exact. Ife = p − 1, the same statement is true for the corresponding categories
consisting of unipotent objects killed byp, and likewise with the categories of
connected objects.

Proof. If e = 1, then sinceFM ⊆ ker V , the hypotheses imply thatL[p]⊕
ker V = L⊕ ker V surjects ontoM = M/p, with both sides having the same
A-length. This settles thee = 1 case.

Now we supposee > 2. We begin by proving that the inclusion

VM(ξM(ι−1
M (L[m]))) ⊆ kerFM

is an equality. SincepM = 0 and the sequence

0→ M/V
F- M → M/F → 0

is exact, we have

kerFM = {1⊗ V0x|x ∈ M} ⊆ p−1
m⊗A (M)(1).

Pick anyx ∈ M. The isomorphismL/m ' cokerFM shows that we can write

ιM(1⊗ x) = `+ FM(u),

where` ∈ L andu ∈ (M)A′ [1] = p−1m ⊗A (M)(1). Sincep kills M, sop also
kills (M)A′ , we see that multiplication byπe−1 on (M)A′ has its image inside the
m-torsion submodule(M)A′ [m], so

ιM(π
e−1⊗ x) = πe−1`+ FM(π

e−1u),

with πe−1` ∈ L ∩ ((M)A′ [m]) = L[m] and, foru =∑e
j=1 p

−1πj ⊗ uj ,

πe−1u = 1⊗ εu1+
e∑
j=2

p−1πj+e−1⊗ uj

= 1⊗ εu1+
e∑
j=2

p−1επj−1⊗ puj

= 1⊗ εu1.

Thus,ιM(πe−1⊗x) = `′ −ε ·FM(1⊗ z), where`′ ∈ L[m] andz = −u1 ∈ (M)(1).
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SinceFM(1⊗ z) = FM(ϕ
M
1 (1⊗ z)) = ιM ◦FM(1⊗ z) = ιM(1⊗F0z), we have

that for allx ∈ M, there existsz ∈ (M)(1) such that

ιM(1⊗ F0z + πe−1⊗ ε−1x) ∈ L[m].
Combining this with

VM(ξM(1⊗ F0z+ πe−1⊗ ε−1x) = VM(π ⊗ F0z + p ⊗ x)
= p−1π ⊗ V0F0z + 1⊗ V0x

= 1⊗ V0x,

(V0F0 = p kills (M)(1)!), we have shown that kerFM ⊆ VM(ξM(ι−1
M (L[m]))), the

reverse of the usual inclusion.
We will now use the equality

kerFM = VM(ξM(ι−1
M (L[m])))

in order todirectly prove that(L,M) arises fromF FA′ (and fromF F u
A′ (resp.

F F c
A′) if V (resp.F ) is nilpotent onM) and so(L,M) lies inSHf

A′ whene < p−1
and inSHf,u

A′ whenV is nilpotent onM and inSHf,c

A′ whenF is nilpotent onM.
At this point, we will not require thep-torsion condition anymore. The argument
is simply a modification of the proof of essential surjectivity in Step 4 of the proof
of Theorem 3.6 in the casee > 2. More precisely, we constructM1, M2, andL1

in exactly the same way. As for the construction ofL2, that also reduces in the
same manner to the consideration of whetherx ∈ ((M1)A′ [1]) ∩ (M2)A′ can be
represented in(M2)A′/(M2)A′ [1] by an element ofL1 ∩ (M2)A′ . It is at the stage
where we invokeVM(L[m]) ' ψM

π (kerFM) in Step 4 that the argument needs to
be slightly altered.

Using the same notation as in the proof of Theorem 3.6, we use the expression
above for kerFM in order to write

1⊗P (m) =
e∑
j=1

p−1πj ⊗ V0nj

in (M)A′ [1], where the element

e−1∑
j=0

πj ⊗ nj+1 ∈ A′ ⊗A M

has image in(M)A′ that lies inL. Recalling the general formula for kerιN for any
Dk-moduleN (see Lemma 2.7), a simple calculation shows that we may suppose
without loss of generality thatni = 0 for 1 < i < e. Clearly V0n1 = 0 and
V0ne = ε−1P (m).
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By construction,(M1)A′ � (M)A′ takesL1 ontoL, so there exists aǹ1 ∈ L1

such that

P ′(`1) = (1⊗ n1+ πe−1⊗ ne,0)
in MA′ . Now inside of(M1)A′ = A′ ⊗A M1+ p−1m⊗ FM1, we can write

`1 = 1⊗ y −
e−1∑
r=1

p−1πr ⊗ Fzr,

so

P ′(`1) =
(

1⊗P (y),
e−1∑
r=1

p−1πr ⊗P (zr)

)
.

Consequently, there existu ∈ m⊗A M andw ∈ A′ ⊗A (M)(1) such that(
1⊗P (y)− 1⊗ n1− πe−1⊗ ne,

e−1∑
r=1

p−1πr ⊗P (zr)

)

= (ϕM0 (u)− FM(w), ϕM1 (w)− VM(u)).

However, in(M)A′ [1] we have

π · (ϕM1 (w)− VM(u))+ VM(ξM(ϕM0 (u)− FM(w)))
= πϕM1 (w)− VMξM(FM(w)) = 0,

and so in(M)A′ [1],

0 =
e−1∑
r=1

p−1πr+1⊗P (zr)+

+VM(π ⊗P (y)− π ⊗ n1− πe ⊗ ne)

=
e−1∑
r=1

p−1πr+1⊗P (zr)+

+p−1π ⊗ V0P (y)− p−1π ⊗ V0n1− ε ⊗ V0ne.

Recall thatV0ne = ε−1P (m) andV0n1 = 0, so the elements 1⊗m andp−1π ⊗
V0y +∑e−1

r=1p
−1πr+1 ⊗ zr in (M1)A′ [1] have the same image in(M)A′ [1] under

P ′. Now the sequence ofA′-modules

0→ (M2)A′ [1] → (M1)A′ [1] → (M)A′ [1] → 0
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is the same as

0→ p−1m⊗A M(1)
2 → p−1m⊗A M(1)

1 → p−1m⊗A (M)(1)→ 0,

which is exact sinceN  N(1) is exact from the category ofA-modules to itself
andp−1m is a flatA-module.

Therefore, the elements 1⊗ m and p−1π ⊗ V0y − ∑e−1
r=1p

−1πr+1 ⊗ zr in
(M1)A′ [1] differ by an element of(M2)A′ [1], soi′(x) = 1⊗ F0m differs from

p−1π ⊗ F0V0y −
e−1∑
r=1

p−1πr+1⊗ F0zr

= π ⊗ y −
e−1∑
r=1

p−1πr+1⊗ F0zr

= π`1,

by an element of(M2)A′ [1]. In particular,π`1 lies in (M2)A′ inside of(M1)A′ . But
π`1 ∈ L1, so this is exactly what we wanted to prove. 2

The above two results show that when analyzing certainp-torsion group schemes
overA′, we have the technical freedom to work withinPSHf

A′ without straying
outside of the essential image ofLMA′. It is precisely this sort of technical freedom
which one needs in [4], since checkingexplicitly whether an object constructed in
PSH

f

A′ actually lies inSHf

A′ or SHf,u

A′ or SHf,c

A′ can be very cumbersome.
For later use, it will be convenient to state a key lemma which we did not bother

to state explicitly in thee = 1 case, but which was essentially proven in the course
of the arguments in Section 1.

LEMMA 4.12. Assumee < p−1. Let01→ 02 be an isogeny ofd-dimensionalp-
divisible groups overA′ with kernelG, soG is in F FA′. Let(Li ,Mi) = LMA′(0i)
in Hd

A′ . Define theDk-moduleM = coker(M2 ↪→ M1) and define theA′-module

L = image(L1→ (M1)A′ � MA′).

Under the natural isomorphism ofDk-modulesM ' M(Gk), the induced map of
A′-modulesMA′ ' M(Gk)A′ takesL isomorphically over toLA′(G), so (L,M)
in PSHf

A′ actually lies inSHf

A′ . The isomorphism(L,M) ' LMA′(G) depends
functorially (in an obvious manner) on the given isogeny ofp-divisible groups
01 → 02 and is compatible with base change(preserving the ‘e < p − 1’
condition).

In particular, if 0 is a p-divisible group overA′ with (L,M) = LMA′(0),
thenL is anA′-module direct summand ofMA′ and there are natural injections of
A′-modulesL/pn ↪→ (M/pn)A′ and isomorphisms inPSHf

A′ (even inSHf

A′)

LMA′(0[pn]) ' (L/pn,M/pn),
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which are compatible with change inn, as well as base change, and are functorial
in 0.

If we impose unipotence conditions on all group objects, the same statements
are true withe 6 p − 1, and likewise with connectedness conditions.

Proof.First assumee < p−1. As we explained near the end of the proof of The-
orem 3.4,MA′ ' M(Gk)A′ takesL over intoLA′(G) and moreoverL ' LA′(G).
The functoriality properties of(L,M) ' LMA′(G) are clear from the construction.
The special case ofp-power torsion of ap-divisible group is clear; the only point
of interest is thatL/pn → (M/pn)A′ ' MA′/p

n is injective becauseL is anA′-
module direct summand ofMA′ . This direct summand property holds because the
composite mapL/m→ MA′/m→ cokerFM is ak-linear isomorphism [7, Ch. IV,
Sect, 4, Prop. 4.2(i)], so the inclusionL ↪→ MA′ is injective modulom. Since
MA′ is a finite freeA′-module [4, Ch. IV, Sect. 2.3 Rem.], this implies thatL is an
A′-module direct summand ofMA′ .

If e 6 p−1, usingLMu
A′ orLMc

A′ in place ofLMA′ permits the same arguments
to go through with unipotence or connectedness conditions. 2

5. Descent Formalism and Abelian Varieties

As an application of our study of base change for finite Honda systems, we will
prove an interesting theorem on good reduction of certain Abelian varieties.

To start off, let’s quickly review the formalism of Galois descent in our situation
(see [1, Sect. 6.2] for further details). LetK ′ be a finiteGalois extension of the
fraction fieldK ′ of A′ with e(K ′) 6 p − 1, and let(A′, n) denote the valuation
ring of K ′, as usual. The descent data on aK ′-group schemeG which encodes the
fact that it arises as the base extension of a specifiedgroup schemeoverK ′ is a
collection of commutative diagrams of schemes

G
γG - G

SpecK ′
?

γ ∗- SpecK ′
?

for all γ ∈ Gal(K ′/K ′), with γG ◦ γ̃G = (γ̃ ◦ γ )G, (idK ′)G = idG, and eachγG

must be compatible (over the action ofγ on the base) with thegroup scheme
structure morphisms forG overK ′. Of course, in a situation as affine as this one,
Galois descent data is always effective. Also, note that usingγ = γ̃ = idK ′ yields
(idK ′)G = idG as a consequence of the other conditions if we axiomatize the fact
that eachγG is anisomorphismof schemes.

A more convenient way to say all of this is that if we letGγ denote the base-
extendedK ′-group schemeGγ = G ×SpecK ′ SpecK ′, using γ ∗: SpecK ′ '
SpecK ′, then we require the existence of isomorphisms ofK ′-group schemes
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γG: G→ Gγ such that for allγ , γ̃ ∈Gal(K ′/K ′), (γG)γ̃ ◦ γ̃G = (γ̃ ◦ γ )G. Here, for
any morphism ofK ′-schemesf :X→ Y we denote byfγ the morphismXγ → Yγ
induced via base extension byγ ∗; note that in the above we have implicitly used
the natural isomorphism(Xγ )γ̃ ' Xγ̃ ◦γ .

Now make the further assumption thatG is the generic fiber of an objectG0

in F FA′, with G0 unipotent or connected ife(K ′) = p − 1. By the final part of
Lemma 4.1, the above data onG is equivalentto corresponding data onG0. Here,
we use the usual action of Gal(K ′/K ′) on A′ and we replace ‘K ′-group scheme’
by ‘A′-group scheme’ (note that in Lemma 4.1 we only have full faithfulness with
respect to morphisms of group schemes, not just of schemes, over the base). Of
course, in the category ofA′-schemes this generally does not constitute descent
data down toA′, since the cover SpecA′ → SpecA′ is typically far from Galois.

Since an automorphismγ : A′ → A′ is trivially pseudo-étale, Theorem 4.6
enables us to reformulate all of this intrinsically in the categoryPSH

f

A′ . We state
this more formally as a definition. Note that the contravariance ofLMA′ , LMc

A′ ,
andLMu

A′ will cancel out the contravariance of Spec implicit in the descriptions of
the action of Gal(K ′/K ′) above, leaving us with a more psychologically pleasing
left action of Gal(K ′/K ′) rather than a right action.

DEFINITION 5.1. For an object(L,M, j) in PSHf

A′ , descent dataD on(L,M, j)

(relative toA′ → A′) is a collection ofPSHf

A′-isomorphisms

[γ ]D : (L,M, j)γ
∼- (L,M, j),

for all γ ∈ Gal (K ′/K ′), such that[γ1]D ◦ ([γ2]D)γ1 = [γ1 ◦ γ2]D .

If one were interested in generalizing the considerations of Ramakrishna [16] to
study a local deformation problem analogous to the one in [7] (suitably modified
to force thep-divisible group to arise over an extension withe 6 p − 1), a natural
thing to study would be the Abelian categoryDPSHf

A′ whose objects consist of
pairs ((L,M, j),D) with (L,M, j) an object inPSHf

A′ andD a descent data
on (L,M, j) (relative toA′ → A′, even though we omit mention ofA′ in the
notation); we define a morphism

((L1,M1, j1),D1)→ ((L2,M2, j2),D2)

to be a morphismϕ: (L1,M1, j1)→ (L2,M2, j2) compatible with the descent data
(i.e.,ϕ ◦ [γ ]D1 = [γ ]D2 ◦ ϕγ for all γ ∈ Gal (K ′/K ′)). Full Abelian subcategories
DSH

f

A′ (whene(K ′) < p−1) andDSHf,u

A′ ,DSHf,u

A′ can be defined in the obvious
manner, but we don’t have any need for them, essentially because of Theorem 4.9.
When considering the computation of Ext1’s along the lines of argument as in [16],

one is also led to consider the full Abelian subcategorỹDPSH
f

A′ consisting of
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p-torsion objects. It is trivial to check that the forgetful functors̃DPSH
f

A′ →
DPSH

f

A′ andDPSHf

A′ → PSH
f

A′ are exact. This is used in [4].
We’ll now use the descent formalism in order to prove a ‘good reduction’ the-

orem for certain Abelian varieties. First, let’s formulate a theorem aboutp-divisible
groups which will be the means by which we study good reduction of Abelian
varieties.

THEOREM 5.3. LetK ′ be a finite(not necessarily Galois!) extension ofK ′, with
valuation ringA′ ande(K ′) 6 p− 1. Let0K ′ be ap-divisible group overK ′ and
assume that there exists ap-divisible group0′ over A′ such that0K ′ ×K ′ K ′ '
0′ ×A′ K

′ asp-divisible groups overK ′. Suppose that0K ′ [p] ' G ×A′ K ′ as
K ′-group schemes for someG in F FA′ . If e(K ′) = p − 1, then also assumeG
and0′ are both unipotent or both connected(the latter condition being equivalent
to the unipotence/connectedness of0′[p]). Then there exists ap-divisible group0
overA′ such that0K ′ ' 0 ×A′ K ′, with 0 unipotent/connected if0′ andG are
unipotent/connected.

Before proving Theorem 5.2, let’s explain how it is used to prove the following
result

THEOREM 5.3.WithK ′ andK ′ as in Theorem5.2, letX/K ′ be an Abelian variety
such thatX acquires good reduction overK ′. Also, suppose thatX[p] ' G×A′K ′
for someG in F FA′. If e(K ′) = p−1, then assume that eitherG is unipotent and
the Néron model ofX ×K ′ K ′ overA′ has unipotentp-torsion, or that these finite
flat group schemes are connected. ThenX has good reduction overK ′.

Proof. Define0K ′ to be thep-divisible group associated toX/K ′, so0K ′ ×K ′
K ′ ' 0′×A′K

′, where0′ is thep-divisible group of the Néron model ofX×K ′K ′
overA′. If e(K ′) = p − 1, ourp-torsion hypothesis on the Néron model implies
that0′ is unipotent or connected. Theorem 5.2 ensures that0K ′ ' 0 ×A′ K ′ for
somep-divisible group0 overA′. By a theorem of Grothendieck [11, Cor. 5.10],
this implies thatX/K ′ has good reduction.

We should stress that [11, Cor. 5.10] ismuchstronger than what we actually
need. All we need is the fact that ifR is a henselian discrete valuation ring with
a characteristic 0 fraction fieldK and with residue characteristicp, andX is an
Abelian variety overK which acquires good reduction over a finite extension of
K, thenX has good reduction overK if and only if thep-divisible group ofX has
good reduction overK. The proof of this fact can be extracted from the end of the
proof of [11, Cor. 5.10], requiring just the usual Néron–Ogg–Shafarevich criterion
and none of the theory of semi-stable reduction for Abelian schemes.

For the convenience of the reader, we explain in more detail the relevant part
of Grothendieck’s argument (phrased in a self-contained manner which bypasses
semi-stability considerations). LetK ′/K be a finite extension over whichX′ =
X×K K ′ acquires good reduction and let0/R be ap-divisible group equipped with
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an isomorphism0/K ' Tp(X) of p-divisible groups overK. We want to show
thatX/K has good reduction. Since the Néron model is of formation compatible
with passage to the strict henselization of the base (either by [1, 7.2/2] or the actual
construction), we can assume thatR is strictly henselian, and then thatK ′/K is
Galois with Galois groupG. Let R′ denote the valuation ring ofK ′, and letk′/k
denote the (finite, purely inseparable) extension of residue fields. LetX′/R′ denote
the (proper) Néron model ofX′/K ′.

Pick a prime` 6= p. Since the`-adic Tate moduleT`(X′) is a constant̀ -
divisible group (as it is the generic fiber of an`-divisible groupT`(X′) over the
strictly henselianR′), there is a natural action ofG on T`(X) via the ‘geometric
points’ (which all arise overK ′). We need to prove this action is trivial. Equiva-
lently, for eachn we have an action ofG onX′[`n](K ′) defined by

g(x) = (1× g−1)∗ ◦ x ◦ g∗,

whereg∗: Spec(K ′) → Spec(K ′) and(1× g−1)∗:X′ = X ×K K ′ → X′ are the
natural maps, and we want to prove this action is trivial.

Letting (·)g denote base change by the automorphismg∗ (on either Spec(K ′)
or Spec(R′)), the isomorphismsX′ ' X′

g−1 over g∗ extend to isomorphisms
[g]: X′ ' X′

g−1. Sincek′/k is a purely inseparable extension, so Aut(k′/k) is

trivial, passing to the closed fiber givesk′-automorphisms[g]: X′ ' X′. The Néron
property ofX′ and the strict henselianity ofR′ give identifications

X′[`n](K ′) = X′[`n](R′) = X′[`n](k′),

under which the action ofG on the left side translates into the induced action by
the [g]’s on the right side. Thus, it is enough to prove that for eachg ∈ G, the
automorphism[g] of the Abelian varietyX′/k′ is the identity. This assertion does
not have anything to do with̀ and can be checked by looking at the action on the
p-divisible group ofX′/k′. Thus, it is enough to prove that thep-divisible group
maps

Tp([g]): Tp(X′)→ Tp(X
′
g−1) ' Tp(X′)g−1

(overg∗: Spec(R′) ' Spec(R′)) induce the identity on the closed fiber.
Now 0 ×R K ' Tp(X) enters the picture. Base changing toK ′, we get an

isomorphism ofp-divisible groups overK ′

(0 ×R R′)×R′ K ′ ' Tp(X′)×R′ K ′,

compatibly with the isomorphisms on each side withG-twists (with the ones on
the right coming from theTp([g])’s), so by Tate’s theorem [19, Thm. 4] we obtain
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an isomorphism ofp-divisible groupsi:0 ×R R′ ' Tp(X′) overR′ such that the
diagrams

0 ×R R′ i - Tp(X
′)

(0 ×R R′)g−1

?
(g−1)∗(i)- Tp(X

′)g−1

?

[g]

commute. Passing to the closed fiber and noting that the left side reduces to the
identity and the two rows reduce to the same map, it follows that the right side
always reduces to the identity, as desired. 2

The unipotence/connectedness condition on thep-torsion of the Néron model
is satisfied whenX/K ′ is an elliptic curve with potentially supersingular reduction.
This was the source of the original motivation for proving Theorem 5.2. More
precisely, the theory of finite Honda systems can be used to study the deformation
theory of Galois representations, and in particular the problem of classifying Galois
representations of Gal(Q̄p/Qp) which ‘come from finite flat group schemes’ over
K ′ (or K ′). In [4] this is carried out, and one gets universal deformation ringsRK ′
andRK ′, together with a natural mapRK ′ → RK ′. This map turns out (by compu-
tational observation) to be an isomorphism. An ‘explanation’ for this isomorphism
is provided by Theorem 5.2.

With the application to Abelian varieties settled, we now carry out the compu-
tations:

Proof of Theorem5.2. Note that Galois descent for schemes carries over top-
divisible groups because of the way in which they are built up out of genuine (i.e.,
nonformal) group schemes. This will be implicit in our use of descent below.

We can certainly replaceK ′ by the maximal unramified extension of it within
K ′, by Galois descent of (group) schemes, so we may (and will) assume that
K ′/K ′ is a totally ramifiedfinite extension. In particular, the residue fieldA′/n
can be identified withk. Also, note that asK ′-group schemes,

0′[p] ×A′ K
′ ' 0K ′ [p] ×K ′ K ′ ' G×A′ K ′ ' (G×A′ A′)×A′ K

′,

so by Lemma 4.1 it follows that0′[p] ' G ×A′ A′. This will be used below.
We also emphasize that wefix a choice of isomorphism0K ′ [p] ' G ×A′ K ′ for
the purposes of our constructions below. In what follows, we will consider only
the casee(K ′) < p − 1. Whene(K ′) = p − 1 and there are unipotence or
connectedness conditions, the arguments go through with only minor notational
changes (e.g.,LMu

A′ in place ofLMA′ , etc.).
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Let LMA′(0
′) = (L′,M ′) in Hd

A′. As was noted in the second half of
Lemma 4.12, we haveLMA′(0

′[pn]) ' (L′/pn,M ′/pn), with this isomorphism
functorial in0′ and compatible with change inn and base change as in Section 4.
We will need to use these isomorphisms below in the case when the base is the
valuation ringA′′ of the Galois closureK ′′ of K ′ overK ′. Note that sinceK ′/K ′
is a totally ramified extension of degreee =def e(K

′/K ′) prime top, we have
K ′′ = K ′(ζe) and soe(K ′′) = e(K ′). This is the main reason it was important to
reduce to the case in whichK ′/K ′ is totally ramified.

Since0′[p] ' G ×A′ A′, we see that0′[p]k ' Gk (recall k ' A′/n). Thus,
M(Gk) 'M(0′[p]k) ' M ′/p. There is anA′-submoduleL ⊆ (M ′/p)A′ such that
LMA′(G) ' (L,M ′/p) and the results in Section 4 enable us to relateL andL′/p.
In fact, sinceA′ → A′ is a totally ramified finite extension, Lemma 4.5 and the
isomorphismG×A′ A′ ' 0′[p] imply that the natural mapA′ ⊗A′ (M ′A′)→ M ′A′
of A′-modules induces anA′-linear isomorphismA′ ⊗A′ L ' L′/p.

Now choose anA′-module direct summandL ⊆ M ′A′ such thatL/p ↪→
M ′A′/p ' (M ′/p)A′ has imageL. We make the crucial claim that we can choose
L ⊆ M ′A′ ⊆ M ′A′ to lie inside ofL′ (recall thatM ′A′ → M ′A′ is injective, as it is
compatible with

K ′ ⊗A′ (M ′A′) ' K ′ ⊗A M ′ ↪→K ′ ⊗A M ′ 'K ′ ⊗A′ (M
′
A′),

by [4, Ch. IV, Sect. 2.3, Prop. 2.1]).
The construction of such anLwill require a long argument. First of all, consider

the commutative diagram

(M ′/p)A′ - (M ′/p)A′

CWk,A′(Rk)
?

- CWk,A′(Sk)
?

RK ′/mR

w′R
?

- SK ′/nS
?
w′S

with S = A′⊗A′R the affine ring ofG×A′A′. The bottom row is an injection, as we
noted at the beginning of the proof of Lemma 4.5. Recalling thatLMA′(0

′[p]) '
(L′/p,M ′/p), this diagram enables us to conclude that kernelL ⊆ (M ′/p)A′ of the
left column contains(L′∩(M ′A′))/p ↪→ M ′A′/p ' (M ′/p)A′. Here, the intersection
uses the fact mentioned earlier that the natural mapM ′A′ → M ′A′ is anA′-linear
injection, as it is compatible with the injectionK ′ ⊗A M ′ → K ′ ⊗A M ′. Also,
the map(L′ ∩ (M ′)A′)/p → M ′A′/p is injective becauseL′ ∩ (M ′A′) is anA′-
module direct summand ofM ′A′ . In order to justify this direct summand property,
it is enough to show thatL′ is anA′-module direct summand ofM ′A′ ⊇ M ′A′ . Since
M ′A′ is a finite freeA′-module, it suffices to check thatL′/n→ M ′A′/n is injective.
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But this is clear, since we have an isomorphism viaL′/n ' M ′A′/M ′A′ [1], with the
latter a quotient ofM ′A′/n.

We will show that the inclusion(L′ ∩ (M ′A′))/p ⊆ L of A′-submodules of
(M ′/p)A′ is an equality. This will finish the proof, by takingL =def L

′ ∩ (M ′A′).
Note that at this point it is not even clear thatL′ ∩ (M ′A′) would ever benonzero
(for e(K ′) > 1). Proving that the above inclusion is an equality in something that
can be checked after making a faithfully flat base extension, so we will show that

A′ ⊗A′ ((L′ ∩ (M ′A′)/p)) ↪→ A′ ⊗A′ L

is an isomorphism. Recall from our discussion of totally ramified base change in
Section 4 that the naturalA′-linear map fromA′⊗A′L to (M ′/p)A′ is injectivewith
imageL′/p (sinceG×A′ A′ ' 0′[p]!), so what we wish to prove is equivalent to
showing that(L′ ∩ (M ′

A′))/p andL have images in(M ′/p)A′ (via (M ′/p)A′ →
(M ′/p)A′) with the sameA′-linear span. Since theA′-linear span of the image of
L is preciselyL′/p, it is sufficient to prove that theA′-linear map

A′ ⊗A′ (L′ ∩ (M ′A′)) ↪→ L′

is an isomorphism.
The first thing we will show is that the above injection remains injective modulo

n, soA′ ⊗A′ (L′ ∩ (M ′A′)) is at least anA′-module direct summand ofL′. Well,
modulon the map is(L′ ∩ (M ′A′))/m→ L′/n and this fits into the commutative (!)
diagram

(L′ ∩ (M ′A′))/m - L′/n ∼- M ′A′/M
′
A′ [1]

L/m

?
∼- cokerFM ′/p,A′ �

∼
M ′/FM ′,

6'

so if the left column is injective, then the map(L′ ∩ (M ′A′))/m → L′/n is in-
jective also, as desired. The injectivity of the left column says exactly that(L′ ∩
(M ′A′))/p ⊆ L is anA′-module direct summand; in order to prove this latter con-
dition, it suffices to prove that that(L′ ∩ (M ′A′))/p ⊆ (M ′/p)A′ ' M ′A′/p is an
A′-module direct summand. But as we noted above,L′ ∩ (M ′A′) is anA′-module
direct summand ofM ′A′ , so just reduce modulop.

Since the inclusionA′ ⊗A′ (L′ ∩ (M ′A′)) ↪→ L′ has been proven to be an
isomorphism onto anA′-module direct summand, in order to prove that this sub-
module actually fills up all ofL′, it is enough to check that we have an isomorphism
after passing to the generic fiber, which is to say that we want to show

K ′ ⊗A′ (L′ ∩ (M ′A′)) def= K ′ ⊗A′ L
′
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inside of K ′ ⊗A′ (M ′A′) = K ′ ⊗A′ (M
′
A′). If K ′ ⊗A′ L

′ ⊆ K ′ ⊗A′ (M ′A′) '
K ′ ⊗K ′ (K ′ ⊗A′ (M ′A′)) is aK ′-rational subspace(i.e., of the formK ′ ⊗K ′ V for
someK ′-subspaceV of K ′ ⊗A′ (M ′A′) ' K ′ ⊗A M ′), then

K ′ ⊗A′ L
′ = K ′ ⊗K ′ ((K ′ ⊗A′ L

′) ∩ (K ′ ⊗A′ (M ′A′)))
= K ′ ⊗K ′ (K ′ ⊗A′ (L′ ∩ (M ′A′)))
= K ′ ⊗A′ (L′ ∩ (M ′A′)),

as desired. Clearly it even suffices to prove that theK ′′-subspace

K ′′ ⊗A′ L
′ ⊆ K ′′ ⊗A′ (M ′A′)

is aK ′-rational subspace, withK ′′ the Galois closure ofK ′ overK ′. Note that
K ′′ =K ′(ζe0), wheree0 =def e(K

′/K ′), so the inclusion of valuation ringsA′ →
A′′ is a finiteétaleextension andA′′ hasA[ζe0] as its maximal unramified subring
(i.e, this is the Witt ring of the perfect residue fieldk(ζe0) of A′′ andA = W(k)

as usual). This will permit us to apply our previous base change formalism (after
passing to an inverse limit).

The idea behind the proof thatK ′′ ⊗A′ L
′ ⊆ K ′′ ⊗A′ M ′A′ = K ′′ ⊗K ′ (K ′ ⊗A′

(M ′A′)) isK ′-rational is that(L′,M ′) = LMA′(0
′)where0′×A′K

′ ' 0K ′ ×K ′K ′.
This latter isomorphism base extends to the isomorphism0′×A′K

′′ ' 0K ′ ×K ′K ′′
and we now ought to be able to transfer Galois descent formalism of Gal(K ′′/K ′)
from the right side to the left side.

More precisely, we note that forL′′ = A′′ ⊗A′ L
′ andM ′′ = A[ζe0] ⊗A M ′,

LMA′′(0
′ ×A′ A

′′) ' (L′′,M ′′).

To see this, simply consider the analogous assertion for thepn-torsion via The-
orem 4.6 and pass to the inverse limit, using the fact that the naturalA′′-module
mapM ′′A′′ → lim←− ((M ′′/pn)A′′) is an isomorphism, thanks to(M ′′A′′)/p

n '
(M ′′/pn)A′′ . Since0′′ =def 0

′ ×A′ A
′′ has generic fiber isomorphic to0K ′ ×K ′K ′′,

for eachγ ∈ Gal (K ′′/K ′) we have a morphism ofp-divisible groups overK ′′

[γ ]:0′′ ×A′′ K
′′ → (0′′ ×A′′ K

′′)γ ' 0′′γ ×A′′ K
′′,

satisfying[idK ′′ ] = id0′′×A′′K ′′ and[γ ]γ̃ ◦[γ̃ ] = [γ̃ ◦γ ] for all γ , γ̃ ∈Gal(K ′′/K ′).
By Tate’s full faithfulness theorem forp-divisible groups [16, Thm. 4], or even

just by repeated applications of Lemma 4.1 (sincee(K ′′) = e(K ′)), we get the
same formalism canonically overA′′. We will use this formalism to show that for
eachγ ∈ Gal (K ′′/K ′), theK ′′-semilinear map

γ ⊗ 1:K ′′ ⊗A′ (M ′A′)→K ′′ ⊗A′ (M ′A′)
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takes the subspaceK ′′ ⊗A′ L
′ to itself. The classical formulation of Galois descent

(i.e., the normal basis theorem) then would yield thatK ′′ ⊗A′ L
′ isK ′-rational, as

desired.
To start off, defineL′′γ andM ′′γ to be the base extensions ofL′′ andM ′′ by

the respective base changesγ : A′′ → A′′ andγ :A[ζe0] → A[ζe0]. Passing to the
inverse limit on our discussion in Section 4 gives rise to the naturalA′′-module
isomorphism

jγ : A′′ ⊗A′′ (M
′′
A′′) ' (M ′′γ )A′′,

where on the left side we useγ :A′′ → A′′. A simple ‘passage to the inverse limit’
argument based on Theorem 4.6 also shows that

LMA′′(0
′′
γ ) ' (L′′γ ,M ′′γ ),

where we usejγ to embedL′′γ as anA′′-submodule of(M ′′γ )A′′ .
The ‘Galois descent’ formalism overA′′ translates intoDk(ζe0)

-module maps

[γ ]:M ′′γ → M ′′,

for all γ ∈ Gal (K ′′/K ′), such that[γ ]A′′ takesL′′γ over intoL′′ (!) and

[γ1] ◦ [γ2]γ1 = [γ1 ◦ γ2].
Consider theγ -semilinear map ofA′′-modules

M ′′A′′ → A′′ ⊗A′′ (M
′′
A′′)

[γ ]A′′ ◦jγ- M ′′A′′

given bym 7→ [γ ]A′′ ◦jγ (1⊗m) (of course, the base changeA′′ → A′′ implicit in
the tensor product is the one induced byγ ). Since the mapM ′′A′′ → A′′ ⊗A′′ (M

′′
A′′)

used above takesL′′ over toj−1
γ (L′′γ ) (by definition!), we see that the composite

γ -semilinear map takesL′′ over to itself. Therefore, as long as this map fixes every
element of the natural copy ofM ′A′ sitting inside ofM ′′A′′ , it follows that the induced
semilinear map onK ′′⊗A′′ (M

′′
A′′) =K ′′⊗A′ (M ′A′) is exactlyγ⊗1. In other words,

γ ⊗ 1 takesK ′′ ⊗A′′ L
′′ over into itself, which isexactlywhat we had promised to

show.
It remains (for the construction ofL inside ofL′) to check thatM ′A′ is fixed in

the manner just described. Since we have an inclusion of subsets ofM ′′A′′ given by

M ′ ⊆ M ′′ ⊆ M ′′A′′
in the obvious way, it is in fact enough to consider theA[ζe0]-linear map

[γ ]:M ′′γ → M ′′
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and to show that this takes 1⊗ m tom for everym ∈ M ′ ↪→ M ′′. We can rewrite
this as aγ -semilinear map ofA[ζe0]-modules

A[ζe0] ⊗A M ′ → A[ζe0] ⊗A M ′

and we want to show that for allm ∈ M ′, the element 1⊗m is fixed by this map.
That is, the (abstract) semilinear action of Gal(K ′(ζe0)/K ′) ' Gal (K(ζe0)/K) '
Gal (k(ζe0)/k) onA[ζe0]⊗AM ′ arising from the above generic fiber descent form-
alism should fixM ′ and so should be the obvious action.

By [7, Ch. II, Sect. 2.2], this ‘obvious’ action is precisely what we get if we use
the functorM to translate the canonical Galois descent data for(0′k)×k k(ζe0) down
to 0′k into the language of of Dieudonné modules (much like in the discussion at
the beginning of this section). The prolonged ‘Galois descent data’ formalism of
Gal (K ′′/K ′) on0′ ×A′ A

′′ induces (abstract) ‘Galois descent data’ formalism of
Gal (K ′(ζe0)/K ′) ' Gal (k(ζe0)/k) on the closed fiber; we must verify that this is
exactly the usual Galois descent data on this closed fiber. The key point will be that
the projection Gal(K ′′/K ′)�Gal (K ′(ζe0)/K ′) has a section, namely the inverse
to the natural isomorphism Gal(K ′′/K ′) ' Gal (K ′(ζe0)/K ′) which arises from
the linear disjointness ofK ′ andK ′(ζe0) overK ′.

Since0′×A′K
′ ' 0K ′ ×K ′K ′ asp-divisible groups overK ′, we are reduced to

showing that if we begin with the canonical Galois descent data for(0′×A′K
′)×K ′

K ′′ down to0′ ×A′ K
′ and ‘formally’ prolong it to the entirep-divisible group

0′ ×A′ A
′′ (by Tate’s theorem or Lemma 4.1), then the induced formalism over the

closed fiber is exactly the canonical Galois descent data for(0′ ×A′ k) ×k k(ζe0)
down to0′ ×A′ k = 0′k. However, this assertion is a direct consequence of the way
in which Galois descent of fields is realized as faithfully flat descent and the fact
thatA′ → A′′ is aGaloisextension of discrete valuation rings (see [1, Sect. 6.2,
Example B] for more details). This completes the construction of the desiredL ⊆
M ′A′ ⊆ M ′A′ lying inside ofL′.

Let us see how such anL enables us to construct0 of the desired sort. The
commutative diagram

L/m - M ′A′/M
′
A′ [1] �∼ M ′/FM ′

L/m

?
∼- cokerFM ′/p,A′ �

∼
(M ′/p)/F(M ′/p)

?
'

shows that(L,M ′) lies inHd
A′, so(L,M ′) ' LMA′(0) for ap-divisible group0

overA′. Certainly theA′-submodule

LA′(0 ×A′ A′) ↪→ M ′A′ ⊆K ′ ⊗A M ′

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001788509055


FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION 315

containsL = LA′(0). Thus,A′ ⊗A′ L lies inside ofLA′(0 ×A′ A′). Modulo n,
however, this inclusion is precisely the top row in the commutative diagram

L/m - LA′(0 ×A′ A′)/n

M ′A′/M
′
A′ [1]

'
?

M ′A′/M
′
A′ [1]
?
'

M ′/FM ′
'
6

= M ′/FM ′,
?
'

soA′ ⊗A′ L = LA′(0 ×A′ A′) inside ofK ′ ⊗A M ′. Since we are assuming thatL
lies inside ofL′, soA′ ⊗A′ L ⊆ L′, the commutative diagram

(A′ ⊗A′ L)/n - L′/n

M ′A′/M
′
A′ [1]

'
?

= M ′A′/M
′
A′ [1]
?
'

forcesA′ ⊗A′ L = L′. Therefore,LMA′(0
′) = (L′,M ′) = (A′ ⊗A′ L,M ′) is

isomorphic toLMA′(0 ×A′ A′), from which we get an isomorphism of formal
A′-group schemes0 ×A′ A′ ' 0′.

Passing to the generic fiber, we get an isomorphism ofp-divisible groups over
K ′

(0 ×A′ K ′)×K ′ K ′ ' 0′ ×A′ K
′ ' 0K ′ ×K ′ K ′.

Recall that by hypothesis,0K ′ [p] ' G×A′K ′ for someG in F FA′ and0 is defined
so that

LMA′(0[p]) ' (L/p,M ′/p) = (L,M ′/p) ' LMA′(G),

soG ' 0[p]. On the generic fiber this gives0K ′ [p] ' 0[p] ×A′ K ′. Hence,
0 ×A′ K ′ and0K ′ are twop-divisible groups overK ′ which become isomorphic
overK ′ and havep-torsion subgroups which are isomorphic overK ′.

Since0K ′ and0 ×A′ K ′ have the same heighth (as this can be computed after
base extension toK ′), upon fixing a choice of algebraic closureK ′ of K ′ and a
K ′-embeddingK ′ ↪→ K ′, we may view0K ′ and0 ×A′ K ′ as continuous Galois
representationsρi: Gal(K ′/K ′) → GLh(Zp); (i = 1,2) such thatρ1|Gal(K ′/K ′) '
ρ2|Gal(K ′/K ′) and for ρ̄i =def ρi modp, there is an isomorphism̄ρ1 ' ρ̄2. In fact,
we claim that thesamematrixµ ∈ GLh (Zp) can be used to conjugateρ1|Gal(K ′/K ′)
into ρ2|Gal(K ′/K ′) and ρ̄1 into ρ̄2. Such a conjugation byµ gives a ‘compatible’
choice of bases and so would allow us to assume thatρ1|Gal(K ′/K ′) andρ2|Gal(K ′/K ′)
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are literally equal, as areρ̄1 and ρ̄2. Lemma 5.4 then would yieldρ1 ' ρ2, so
0K ′ ' 0 ×A′ K ′, which is what we wanted to prove.

The rigorous justification of the existence ofµ is based on giving a more canon-
ical description of the meaning of the existence ofµ. Consider the isomorphism

(0 ×A′ K ′)×K ′ K ′ ' 0K ′ ×K ′ K ′

from above. This induces an isomorphism ofK ′-group schemes

ϕ1: (0[p] ×A′ K ′)×K ′ K ′ ' 0K ′ [p] ×K ′ K ′ ' (G×A′ K ′)×K ′ K ′,

the latter isomorphism being induced by the base extensionK ′ → K ′. However,
by using the isomorphismG ' 0[p] obtained at the end of the above lengthy
construction ofL, the base extensionA′ →K ′ gives rise to an isomorphism

ϕ2: (0[p] ×A′ K ′)×K ′ K ′ ' (G×A′ K ′)×K ′ K ′.

The existence ofµ is precisely the assertion thatϕ1 = ϕ2.
These mapsϕ1, ϕ2 lift to isomorphisms of the correspondingA′-group schemes,

so by the faithfulness of passage to the closed fiber (Corollary 3.7) it suffices to
check that the induced maps on the closed fibers coincide. SinceA′ → A′ in-
duces an isomorphism on the residue fields, we have two (abstract) isomorphisms
M(Gk) 'M(0[p]k) which we must prove are the same. From0′[p] ' G×A′ A′
we getM(Gk) 'M(0′[p]k) ' M ′/p; an isomorphismM ′ 'M(0k) is furnished
by thedefinitionof 0, so we have also an isomorphismM ′/p ' M(0[p]k). The
composite isomorphismM(Gk) ' M(0[p]k) is precisely the map induced from
ϕ1. Now consider the isomorphism0[p] ' G constructed above via Honda sys-
tems (actually, it is the inverse that we constructed). On the level of closed fibers,
it is obvious that we haveexactlythe same map on the Dieudonné modules as was
just described. Hence,ϕ1 andϕ2 do indeed coincide. 2

We now prove the lemma which was critical in the above proof.

LEMMA 5.4. LetG be a profinite group andH an open normal subgroup of index
prime top, with p a prime. Letρi:G→ GLn(Zp) be two continuous representa-
tions for whichρ1|H = ρ2|H and ρ̄1 = ρ̄2, whereρ̄i is the residual representation
ρi modp. Thenρ1 ' ρ2.

Proof.Let ρ denote the common restriction ofρ1 andρ2 toH . Definef (g) =
ρ1(g)ρ2(g)

−1. It is easy to check that this is a function from the groupG/H to the
groupKn = ker(GLn(Zp) → GLn(Fp)). Moreover, given thatρ2 is a representa-
tion, the condition thatρ1 is a representation is equivalent to the condition

f (g1g2) = f (g1) · ρ2(g1)f (g2)ρ2(g1)
−1.
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In particular, if we takeg1 = h to be any element ofH andg2 = g to be any
element ofG, then

f (g) = f (hg) = ρ(h)f (g)ρ(h)−1,

so f takes its values in the subgroupKH
n of invariants underρ = ρ2|H . Note

that this is a closed subgroup ofKn and so is a pro-p group with aG/H -stable
solvability series (using the conjugation action ofρ2).

Since the Abelian higher cohomology ofG/H on Abelianp-groups always
vanishes, the standard short exact sequence arguments and compactness ofKH

n

show thatH 1(G/H,KH
n ) is the trivial pointed set (here, we are using continuous

nonAbelian cohomology). Hence, there existsx ∈ KH
n such that

f (g) = x−1ρ2(g)xρ2(g)
−1.

In other words,x ∈ GLn(Zp) conjugatesρ2 into ρ1, so we have the desired iso-
morphism. 2

We conclude by mentioning a question raised by Nicholas Katz. Fix a prime
p. Choose a local fieldK with characteristic 0 and having a valuation ring with a
perfect characteristicp residue field. LetK ′/K be a finite extension. Consider an
Abelian varietyA/K such thatA/K ′ has good reduction. For a positive integern,
say thatA[pn] hasgood reduction overK if there is a finite flatOK-group scheme
G and aK-group scheme isomorphismA[pn] ' G ×OK K. Does there exist an
explicit strictly increasing sequence of positive integerse(1, p) < e(2, p) < · · · <
e(n, p) < · · · so that if (for somen) e(K ′) < e(n, p) andA[pn] has good reduction
overK, thenA has good reduction overK? Intuitively, if K ′/K is fixed, is there
ap-power torsion level depending only one(K ′) so that detecting good reduction
for an Abelian variety overK is equivalent to good reduction overK ′ and good
reduction for a suitable torsion level overK? We showed above that one should
take e(1, p) = p − 1. The existence of a sequence{e(n, p)} would be a nice
complement to [8, Cor. 5.10].

Appendix

In this appendix, we would like to clarify an important point in the proof of
Fontaine’s classification of smoothp-formal group schemes overA′, wheree(A′) <
p− 1 (or e(A′) 6 p− 1 if we restrict attention to connected or unipotent objects).
The point of interest arises on [4, p. 180], where one has a system of equations
c+Ax +Bxp = 0, wherex is an unknown vector withn entries in anFp-algebra
S, c is a given vector inSn,A is an invertiblen by nmatrix overS, B is a nilpotent
n by n matrix overS, andxp denotes the vector obtained fromx by raising the
entries to thepth power. It is asserted that such a system of equations admits a
unique solution. In this level of generality, the claim is not quite true, because
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the matrixA−1B might not be nilpotent. We would like to explain why this does
not cause problems. More precisely, we will show that in the particular setting
considered in [4], the matrixA−1B is actually nilpotent and that this suffices to get
existence and uniqueness of solutions. Since this is just a technicality that is only
of interest to someone reading [4], we take the liberty here of using the notation in
[4] without comment (it would be too much of a digression to recall here all of the
notation we need).

For a ‘bad’ example, consider the hypothetical possibility thatαc1 = X1+X2+
(1/p)Xp

2 , αc2 = X1, x0
2 ≡ 0 modp, andx0

1 is allowed to be anything. We then get
the simultaneous equations

y1+ y2 + yp2 + γ1 = 0, y1 + γ2 = 0.

If γ1 = γ2 = 0, then(0,1) and(0,0) are both solutions. Ifγ1 = 1,γ2 = 0, then we
need to solve the equationT p − T + 1, which has no solution if our characteristic
p ring is Fp. We need to make fuller use of our group scheme setting in order to
rule out examples of this type. The key fact is

THEOREM A.1. There is a matrix identity(
∂αci

∂X`

)−1
(
∂pαci

∂X
p

j

)
≡ −

((
∂V (X`)

∂Xj

)p)
modm̂,

where the right side is the negative of the matrix obtained by taking the(semi-
linear) matrix ofV with respect to thek-basis{Xi} of thek[V ]-modulem/m2 '
M/FM = Mc/FMc and raising the entries to thepth power.

Granting this, we can choose coordinatesXi so that the matrix of the nilpotent
V on m/m2 with respect to the basis{Xi} has all entries 0, except for some lower
diagonal(i, i + 1) entries which might equal 1. It would then remain to prove:

LEMMA A.2. Let S be anFp-algebra,c ∈ Sn, N = (νij ) an n by n matrix with
νij nilpotent forj 6= i + 1. Then the vector equation

x = c +Nxp

has a unique solutionx ∈ Sn (here, as above,xp ∈ Sn denotes the vector obtained
by raising the entries inx to thepth power).

Proof. By standard limit arguments, we may assumeS is a localization of a
finite typeFp-algebra. Uniqueness can then be checked over the completion, and
once we have uniqueness in general, existence can be obtained by descent from
the completion. Thus, we may assume thatS is a complete local noetherianFp-
algebra with afinite residue fieldk, in which case it is enough to work over the
artinian quotients ofS. That is, we may assumeS is afinite local Fp-algebra. We
want to show that the map of setsϕ: Sn → Sn given by x 7→ x − Nxp is a
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bijection. SinceS is a finite set, it suffices to check injectivity. Sinceϕ is additive,
it is enough to check thatx = Nxp implies x = 0. If x ≡ 0 modmS, we can
iterate, so it is enough to pass toS/mS . That is, we may assumeS is a field and
N = (νij ) is a lower diagonal matrix. Any product ofn + 1 such matrices is 0, so

x = Nxp = N . . . N(pn)xp
n+1 = 0, whereN(pr) = (νprij ). 2

Now we prove Theorem A.1

Proof. The key input from the theory of formal group schemes is [4, Ch. III,
Prop. 3.1], which givesac−1,i = V (ac0,i ). SinceRc = k[[X1, . . . , Xn]], we have
a σ−1-linear ring mapV : k[[X1, . . . , Xn]] → k[[X1, . . . , Xn]] (whereσ denotes
absolute Frobenius onk) and we compute that forf ∈ k[[X1, . . . , Xn]],

∂

∂Xj
(V (f )) =

∑
`

σ−1

(
∂f

∂X`

∣∣
(σ (V (X1)),...,σ (V (Xn)))

)
· ∂V (X`)
∂Xj

.

Thus,

∂ac−1,i

∂Xj
=
∑
`

σ−1

(
∂ac0,i

∂X`

∣∣
(σ (V (X1)),...,σ (V (Xn)))

)
· ∂V (X`)
∂Xj

.

This yields

∂pαci

∂X
p

j

≡ (p − 1)!
(
∂ac−1,i

∂Xj

)p
modm̂

≡ −
∑
`

σ−1

(
∂a0,i

∂X`
|0
)p (

∂V (X`)

∂Xj
|0
)p

modm̂

≡ −
∑
`

∂αci

∂X`
|0 ·

(
∂V (X`)

∂Xj
|0
)p

modm̂.

Therefore, we get the matrix identity asserted in the statement of the theorem.2
We conclude by noting that the existence and uniqueness assertion for the sys-

tem of equations on [7, p. 183] is a special case of the general claim that for any
Fp-algebraS, anyn by n matrixA with entries inS, andγ ∈ Sn any vector with
nilpotent entries, the vector equation

γ + x + Axp = 0

has a unique solution inSn with nilpotent entries. The proof proceeds exactly like
the proof in the Lemma A.2, via reduction to the case in whichS is a finite local
Fp-algebra, and we then want to show that the additive mapSn → Sn given by
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x 7→ x + Axp induces a bijection on vectors with nilpotent entries. The map
certainly sends ‘nilpotent’ vectors to ‘nilpotent’ vectors, so by a counting argument
it is enough to check that ifx + Axp = 0 andx has nilpotent entries, thenx = 0.
But this is clear.

Acknowledgements

I would like to thank Wiles for suggesting the problem of generalizing Fontaine’s
theory to ramified settings. I am also grateful to Fred Diamond, Vinayak Vatsal, and
(especially) J.-M. Fontaine for comments and suggestions which led to the removal
of some unneccessary hypotheses in earlier versions of some of the results.

References

1. Bosch, S., Lütkebohmert, W. and Raynaud, M.:Néron Models, Springer-Verlag, 1980.
2. Breuil, C.: Schémas en groupes sur un anneau de valuation discrète complet très ramifié,

preprint.
3. Breuil, C., Conrad, B., Diamond, F. and Taylor, R.: On the modularity of elliptic curves over

Q, in preparation.
4. Conrad, B.: Ramified deformation problems,Duke Math. J. (3)97 (1999), 439–511.
5. Conrad, B., Diamond, F. and Taylor, R.: Modularity of certain potentially Barsotti–Tate Galois

representations,Journal of the A.M.S., (2)12 (1999), 521–567.
6. Diamond, F.: On deformation rings and Hecke rings,Ann. of Math. 144(1) (1996), 137–166.
7. Fontaine, J.-M.: Groupesp-divisible sur les corps locaux,Astérisque47–48, Soc. Math. de

France, 1977.
8. Fontaine, J.-M.: Groupes finis commutatifs sur les vecteurs de Witt,C.R. Acad. Sci.280(1975),

1423–1425.
9. Fontaine, J.-M. and Laffaille, G.: Construction de représentationsp-adiques,Ann. Sci. Ecole

Norm. Sup. (1982), 547–608.
10. Fontaine, J.-M. and Mazur, B.: Geometric Galois representations, In:Conference on Elliptic

Curves and Modular Forms(Hong Kong), International Press, 1995.
11. Grothendieck, A.:Séminaire de géométrie algébrique7, Exposé IX.
12. Kowalsky, H.:Topological Spaces, Birkhäuser, Basel, 1961.
13. Matsumura, H.:Commutative Ring Theory, Cambridge Univ. Press, 1986.
14. Oda, T.: The first deRham Cohomology group and Dieudonné modules,Ann. Sci. Ecole Nor.

Sup., 5e série, t.2, (1969), 63–135.
15. Oort, F. and Tate, J.: Group schemes of prime order,Ann. Sci. Ecole Nor. Sup. (1970), 1–21.
16. Ramakrishna, R.: On a variation of Mazur’s deformation functor,Compositio Math. 87 (3)

(1993), 269–286.
17. Raynaud, M.: Schémas en groupes de type(p, p, . . . , p), Bull. Soc. Math. France102(1974),

241–280.
18. Roubaud, J.:Schémas en groupes finis sur un anneau de valuation discrète et systèmes de

Honda associés, Publ. Math. d’Orsay, Univ. de Paris-Sud, 91–01.
19. Tate, J.:p-divisible groups, In: Proc. Conference on Local Fields (Driebergen)(1996),

pp. 158–183.

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001788509055

