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Abstract. Let A’ be a complete characteristi@, p) discrete valuation ring with absolute ramifica-
tion degreee and a perfect residue field. We are interested in studying the cat&g®yy of finite
flat commutative group schemes oveErwith p-power order. Whe = 1, Fontaine formulated the
purely ‘linear algebra’ notion of éinite Honda system ovet’ and constructed an anti-equivalence
of categories betweefr ¥4, and the category of finite Honda systems o¥émwhen p > 2. We
generalize this theory to the casel p — 1.
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Introduction

This paper lays the foundations for generalizing Ramakrishna’s work [16] on de-
formations of Galois representations. The motivation is the problem of proving the
Shimura—Taniyama Conjecture in nonsemistable cases, and this requires extending
the results of [16] to cases with ramification allowed. The application of our group
scheme results to the deformation theory of Galois representations is given in [4]
(below, we will formulate a simplified version of the main result of [4]). In [CDT],
these deformation-theoretic results are used to establish the Shimura—Taniyama
Conjecture for elliptic curves ovep which acquire semistable reduction over a
tamely ramified extension d; (and in [BCDT] the remaining ‘wild’ cases of
the conjecture and handled by using [breuil], which generalizes the results of this
paper via much more sophisticated techniques). At the end of this Introduction, we
make some remarks on these matters.

First, let's describe the basic setting which we will consider. (£t m) be
a complete mixed characteristic discrete valuation ring with perfect residue field
k having characteristip, and letA = W (k). We are interested in studying the
category¥ ¥, of finite flat commutativeA’-group schemes witlp-power order.
Whenp > 2 andA’ = A, Fontaine constructs in [8] a fully faithful, essentially

* This research was partially supported by a DoD grant.

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001788509055

240 BRIAN CONRAD

surjective functor fron¥ £, to the category H f(, of finite Honda systems ovdr,
whose objects consist of finite-lengWi(k)-modules with various extra structures.
Fontaine’s central tool is the theory he develops in his book [7]. He obtains a similar
result whenp = 2 for unipotent group schemes. But what if one does not require
e(A) =17

It follows from [17, Cor. 3.3.6(1)] that the categofy ¥, is Abelian whenever
e = e(A") < p — 1, using scheme-theoretic kernel as the kernel, so it is natural
to ask if Fontaine’s results can be extended to cover this general case. We have
developed such a generalization and following Fontaine, we call the corresponding
categorySH/{, of module structureinite Honda systems ovdr. Whene < p—1,

we define categorieS;HA’;“ andSH/{;” of unipotentandconnected finite Honda sys-
tems overd’ and obtain similar results, extending those of Raynaud and Fontaine
for such ramification values.

Whene < p — 1, we define a contravariant additive functod o : F F4 —
SH f{, (Theorem 3.4) which we prove is fully faithful and essentially surjective

(Theorem 3.6). The Abelian category structure&}mj, is made explicit too (The-
orem 4.3). We have similar results for the full subcategories of unipotent and
connected objects when < p — 1. Fore = 1, we recover Fontaine’s original
construction.

The full details of the proof of Fontaine’s result in the unramified case have
never been published ([8] is a brief announcement outlining the main steps of the
proof). These details are essential for an understanding of the more general argu-
ments, so we begin by writing them out fully in Section 1. We use ideas introduced
by Fontaine in [7] in order to generalize everything to the case in whighp — 1.

The calculations required for the case- 1 are far more cumbersome than in the
unramified case and some of our arguments will only work whenl, so we first
present the = 1 proof. It should be emphasized that [7] is vital for everything that
we do.

We construct a ‘base change’ functor for finite Honda systems (Theorem 4.8)
and we verify that this construction is compatible with base change of finite flat
group schemes (of course only allowing base changes which preseeve the-1
condition). The base change formalism has some interesting applications. For ex-
ample, it can be used to prove a theorem about good reduction of Abelian varieties
(Theorem 5.3). Also, this formalism allows us to translate generic fiber Galois
descent into the language of finite Honda systems, thereby laying the groundwork
for generalizing the work of Ramakrishna [16] to ramified situations.

This second application is briefly described in Section 5 and is more fully
developed in [4]; itis concerned with a deformation-theoretic study of certain con-
tinuous representations GalQ,/Q,) — GL(F,). Fix a finite extensiork /Q,
inside ofQ,, with ¢ = e(K /Q,) satisfyinge < p — 1. We assume thatlgx o, /)
is the generic fiber of a finite flat group sche@ver @k which is connected and
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has a connected Cartier dual. There is also the mild technical hypothesisthat if
is the Dieudonné module of the closed fibeafthen the sequence of groups

0= M/VM —~ M/pM =M — M/FM — 0

should be exact (this is automatically satisifedsifs the p-torsion of ap-divisible
group). For the motivating application to the study of modularity of certain elliptic
curves overQ, these conditions are satisfied. As long@adas trivial central-
izer, there is a universal deformation rimy (o) classifying deformationg of

p to complete local noetheriad ,-algebrasR with residue fieldF, such that
pleard, k) Modmy is the generic fiber of a finite flat group scheme o9grfor all

n > 1.In [4], we use the results in this paper to prove the following theorem.

THEOREM. The representatiop has trivial centralizer antR (p) ~ Z,[[T1, T>]l.

We also obtain in [4] similar results in somewhat more general settings.

After the writing of this paper was completed, the author found that the general
problem of extending Fontaine’s results on finite flat group schemes to a setting
with e > 1 has been considered before, in [18]. However, the methods and results
in [18] are very different from ours. Let us explain this point more carefully. We
develop a theory which classifies group schemes in terms of ‘intrinsic’ finite-length
module data. This theory makes it possible to do explicit calculations, even if we
are interested in studying maps between group schemes (as opposed to studying
a single group scheme). Such computability is essential in the proof of the de-
formation theory result mentioned above. The theory in [18], which applies under
less restrictive conditions on the ramification, is motivated by the theorem of Oort
which asserts that any object ¥, arises as the kernel of an isogeny jof
divisible groups. The classification of finite flat group schemes in [18], which uses
very different techniques of proof, is given in terms of pairs of finite free modules
with maps between them [18, pp. 16-18].

That is, in some sense [18] works with a presentation of a finite-length mod-
ule rather than directly with the finite-length module itself. This leads to serious
difficulties once one tries to study maps between group schemes. For example, if
G and G’ are two objects irF F, andT’'; — I',, I'; — I, are isogenies op-
divisible groups ove’ with respective kernel& andG’, then it is not generally
true that any mag: G — G’ in ¥ ¥, is induced by a compatible pair of maps
'y — I'}, ', — I, Thus, any attempt to study morphismsdtF, by means
of [18] requires frequently ‘changing the presentation’, and this makes explicit
computations difficult or impossible to carry out.

The approach in [18], on the other hand, is useful in the study of lifting questions
for a single fixed group scheme. For example, forany 1 andp > 5, the theory
in [18] enables one to construct ‘lifts to characteristic 0’ of any objecFif;.

This is something our approach cannot establishefor p — 1. Due to absent-
mindedness of the author, this paper is appearing in print somewhat later than it
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should have. It therefore seems appropriate to discuss subsequent developments.
In [breuil], Breuil constructs a ‘linear algebra’ theory for finite flat group schemes
(subject to some flatness conditions ptpower torsion levels, and with > 2)
without any restrictions on the ramification. Wher: p — 1, Breuil's category of
‘linear algebra’ objects is equivalent to (but not literally the same as) the category
studied in this paper. However, whereas our theory is given in terms of filtered
modules over a discrete valuation ring, Breuil's more general theory works with
fitered modules over thg-adic completion of a certain divided power envelope
and depends uponchoiceof uniformizer. In the case gi-torsion objects, Breuil’s
category can be identified with a simpler category of finite-length filtered modules
over a small artin ring. This theory provides the necessary local tools to com-
plete the proof of the remaining ‘wild’ cases of the Shimura—Taniyama Conjecture
[BCDT].

There are several reasons why the results in this paper still seem to be of in-
terest (if one is in a situation with low ramification). First of all, the methods are
certainly much more elementary; e.g., there is no use of the techniques of crys-
talline cohomology. Also, we makeo flatness restriction on the-power torsion
levels and the intrinsic description of base charge (preserving the low ramification
condition) is very simple, whereas base charge in the setting of [breuil] is somewhat
complicated; this is mainly due to the fact that the theory in [breuil] depends upon
a choice of uniformizer of the base. However, the main distinction between the
two approaches is seen if one wants to do explicit calculations with group schemes
which arenot necessaril¥illed by p (over bases with absolute ramification degree
e < p — 1). Without ap-torsion hypothesis, the theory in [breuil] is well-suited to
theoretical considerations and analysigedlivisible groups, but it does not seem
amendable to explicit calculations at general ‘finite level’. At some future time, this
problem will no doubt be overcome. In the meantime, we should be grateful that
the local calculations in [BCDT] only require working with objects killed by

Summary of some results of Fontaine

Fontaine’s book [7] is absolutely essential in everything that we will do. It develops
the foundations for Dieudonné modules as we will use them and also supplies the
results on formal group schemes which will be the starting point for our study
of finite flat group schemes. As a convenience to the reader we will now give an
overview of the basic results and notation that we take from [4]. We will only
formulate the results in the most common cases of application for our arguments,
but the reader should keep in mind that much greater generality is needed in order
to carry out the proofs of the main results in [7], including ones we will invoke
later on (e.g., Fontaine’s classification pfdivisible groups).

Let £ be a perfect field with characteristie > 0. For any finitek-algebrar,
we define theR-valued Witt covector€ W, (R) to be the set of sequencas=
(...,a_,,...,aq) of elementss; € R indexed by non-positive integers, with
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nilpotent for large. This is to be thought of as analogousQg/Z . Letting S,, €
Z[Xo, ..., X, Yo, ..., Y,] denote thenth addition polynomial fop-Witt vectors

[7, pp. 71-72], and choosirg b € CW,(R), the nilpotence condition ensures that
the sequence

{Sm(afnfmv ey afnv bfnfm’ L] b*’l)}mZO

is stationary. Denoting the limit by_,, it is true thatc = (c_,) € CW,(R) and
defininga + b =ger ¢ makesC Wy (R) into a commutative group with identity
(...,0,...,0)[7, Prop. 1.4, Ch. ll]. FoRr = k’ a finite extension ok, CW, (k') is
exactlyK'/ W (k'), with K’ the fraction field ofW (k).

We topologizeC W, (R) by viewing it as a subset of the product spaége., R,
where each factor is discrete. This mak&#/, (R) a topological group. Moreover,
it admits a unique compatible structure of topologiBadk)-module such that for
all x € k, with Teichmdller lift[x] € W (k), we have

[x]-a= (.. .,x”_na,n, .. .,x”_la,l, do).
The operationg’, V: CW,(R) — CW(R) given by
F@=(..,a’,, ....a}), V@=_(..,a_p-1,...,a-1)

are additive, continuous, satisfyV = VF = p, and with respect to th& (k)-
module structure are ando ~1-semilinear respectively, wheee W (k) — W (k)
is the Frobenius morphism.

In other wordsC W, (R) is a module over the Dieudonné riliy = W (k)[F, V]
generated by two commuting variables with the usual relati®iis= VF = p,
Fa =0o(a)F,Va =0 Y(a)V (fora € W(k)), and there is a compatible structure
of topological W (k)-module with respect to which' and V' act continuously. We
abbreviate this by saying thatW, (R) is atopological D,-module(though note
that we do not put a topology aBy). This is all functorial inR. For proofs, see [7,
pp. 79-82]. WherR = k' is a finite extension ot, the topology and,-module
structure onC W, (k') ~ K’/ W (k') are as usual.

If R is a complete local noetheriaW (k)-algebra with residue field a finite
extension of, we define the topologicdb,-module

CWwgo(R) = lim CWi(R/mf),

wheremy, is the maximal ideal ofR. This is a Hausdorff topologicab,-mod-

ule, functorial in R. In fact, if R is any separated and complete topological
W (k)-algebra with a base of open ideals, one can define a topolaBjeaiodule
CWw (R) functorially in R [7, Ch. II, Prop. 2.3]. However, due to pathologies
which arise from the relation between product topologies and direct limit topolo-
gies [12, Exer. 40A], one needs to be extremely careful when dealing with such
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generalR. The only such pathologicaR that will really arise for us are rings
such as the valuation ring @f,, with the p-adic topology (the problem is that the
guotients of this ring by powers gf do not have a nilpotent nilradical). This ring
only arises in formulating an ‘explicit’ dictionary between ‘linear algebra data’ and
Galois representations; since this is not relevant to our classification theorems, we
won't address this issue any further.

The functor CW, on finite k-algebras is pro-represented by a formal affine
commutativek-group scheme, denotedW, [7, Sect. 4.2, Ch. Il]. IfR is a com-
plete local noetheriart-algebra with residue field a finite extension ifthen
CWi(R) = CWwu(R). For anyp-formal commutative group schendeoverk —

i.e., one for whichG ~ IiLn G[p"] (e.g., afinite flat commutativle-group scheme

with p power order, or @-divisible group ovek) — we define th&ieudonné mod-
uIe/_.Ai(G) = Hom(G, CW,), the group of formak-group scheme maps fro
to CWy. This is motivated by the functat ~ Hom(G, C*) ~ Hom(G,Q,/Z,)
for finite Abelian p-groups. The action oD, on the functorC W, gives rise to an
action of D, on M(G). One can also define a suitable topology #tG) with
respect to which it is a topologicdb,-module [7, Sect. 1.2, Ch. Ill]. All of the
standard properties of the classical Dieudonné module theory are proven in [7,
Ch. 1l1] based on this definition. The main result of this theory is that the functor
M sets up an antiequivalence of Abelian categories betweenmal commutative
group schemes ovérand certain topologicab,-modules. There are various spe-
cializations of this theorem to finite commutatikegroup schemes witlp-power
order, connected commutatiyeformal k-group schemes, etc.

The main result in [7] is that one can ‘enhance’ this theory to clasgify
divisible groups over suitable bases (up to isogeny or isomorphism, depending on
ramification) in terms of ‘linear algebra’ data.

NOTATION. Throughout this paper, we fix a perfect figldvith characteristiqp >

0 and letA denoteW (k) andK its fraction field. The Dieudonné ring[F, V] of k

as introduced above is denotéy. Note that fork # F,, this is not commutative.

We let(A’, m) be the valuation ring of a finiteotally ramifiedextensionk’ of K,

with e = e(A’) = [K': K] the absolute ramification index &f . The category of
finite flat commutative group schemes ovewith p power order is denoted %,

and¥ ¥, ¥ ¥} are the full subcategories consisting of connected and unipotent
(i.e., connected Cartier dual) objects, respectively. We defifig, & F 4/, etc. ina
similar manner.

A p-adic A’-ring is a flat A’-algebra which isp-adically separated and com-
plete. The main examples to keep in mind are power series Afig%,, ..., X, 1,
finite flat A’-algebras, and the valuation ring of the completion of an algebraic
closure ofK’.
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1. Finite Flat Group Schemes: The Case =1

We wish to develop a ‘linear algebra’ theory of finite flat group schemes. It will
always be assumed that the absolute ramification irdex e(A’) satsifiese <

p — 1. Our aim is to construct an equivalence of categories bet@Weep (resp.

F ¥y, FF))and acertain category of ‘linear algebra data’ whea p — 1 (resp.
e<p-1).

In the caser = 1, a theorem in this direction has been proven by Fontaine. His
brief announcement [8] sketches the outline of the proof, but omits some technical
details. This section is just a technical exposition of Fontaine’s announcement and
contains nothing new (note that we formulate the main result to include connected
group schemes whem = 2, but the argument is essentially the same as Fontaine’s
in the unipotent case). Some of these details are essential for understanding the
motivation behind the generalization we will prove. Therefore, in the interest of
completeness (and since the arguments in theccas# are far simpler to explain),
we will first review Fontaine’s proof in full detail for the cage= 1. Then this
method will be generalized in the sections which follow.

It may be instructive to first explain the general strategy. Whea p — 1,
Fontaine constructs an essentially surjective, fully faithful contravariant additive
functor LM 4 from the category op-divisible groups oved’ to a certain category
of ‘linear algebra data’ in which the objects are pau& M) with £ a finite free
A’-module andM a finite free A-module, together with various extra structures
and properties required [7, Ch. IV, Sect. 5, Prop. 5.1(i)]. The construction of such
a functor depends heavily on the conditien< p — 1. Whene < p — 1, the
method applies to connected and unipotent objectsaFairary ¢, Fontaine can
only describe the category gfdivisible groups overd’ up to isogeny [7, Ch. IV,
Sect. 5, Prop. 5.2]. One can think of the constraint @s being related to forcing
the convergence of the-adic logarithm omm, which is relevant because in some
sense, the failure of Fontaine’s method to yield a fully faithful functor for large
is related to the failure of the torsion points opadivisible group over’ to inject
into the torsion points of the closed fiber for largeA large radius of convergence
for the logarithm can ensure such injectivity (though the logarithm is not explicitly
used in Fontaine’s arguments).

The functorL M, on p-divisible groups suggests that objects#rF,. which
occur insidep-divisible groups oved’ ought to correspond to analogous ‘linear
algebra data’ in which thet and A’-modules have finite length. When= 1,
Fontaine carries out this idea while simultaneously showing that for oadi
objects inF ¥, occur inside gp-divisible group overA, and similarly for#
and unipotentp-divisible groups for allp. It is a (nontrivial) theorem thatvery
object inF %4 occurs in ap-divisible group overd’ (with no conditions ore or
p). This suggests that we should try to use Fontaine’s classificatiprdafisible
groups overA’ in conjunction with a generalization of his method for analyzing
F ¥4 using p-divisible groups in order to descrili& ¥, via ‘linear algebra data’.
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We will not use the theorem about embedding object§ A, into p-divisible
groups overd’, though our methods rederive this result in the cases we consider.
Briefly, the underlying principle is summed up as followSmoothfinite-
dimensional commutative formal group schemes oveare extensions of etale
ones by connected ones, with the connected ones having as their affine ring a
formal power series ring in finitely many variables. This is how Fontaine is able
to get decisive results on such formal group schemes [7, Ch. IV, Sect. 4.8, Thm. 2].
Since p-divisible groups are special examples of such formal group schemes and
they provide a convenient setting in which objects#i#, arise ‘in nature, a
classification theory fop-divisible groups overd’ can be expected to lead to a
classification theory for finite flat closed subgroup schemes-divisible groups
(and fortunately all objects ifF 4 arise in this way). Thus, the result of Serre and
Tate [19, Prop. 1] that connecteddivisible groups are necessargyooth(in the
formal sense) is the main starting point for everything that follows.
Let's now derive Fontaine’s results in the case- 1. Choose an objed? in
F Fu, with M = M(G,) the Dieudonné module of the closed filigy of G. By
viewing formal k-group scheme homomorphisnis — CW, as just formalk-
scheme homomorphisms, we get a nhatural embedding abthmodule M as a
finite-length A-submodule of the topologicaD,-module CW,(R;), whereR is
the finite flatA-algebra which is the affine ring @ (the induced topology oM
is exactly thep-adic topology). We denote b, and R the closed and generic
fibers respectively ofR over A. Also, A will be our notation for a comultiplic-
ation map QAg, Ag,, etc.). LetL = L,(G) € M denote kernel of thet-linear
composite map

M — CWi(Ry) —2 Rg/pR,

wherew 3 is the continuousi-linear map given by

wa((a,)) =Y _ p~"a’, modpR,

n=0

witha_, € R any lift of a_, € Ry. For a proof thatw is well-defined,A-linear,
and continuous, see [7, Ch. Il, Sect. 5.2].

The motivation for considering this particularwill become clear in the argu-
ments below. At this point it should be remarked that the topology issues involved
are far too cumbersome to review here, but a careful reading of [7] shows that all
formal manipulations we will carry out with limits and infinite sums are valid. For a
ring like R, which is a finite flatA-algebra, the topology we use @his its p-adic
one. Also, the topology we use &R is its natural topology as a finite-dimensional
K-vector space and the topology we use®pis the discrete one.

Observe that sincédf/FM is killed by p, there is a naturak-linear map
L/pL — M/FM. We are now ready to establish some essential properties of
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the pair(L, M). It should be pointed out that the first of the properties we prove is
quite natural to expect; cf. [7, Ch. IV, Prop. 1.6].

THEOREM 1.1. The naturalk-linear mapL/pL — M/F M is an isomorphism
and the restriction oV to L C M is injective.

Proof. We first need to prove the following sufficient criterion for an element of
CWi(Ry) to actually lie inM: if a € CWi(Ry), wg(@) = 0, andVa € M, then
a € M (in this proof, we reserve the boldface font for covectors, and sometimes for
elements of¥f when we wish to emphasize their nature as covectors). In order to
prove this, we writea = (a_,) and becaus#/ is by definitionthe group of formal

k-group scheme homomaorphisms fra to EVVk we need to verify that

(Ag () = (@ ® D + (1A ®ay).

SinceV is additive andVa € M by hypothesis, applyin§y does yield an equality.
Hence, it remains to compare the Oth-coordinates on both sides, which is to say
that we must check

Ag(ao) = M Sp@apn®L ... .a0®L1®a p,....1®ao),

in Ry R >~ (R4 R)i. Here, S, is the usualnth-coordinate addition polyno-
mial for p-Witt vectors (and indeed this sequence in the discfte, R, in we
are taking a limit does eventually becomes constant).

Sincewg(@) = 0, in Rg we haveZ@op‘"&f}; = py for somey e R.
Replacingag by ao — py, we may assume = 0. That is,ag = — Zn>lp*"&f:,.
Now G is a lift of G, as agroup schemesoAg, (ag) € (R ®4 R); is represented
by the elemenir;(ag) € R ®4 R. SinceR ®4 R is a p-adic A-ring (i.e, a flat
A-algebra which is separated and complete with respect tg-théic topology),
the addition formulas fo€ W 4 (R ® 4 R) permit us to define

°£—m(a) = Nlinoo SN(&—N—m ® 17 cee a—m X 1; 1® &—N—ma L) l® &—m)

in R ®4 R, whered = (4_,) € CW 4(R). We are given that for ath > 1,
A(;(a\,m) = °C7m(/a\) mOdp(JR Q4 R).
We need to prove this when = 0.

Combining our expression fak in terms of thea_,, for n > 1 with the above
congruences fon > 1, it suffices to show that the element

Y L (B € (R@4 Rk

n=0
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liesin p(R ®4 R). In other words, we wish to prove

We(L_,(B) MOdP(R ®4 R))) = O.
However,by definition
(L (A)MOdPp(R®4 R)) = (-, ® 1) + (1 ®a_,).
Sincewgg , = IS additive, we conclude that
Wi (L (A)MOdP(R ®4 R))) = Wre,z (@0 @ 1) + Wre,r(1®a,).
This is equal tawgz(d) ® 1 + 1 ® wx (@) in
(R®4 R)k/P(R®a R) = (Rk/pR) ®a (Rx/pR) and wg(@) =0,

so we are done.

Now that we have established a criterion for membershipfinve can begin
the proof of the theorem. First, let’s prove that. = (FM) N L, so the map
L/pL — M/FM is at least injective. Since one inclusion is obvious, choose
ae€ (FM)YNL,soa = Fbwithb € M. Defineb = (..., b_,41,...,bo,b1) €
CWir(Ry), with by € R to be chosen later and = (b_,) = Vb. Observe that
pb = FVb = Fb = a, so ifwg(b) = 0thenVb = b € M implies (by our
criterion) thatb lies in M, thus inL, and saz € pL as desired.

It remains to choosblg R sothatwg(b) =0.1fb_, e Risaliftof b_, (so
we definea_,, = R’n) andb; € R is a lift of by, thenwg (b) is represented by the
element ofRx given by

bl + Z p—n/\PrH_l — bl + = Z p—n’\P

n>1 n=0

The sumy_ ., p~™" a_,l is a representative fanz (a), which vanishes ifRg /pR,
so this sum lies irpR. Thus, we can choose

___Zp n’\P

n>0

and this ensure® » (b) = 0, as desired.

The surjectivity ofL/pL < M /F M will be proven by a length calculation. In
order to compute the relevant lengths, and in order to prove the injectivity of the
restricted semilinear mag: L — M, we will show that the natural map[p] &
kerV — M[p] is a surjection. Choosg = (x_,) € M[p], sox”, = 0O for
alln > 1 (recallp = FV). We will prove that there exists a decomposition (in
CWi(R))X=Y+(...,0,...,0,z), with y” = 0foralln > 1 andwg(y) = 0.
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Note that if this holds, then_, = x_, foralln > 1, soVy = Vx € M and so by
our criteria abovey € M and soy € L. Furthermore, sincpy = VFy = 0, we

havey € L[p]. Since this also forces..,0,...,0,z) = Xx—y € M, the existence
of a decomposition as indicated above is sufficient in order to establish the desired
surjectivity.

Hence, we want to fingl, z € R, such that
X=0C..,%_p,...,x_1,)+(..,0,...,0,2)

with ws(y) = 0, wherey denotes the first covector on the right side. Clearly
if y € R, exists so thatwgz(y) = 0, then equating Oth-coordinates shows the
existence ot. In other words, it suffices to check thatif, € R is a lift of x_,
forn > 1, thenznﬂp‘”)%f',l1 € R, where the sum a priori lies itlRg. We can
then sety to be the reduction modulpR of the negative of this sum.

Butx”, = 0 foralln > 1, so we have for such that

_n Ap" —n,ap n—1 nflin
p"xL, =p"(xL)? e p’ R.

Combining this withp"™* —n > 0 for all » > 1 then completes the proof that
Llpl® ker V. — M][p] is surjective. This surjection yields the length relation
Lu(L/pL) = L4(M/pM) — £4,(M/V M), so in order to prove thak/pL >

M /F M is an isomorphism, it is sufficient to check that the sequence

0— M/VM -+ M/pM — M/FM — 0,

which is at least right exact, is in fact exact. Since= FV, this is clearly equiv-
alent to the assertion that the kernel ®flies in the image ofV. This is a very
special property oM (e.g., it implies that, , cannot arise as the closed fiber of
an object in¥ ¥4, though this is also clear 6y [15, Sect. 2, Rem. 3)).

To verify this exactness, suppose for some M C CWi(Ry) that Fx =
0, sox”, = 0 foralln > 0. We want to find someg € R; so thaty =
(«oryX_pyt,-..,%0, ) liesin M (so thenx = Vy is in the image ofV). Thanks
to the criteria for membership i, it is enough to findy so thatws(y) = 0.
If x_, € R is alift of x_,, then as above we see that for> 1, p*”fle e

n—1 n

p?" "R € R.Thus, simply defing = -3 _, p7"x”,  ; modpR.

We may now also conclude thét(L/pL) = £,(M/pM) — £4,(M/V M), SO
the surjectionL[p] ® kerV — M[p]is an isomorphism. This clearly implies that
V| is injective and the injectiod./pL < M/F M is an isomorphism. O

Thanks to this theorem, we are motivated to make the definition (following
Fontaine).

DEFINITION 1.2. Afinite Honda system ovet is a pair(L, M) whereM is a
D,-module with finiteA-length andL C M is an A-submodule such thdf|, is
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injective and the natural-linear mapL/pL — M/F M is an isomorphism. These
objects form a categoryHA’ in an obvious manner. The full subcategsi ;™ o
unipotent finite Honda systems owrconsists of those objectd., M) for WhICh
the action ofV on M is nilpotent. The full subcategorS'HA’” of connected finite
Honda systemesonsists of those objectd., M) for which the action ofF on M is
nilpotent.

LEMMA 1.3. The categorySH] is Abelian. For a morphisny: (L1, My) —
(Lo, M3), kerp = (L', M), whereM’ = ker(M; — M) andL' = L, N M’. Also,
cokerp = (L”, M), whereM” = cokertM,; — M,) and L” is the image of the
composite map od-modulesL, — M, — M". This category is also Artinian.

The same statements are true fS)H’ “ and SH . The forgetful functors
SH]“, SH]" — SH/ are exact.

Proof. One way to prove this is to observe that by [9, Prop. 8.10], we have an
equivalence of categories betwegH | and the category denote’ﬂﬁ’i potor (N
[9]), with explicit functors in both directions. Now simply examine the proof in
[9, Prop. 1.8] that this latter category is Abelian (and Artinian). Similar arguments
apply in the unipotent and connected settings.

A direct proof could also be given by translating the arguments in [6, Sect. 1]
through the above equivalence of categories, but this is unnecessary and so we
won't bother with it. O

The above lemma can also be deduced from the main results below. This will be
explained after Corollary 1.6 and will be useful in the proof of our generalization
to cases witte > 1.

Theorem 1.1 allows us to define the functoM = LM,: FF, — SH]
via LM(G) = (LA(G), M(Gy)). This is an additive contravariant functor. Since
unipotence and connectedness can be detected on the closed fiber, we can ‘restrict
LM to get an additive contravariant functbo" = LMY: F ¥ — SH/{’“, and
LM = LM is defined similarly. The main theorem in the present setiing ()
is the following.

THEOREM 1.4.1f p > 2, thenL M is fully faithful and essentially surjective. The
same is true fol. M* and L M° for all p.

In other words,LM (resp.LM", LM°) is an equivalence of categories for
odd p (resp. for all p) in the usual weak sense. That is, we don't yet claim to
construct an explicit quasi-inverse functor, but for all practical purposes we can
regardL M (resp.LM") as an equivalence of categories (this is also the sense in
which Fontaine uses this notion in [7, Ch. IV] and [8]). With further work, one can
construct explicit quasi-inverses. We’'ll say more about this later. It is because the
group schemeg, andZ /2 overZ, have isomorphic generic fibers that we need a
restriction forp = 2.
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Before proving Theorem 1.4, we record two corollaries as noted in [7]. These
are special cases of Raynaud’s result [17, Cor. 3.3.6] (together with an analogous
argument wher = 1 = p — 1), and Raynaud’s proof of the first corollary below
is by somewhat different methods.

COROLLARY 1.5. If p > 2, then¥ %, is stable under the formation of scheme-
theoretic kernels and is an Abelian category. A morphism is a kernel if and only
if it is a closed immersion and is a cokernel if and only if it is faithfully flat. The
formation of the cokernel of a closed immersion is as usual.

Forall p, the same statements are true $ ;' and ¥ # (the full subcategory
of connected objectsMoreover, the forgetful functors fro ¥, and ¥ ¥ to
F ¥, are exact for odgp.

Proof. We give the argument for odd and ¥ #,. The arguments fo¥ ' and
F ¥4 are done similarly.

By Theorem 1.1 and Lemma 1.8,%, is an Abelian category. If: G — G’ is
a morphism andkX denotes the (abstract) kernel object in the Abelian category
F F4, then a consideration of Dieudonné modules on the closed fiber and the
definitionof LM shows that the natural maf, — ker(f,) is an isomorphism,
with ker (f;) denoting the scheme-theoretic kernelfpf Thus, the magX — G
is a closed immersion on the closed fiber and so is a closed immersion. This factors
through the scheme-theoretic kernel ker— G, so we get a closed immersion
K < ker f of finite A-group schemes which is an isomorphism on the closed
fibers. SinceX is alsoflat over A, a standard argument shows this map is an
isomorphism. The rest is now easy. O

COROLLARY 1.6. If p > 2, then the functor which associates to edgln F 4
its generic fiberk -group schemé; ¢ is a fully faithful functor. For arbitraryp, the
same statement is true for the categorfes; and ¥ £ ;.

Proof. Faithfulness is clear by flatness. Now supppse 2 and we're given a
morphismf: Gy — Hg of K-group schemes. We want it to arise from a morph-
ismf:G — HinF¥,. LetKg = ker fx and letX denote the scheme-theoretic
closure of this inG. Thus, X is a finite flat closed subgroupscheme@®find fx
factors throughG/K)x ~ G /K. We see now that we may replaGeby G/ K
and so without loss of generalitf is a closed immersion. By Cartier duality, we
may assume that the dual 6§ is a closed immersion, so a consideration of orders
shows thatfy is an isomorphism.

By Corollary 1.5, a morphism it¥ ¥4 is an isomorphism if and only if the
induced map on generic fibers is an isomorphism. Now use Raynaud’s result on
the existence of a ‘maximal’ prolongation G6fx over A to obtain the desired
[17, Prop. 2.2.2].

The same arguments apply fo¥ ' and¥ # for any p. O
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As we noted above, Raynaud independently deduces Corollary 1.5 and from
this one can readily obtain both Corollary 1.6 and (more importantly) Lemma 1.3
by formal arguments based on Theorem 1.4 (see the proof of Theorem 4.3 for
how this is carried out in a more general setting). In order for this not to be cir-
cular, note that the proof of Theorem 1.4 below doesuse Lemma 1.3. This
clarifies the comment following Lemma 1.3 and will also be the means by which
we deduce the analogue of Lemma 1.3 in the general ease p — 1, as the
analogue of Corollary 1.5 for < p — 1 is proven independently by Raynaud.
One could perhaps avoid using Raynaud’s results in the proof of the analogue of
Lemma 1.3 fore < p — 1, instead using just linear algebra manipulations, but
we’ll need Raynaud’s explicit formulas anyway in the proof of Theorem 1.4 and
its generalization foe < p — 1.

We now are ready to prove Theorem 1.4.

Proof of Theoreni.4. The proof consists of five steps. The formulation of these
steps is due to Fontaine [8]; here, we supply some extra technical details. For now,
if p = 2 we shall require5 to beunipotent We will come back to the connected
case at the end.

Stepl. Let4$ be a finite flatA-algebra. Then we claim that the reduction map
G(8) — G(8) = Gi(8,) isinjective (this is false foG = u,, 8 = Z5,).

Before checking this, note that this not only permits us to ider@ify$) with a
subgroup ofG,(4;) in a manner which is functorial in bot& and 8, but it also
implies (by Yoneda’s Lemma) that the funciGr~~ G, from ¥ ¥, to the category
of finite commutativek-group schemes is a faithful functor. Sint&/(G) encodes
the Dieudonné module a¥, it follows that LM is at least faithful for odg and
LM" is faithful for all p.

In order to verify Step 1, we can extend the base to the completion of the strict
Henselization ofA, so we may suppose thatis algebraically closed and is
strictly Henselian. Also, if 0~ G’ —- G — G” — 0 is a short exact sequence in
F ¥4 and the assertion is true far' andG”, then it is trivially true forG. Hence,
the method of scheme-theoretic closure reduces us to the case in which the generic
fiber G is a simple finite commutative group scheme okewith p-power order.

By [17, Prop. 3.2.1, Prop. 3.3.2; is anF-vector scheme witlfr a finite field
of order equal to that o6G. Choosingr so thatF has sizep”, [17, Cor. 1.5.1,
Prop. 3.3.2(1), Prop. 3.3.2(3)] implies that as/scheme,

G x> Spe((A[Xl’ ) Xr]/(sz - 8iXi+l))’

wheres$; € A satisfies ord(5;) < p — 1 for all i and some orgl(é;)) < p — 1.
Here we adopt the convention that the set of indices are a principal homogenous
space foiZ /r, and the final condition withy is where we have used the unipotence
hypothesis in case= 1 = p — 1 (see the proof of [17, Prop. 3.3.2(3)]).

Chooseg € G(8) vanishing inG (8;), sog corresponds to a choice of, . . ., x,
€ pd satisfyingx;’jrl = §;x; (and again we view the indices as a principal ho-
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mogenous space fat/r). lterating this condition, we obtaimf’r = Jx;, with
8 = []8; € A satisfying ord (8) < r(p — 1). Writing x; = py; for y; € § and
usingp” —r(p — 1) > 1, A-flatness ofS allows us to cancep’s to gety; € py;§
forall i. Thus,y; € (,>,p"8 = 0, s0g(lg) = 0. Thatis,G(8) — G(&) is
injective.

Step2. For eachg € G(4), with £ a finite flat A-algebra, we get maps
gr. Rk — Sx andg,: Ry — 4, the latter giving rise t@ Wy (gi): CWi(Ry) —
CWi(8k).

The commutative diagram of-modules

CW,
CWi(Re) L Cwe(Sy)

wsg
wWR

Ri/pR —5— Sk /p8

(with wy defined by the same formula asz) shows (via Step 1) that we can
identify G (8) with a subgroup of

G8) E' 1y € GL(8)ICW(y)(L) € kerws),

in a manner which is functorial in botti and$. Clearly G is a functor from finite
flat A-algebras toAb in an obvious manner. Recall thét, ($;) is isomorphic to
Homy, (M (Gy), CWi(8:)) [7, Ch. lll, Sect.1.5, Prop. 1.2]

ThoughG is a priori just a subgroup functor of the functgron finite flat A-
algebras, we’ll show below thai(8) = G(4$) and so the natural transformation
G — G is an isomorphism of group functors.

Step3. If 1 < p—1andf:T — I'is anisogeny op-divisible groups oveA
with G isomorphic to the kernel, then we claith~ G in Step 2. The same holds
forall p if T', T, andG are all unipotent (i.e., have connected duals).

In order to show thati (8) € G () fills up the entire group, we need to use Fon-
taine’s classification op-divisible groups overd. More precisely, by [7, Ch. IV,
Sect. 1.10, Rem. 2,3] (which covers both the case A — 1 and the unipotent case
when 1= p — 1), for any finite flatA-algebras, we have functorially as groups
that Tior(8) =get IiLn I'[p"](8) is identified via reduction with

{y € Tx(81)| the composite map 4 (') < M(Ty)

C CW(OTy) 9 CWi(8) 2 8x/pBis0),

(recall thatCW,(8,) = CW,(8;) since 8, is a finite k-algebra), and likewise
for Ior(8). The A-submodule of ‘logarithmsL, (") € M) has a some-
what complicated definition as atrmodule mapping toM (I'y) [7, p. 167], and
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[Ch. IV, Prop. 1.1] shows thaL ,(T") is finite and free as am-module, with
L,(T) — M(T}) injective (here we use tha#((T';) is a finite freeA-module, as
[y is ap-divisible group [7, Ch. I, Sect. 6.1, Rem 3]). In particular, this functorial
description of torsion implies that the natural map of grolifs(8) — I''((8;) is
injective

Now chooseg € G (48;). Of courseG(8) < Tir(8). AssumeC W, (g)(L) €
kerwy (i.e.,g € G(4)). We need to show € G(8). We first make the crucial
claim thatM(I'y) — M(Gy) takesL4(I") over into L4(G). In fact, this is the
reason for definind. 4 (G) as we did in the first place. To prove this claim, simply
observe that the given closed immersion of forrAafjroup schemes. G < T
gives an element df (R) which lies inTy(R) (G is annihilated by its order!), so
by the description of',,((R) above, we gepreciselythe desired condition.

The functoriality ofC W, now implies thatis (g) € I'x($) satisfies the condi-
tions describing o ($). Thus, there is somg € ' ($) such thaty, = is, (g), SO
(fs(y )i = f5,(i5,(g)) = 0 (recallG = ker f). But f5(y) lies inI"ior(8), which
injectsinto I'', (4;) via reduction. Hencefs(y) = 0.

Exactness of the sequence® G(8) — I'(4) — I''(8) implies thaty =
i5(go), for somegg € G(38), s0iy ((go)k) = v = is(g). Thatis,g = (go)x isin
G(8), viewed inside ofG (8;). This shows thaG () = G(4).

We note in passing that i and I’ are unipotent, therG is automatically
unipotent.

Stepd. Let(L, M) be an object irSHj with p # 2. We claim there is an object
G.m in F F4 which is the kernel of an isogeny pfdivisible groups oveA and
for which (L, M) ~ LM (G m)); in other words LM is essentially surjective. If
p is arbitrary and L, M) is an object inSH!", we make an analogous claim with
Gw.my In FF the kernel of an isogeny of unipoteptdivisible groups. Beware
that we don't (yet) claim to construet . ,, in @ manner which is functorial in
(L, M).

This step is the heart of the proof and is the most important detail omitted in
[8]. First, we will construct a short exact sequencepfmodules

0O— M, > My —> M — 0,

with M, and M, finite free A-modules (so by [7, Ch. lll, Sect. 6.1, Rem. 3]; >~

M(T;) for T; a p-divisible group overk). In addition, we will chooseM; and

M, with topologically nilpotentV action (i.e., withT"; unipotent) whenM has
nilpotent vV action (i.e., whenM is the Dieudonné module of a unipotent finite
commutativek-group scheme). Obviously we only need to consti¢t— M and

then can seM, to be the kernel. We exploit Cartier duality in order to decompose

M into a product of étale-connected, connected-étale, and connected-connected
components, so it suffices to consider these three cases separately (and just the
first and third cases are needed in the unipotent setting). See [7, Ch. lll, Sect. 1.7]
for the definitions of the notions @tale and connectedn the setting of suitable
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Dieudonné modules; one can also see from the arguments in [7, Ch. Ill] that these
notions are compatible with the functor between finite flat commutatigeoup
schemes op-power order and their Dieudonné modules. By [7, Ch. Ill, Sect. 5.3,
Cor. 2], one can also explicitly translate Cartier duality of finite flat commutative
group schemes witp-power order into the language of their Dieudonné modules.

If M is étale, then letM; be a freeA-module of finite rank, together with a
surjection ofM; onto M inducing an isomorphism module. SinceF: M — M
is a Frobenius-semilineaautomorphismwe can lift it to a Frobenius-semilinear
automorphisn¥;y of M;. DefiningV, = pFl_l gives anM; of the desired sort (with
V1 topologically nilpotent). IfM has an étale dual, we can proceed similarly using
V in place of F. There remains the connected-connected casé” se F" = O for
some suitably large. ChoosingA-module generators aff allows us to take for
M, a product of finitely many copies of[F, V]/I, with I the left ideal generated
by F" — V", This M is a finite freeA-module having topologically nilpoterf and
V actions.

Next, we will constructA-submodulest; € M; such that the naturd-linear
mapsL;/pL; — M;/FM; are isomorphismsM, < M, takesL, over into
L1 (we donot claim £, = M, N £1), and the image of£; underM; — M is
preciselyL. It is this construction that will use the injectivity &f|,. In particular,
we'll have a mapy: (L2, M) — (L1, My) in the categoryH¢ whenp # 2 [7,
Ch. IV, Sect. 1.10, Rem. 1] and in the catego}{ﬁ’“ in the unipotent case [7, loc.
cit.]. Recall thatH¢ is the category of pairéL, M) with L an A-submodule of a
D,-moduleM such thatM is finite free with ranki as anA-module and the natural
k-linear mapL/pL — M/F M is an isomorphism (the definition of morphism is
obvious, as are the definitions of the corresponding ‘unipotent’ and ‘connected’
full subcategoriedH ", HY“).

Suppose for the moment that we have carried out the constructi6nafid.Lo.
Let's see how to use this to constru€f;  ,, of the desired sort. When4 p — 1,
we can letl'; 4, be the ‘unique’p-divisible group overA (up to isomorphism)
such that ianf, (L, M;) ~ LM4(T;). When 1 < p — 1 and we are in the
unipotent setting, we can uniquely choose siighwhich are unipotent. Here we
are invoking the main classification theorem [7, Ch. IV, Sect. 1.2, Thm. 1], but
see [7, Ch. IV, Sect. 1.2, Sect. 1.10] for the definitionLdf, as just used; the
discussion in Step 3 shows that, in a reasonable sense, this is compatible with the
notion of LM, on & %, (and similarly in the unipotent case); also see Lemma 4.12
below. Thus, there is a unique morphisfnl’; — I', of p-divisible groups such
that LM (f): (L2, My) — (L1, M7) is the mapy we mentioned above. On the
closed fibers, which satisf¢l";), ~ T, the induced morphisnf; corresponds to
the mapM, = M(T,) — M(T1) = My, which is our original inclusion. As
this is injective with a cokernelf that has finiteA-length, the morphisny; is an
isogeny. Thereforef is itself an isogeny and so is ‘formally faithfully flat’ over
(i.e., faithfully flat’ with respect to the functo® 4 on ‘profinite’ A-modules in the
sense of [7, Ch. |, Sect. 3)).
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Hence,G gef ker f is an object in¥ ¥, (in particular, it isflat over A) and

M ~ M(Gy). WhenT'; and T, are unipotent, so i€. Under theD,-module

isomorphismM ~ M(G}), we claim thatl , (G) corresponds td.. Since.l; — L

is surjective, certainhyi. lies inside ofL ,(G) (see the discussion in Step 3). But

the commutative diagram éfvector spaces

L/pL —— LA(G)/pL4(G)

~

~

M/FM —~ M(Gy)/FM(Gy)

shows that the top row is an isomorphism, whelhggG) does correspond pre-
cisely toL, so(L, M) ~ LM(G). LetG u) = G.

Now let's see how to construet; and £, as described above. The first thing
we need to do is to check that an abstract objéctM) in SHA’ enjoys some
properties noted earlier (in the proof of Theorem 1.1) for the essential image of
LM. More precisely, we claim that the kernel &f lies in the image ofV and
Lip]l ® kerV = M([p].

In order to establish this decomposition Mf p], note that there is certainly an
injection from the left side to the right sid& (; is injective!) and so a comparsion
of the length of both sides (using/ pL ~ M /F M) yields the inequality

CaM/FM)+Ls(M/VM) < Ls(M/pM).
In order to establish the reverse inequality, just note that the sequence
0— M/VM —2+ M/pM — M/FM — 0,
is always right exact. Hence, we not only get the decompositioM 5], but

the equality of lengths shows that the right exact sequence above is in fact exact.
However, this exactness is equivalent to the other claim the kerngllies in the

image ofV.
With these initial observations settled, &t ...,e, € Mi/FM; be a basis
for the image ofM,/ F M,, with representatives; € M, C M. Lete,,1,...,¢,

extend this to a full basis o¥7,/ F M,, so their images i /F M give a basis of

M/FM ~— L/pL. Note that we are implicitly using the obvious fact that the
sequence

My/FMy — My/FMy — M/FM — 0
is exact. We may (and do) choose representatives ..., e, € My so that their

images inM lie in L and constitute a minimal-basis ofL. DefineL; = > Ae;.
ClearlyL1/pL1 >~ M1/FM; andL1 — M; — M has image precisel§.
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We now seek to find, ,1,...,8, € M,NFM;sothatey, ..., e, €11,...,6m
is a basis oM,/ F M, and allg; lie in .£4 (note thaky, ..., e, now denote elements
of M,/ F M, and notM,/ F M;, but this won't cause any confusion). Defining

Lo=Aer+ -+ Ae, + Ag,p1 + -+ Ay,

will complete our construction. More generally, choose ang M, N FM;. It
suffices to shows that its image M,/ F M, can be represented by an element of
M, which lies in£;.

Well, ¢ = Fy with the projection?: M; — M killing ¢, soP(y) € kerFy,.
We claim, however, thaV¥,,(L[p]) = ker Fy,. Indeed, €' is clear and ifFx = 0,
thenx lies in the image oV, sayx = Vzforz e M. Butpz = FVz = Fx =0,
soz € M[p] = L[p] ® kerV. Thus, we can take € L[p]. Consequently,

PO =V| > a;Pe)|. so

j=r+1

n
Z aje;j mod M.

j=r+l

<
Il
<

Applying F, we obtain

n
e=Fy= Z a;jpe; modF Mo,
j=r+1

which then gives what we sought to prove.

Step5. We will now show thatG(8) = G (&) for all finite flat A-algebrass.
Note that the formula foG (8) and some compatibility checks then will imply
that LM is fully faithful for odd p and LM" is fully faithful for all p, thereby
completing the proof of Theorem 1.4.

Forp # 2and(L, M) = LM(G) (resp. for arbitraryp and(L, M) = LM"(G)),
chooseG .. iy as in Step 4 so thabk M (G .») =~ LM(G) (resp. so that M*
(Gw.my) = LM*(G)). By Step 3G >~ G (.. u) as functors on finite flat-algebras,
s0G — G, u) as group functors. But the induced map on closed fibers corres-
ponds to the isomorphism of Dieudonné module§(G ;. u)),) =~ M(Gy), so the
map on closed fibers is an isomorphism. Hence, by flatnessAavére map of
A-group scheme& — G,y is an isomorphism also. From this it follows that
G(8) = G (8) and we are done with the case of gddnd unipotent for p = 2.

Step6. The case = 2 andG connected.
We saw above that for any ogdand anyG in & ¥4, or for p = 2 and unipotent
G, there is an isomorphist@ ~ G, (G), M(Gy)), soG arises as the kernel of
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an isogeny ofp-divisible groups over. Now supposg = 2 andG is connected.
The dualG is unipotent, so is the kernel of an isogenyetlivisible groups over

A. The dual isogeny has kernel isomorphicffo: G, so there is a short exact
sequence of formali-group schemes 6 G — I'y —» I', — 0. Moreover,G
lands inside of the connected component gfso we can easily suppose theare
connected.

Now we invoke Fontaine’s classification pfdivisible groups in the connected
case overA for p = 2. The definition of the functolG is slightly different in
this case. Sinc& is connected M (G,) has a nilpotentF-action, soM (G,) —

C Wi (Ry) liesin the ‘connected factoC W[ (Ry) = C Wi (rx,), Whererg, denotes
the nilpotent maximal ideal given by augmentation. Since every elemept bfts
to an element of the augmentation idealof R, andw is well-defined, we can
define a variant continuous group mag: C W (tz,) — Rk /ptz using liftings
to the augmentation ideal in the formula fog,.

Observe that the composite of;, with projection Rg/ptg — Rk/pR is
exactly wgs and the two maps have tleamekernel (sincety is an A-module
direct summand ofR)! We now interpretL ,(G) as the kernel ofw?,, since it
is this map which will have a more useful analogue in the setting of connected
p-divisible groups forp = 2. It follows from [7, Ch. IV, Prop. 1.3 (and the
definitions preceding this Proposition) that an analogue of [7, Ch. IV, Sect. 1.10,
Rem. 2] is true. More precisely, suppope= 2, I' is a connectedp-divisible
group overA, and4 is a p-adic A-ring with ¢4 the ideal of topologically nilpotent
elements. There is a functorial identification of the growp($) with the group of
all Di-linear maps/: M(I'y) — CW,(ts/prs), for which the composite map

L4(T) > M(Ty) —~ CW(ts/prs) —> Sx/prs

is zero. Herewy is a ‘connected’ variant ow s defined with the same formula, but
using liftings to the ideatyg; cf. [7, pp. 181-2] (where slightly different notation is
used).

We define the functoG on p-adic A-rings 4§ to be given by the group ab;-
linear maps

G(8) = {y: M(Gi) > CWi(rs/prs)|lwy oy (La(G)) =0}

Pick any exact sequence & G — I'y — I'; — 0 with I'; connected. The
induced exact sequence Bf-modules

0 — M((I'2)) = M((T')e) = M(Gy)

induces a mafd 4, (I'1) — L4(G) for the same reasons as used earlier. Also, the
exactness of

0— G8) = (T'or(8) = T'2)ror(8)
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and the above functorial description of torsion in a connegtelivisible group for
p = 2 gives rise to an injective majy s: G(8) — G(8), which is functorial in
4 and is independent of the choice of ‘resolution’@fby connectedp-divisible
groups; from this, functoriality of;_ s in G is clear also.

Now we show that the inclusioG (8) — G(3) is also surjective. In the earlier
discussion, we used injectivity of ‘passage to closed fiber’ on ‘points’, which is
not true anymore (again, recalb over Z,). But an alternate argument based on
the modified definition of5 will work, as we now explain. Choose € G(4), so
composing withr: M((T'1);) — M(Gy) gives an element = gor € (I')wor(8).

If y vanishes inT,)r(8), then it comes from an element 6f($) which is easily
seen to map tg underjg 5. Since the composite map

M((T2)p) — M(T)i) — M(Gy) —5+ CWi(ts/pts)

is certainly zero, we get the desired vanishing.

The isomorphism of functor§ ~ G on p-adic A-rings, together with naturality
in the connected;, yields full faithfulness of. M¢ for p = 2. Essential surjectivity
is proven by exactly the same argument as we used in Step 4 above. O

For its independent interest, we now record a corollary mentioned above.

COROLLARY 1.7. For p > 2, anyG in ¥ ¥, arises as the kernel of an isogeny of
p-divisible groups oveA. The same statement is true with unipotent and connected
group objects for allp.

Next, note that for odg and anyG in ¥ ¥, (resp. for arbitraryp and G in
F F}), bothG andG make sense as functors pradic A-rings and as such there
is a natural mags — G.

COROLLARY 1.8. G(8) >~ G(4) for all p-adic A-rings 4.

Proof. Note thatG ($) makes sense, becausg makes sense, using the same
formula as whens$ is finite flat overA; [7, Ch. Il, Sect. 5.1, Sect. 5.2] has a
discussion of this. For od@, letI" — TI'' be an isogeny op-divisible groups
over A such thatG is the kernel. In the unipotent setting with arbitrgrychoose
such p-divisible groups which are unipotent (the connected case fer 2 was
settled above, so we ignore this case now). The G&p) — I'(8) is injective,
with image inside ofl,(8), and by [7, Ch. IV, Sect. 1.10, Rem. J]i(8) —
IMor(81) is injective. From this it easily follows thak (8) — G (48;) is injective, so
G(8) — G(¥) is injective.

Consequently, Step 1 is now valid fall p-adic A-rings 4. But this step was
the only reason to restrict to finite flat-algebras rather than tp-adic A-rings
above (as this restriction was needed in order to permit the base extension argument
involving passage to the strictly Henselian case). All other steps in the proof of
Theorem 1.4 go through fgr-adic A-rings once Step 1 does. One simply replaces
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finite flat A-algebra’ with ‘p-adic A-ring’ everywhere and the references to [4]
remain applicable. O

Note that as we promised earlier, Lemma 1.3 was never used in the proof of
Theorem 1.4. We'll later return to this point in our discussion of the easep — 1.

We conclude our discussion of tlke= 1 case with an explicit description of
a quasi-inverse functor th M for odd p and toLM*, LM¢ for arbitrary p. This
result is implicit in [8] but is not explicitly stated there (though it is given in a
slightly less precise form in [9, Prop. 9.12]). L& denote the completion of a
chosen algebraic closui of K, with valuation ring(Oc,, mc,). For arbitrary

p>2and(L, M)inSH{ (or p =2 and(L, M) in SH]"), define
Py = ¢ € Homp, (M, CW(Oc,/p)Ip(L) S kerwe,, )

as aZ[Gal (K /K)]-module (via the canonical isomorphism G&l/K) ~ Autcont
(Cx/K)). Forp = 2 and(L, M) in SHI*, define,o(CL)M) in a similar way, using
CW (mc,/pmc,) andw;‘ch. Note thatifp = 2 andG is connected and unipotent,
there is a natural map(; vy —> Pw.m of Z/[\Gal (K /K)]-modules (sinceF' is
nilpotent onM, any¢ € p. m) has image irCW; (mc, /p Oc,)).

THEOREM 1.9. Assumep # 2 or else that(L, M) lies in SH]"* or SH]". The
Abelian group underlying;. 4 is finite p-group andGal(K /K) acts through the
guotient by an open normal subgroup. Consider the finite flat commutative group
scheméS (o1, u)) Of p-power order ovelk which is canonically attached @, u)
(using our fixed choice dt ). This is the generic fiber of a canonically determined
objectG ;. y, in F F4 if p # 2, and similarly withs F if (L, M) lies in SH]"
and p is arbitrary. In this way, we get a functoaiL, M) ~» G ) Which is a
quasi-inverse td.M for odd p and which is a quasi-inverse tbM" for arbitrary
p.
If p = 2, the same assertions holds for connected objects, ysing,. If in
addition (L, M) is unipotent, them(, ., — p.um) is an isomorphism.

Proof. Since (L, M) ~ LM(G) for someG in ¥ %4, with G unipotent if
(L, M) liesinSH]", pi.a =~ G(Oc,) as aZ[Gal(K / K)]-module (this is where
the definition ofp . ») comes from). By Corollary 1.8, this can be identified with
G(Oc,) in a manner which is functorial ¢, — that is, as &[Gal(K /K)]-
module. Since this is canonically the same&% ), we obtain the claim that;, )
has an underlying Abelian group which is a finjgegroup on which Galk /K)
acts continuously.

Becausep. »y ~ G(K) as a Galois module, it follows from Corollary 1.5
and [17, Cor. 2.2.3(2)] that the affin€-algebra ofG (o »)) contains aunique
finite (flat) A-subalgebra which has generic fib@(p. ) and which admits a
(necessarily unique, commutative;power order) group scheme structure over
A compatible with this generic fiber identification, with the added condition of
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unipotence or connectedness foe= 2. Also, if (L, M) lies in SH}(’“ for p > 2,
the resultingA-group scheme must be unipotent (resp. connected). Défing
to be the corresponding object #iF, (and it lies inF ¥} when(L, M) lies in
SH"). Note that the passage fro6o. i) t0 G (.., does not depend on our
choice ofK; it is only the passage from. my t0 G(p i) that depends on this
choice.

It is now straightfoward to check that, M) ~» G ) is a functor of(L, M)
in an obvious manner and that this is a quasi-inversé& A for odd p and to
LM" for arbitrary p. If we changek , upon choosing an isomorphism between the
two algebraic closures we easily get an explicit isomorphism between the resulting
functors (the only point of the construction that really changes is the passage from
a Galois representation to a finite group scheme &jer

In the connected case with = 2, the same arguments carry over fgt Fi-
nally, if p = 2 and(L, M) is unipotent and connected, therGain * ¥ with
LM*“(G) ~ (L,M) hasM(Gy) ~ M, soG lies in ¥ ;. Thus, LM°(G) =~
(L, M) and we have a commutative diagram

G(Ocy) = p(CL,M)

L

GOcy) = pu,m-
This proves thap(; ,,) — p(.u) is an isomorphism. O

2. Defining Honda Systems wheea < p — 1

We now wish to extend all of the arguments in Section 1 to the case where

p — 1. The first main point is to figure out what the definition of a Honda system
should be. Before getting into the details, we should emphasize that a potentially
serious technical problem for us when> 1 is the fact that foiG in ¥ ¥, and

M = M(Gy), the sequence

0— M)V -2+ M/p— M/F = 0,

which is always right exact, doemt have to be exact. The fact that this is always
exact where = 1 was critical for Fontaine’s argument in Section 1 to work (see
Step 4). The formulas of Oort-Tate in [15, Sect. 2, Rem. 3] show that when,
there always exist§; in ¥ #, with closed fibere), ,, in which case the above
sequence is

0> M- M- m-o,

which is not exact. Fortunately, the case- 1 has other significant features that
will enable us to circumvent this issue.
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Before giving the definitions (or, rather, the motivation), we need to recall a
crucial general construction, due to Fontaine, which attachesgp-module a
certainA’-module (note that it generally makes no sense to lfaee V operators
on anA’-module where > 1 because Frobenius-semilinearity wouldn’t make any
sense). We will only discuss this construction in the case p — 1, as that's all
we’ll need and quite fortunately it is possible to make things very explicit in this
case. This explicitness will be useful when carrying out various computations.

It should be emphasized that the computations in this section are very formal
and so if we consider the construction below without conditiong,ctine basic
formalism still goes through for tame extensions (though it does not coincide with
Fontaine’s general construction in [7, Ch. IV, Sect. 2] oace p — 1). In later
sections, the restriction < p — 1 will be essential.

Let M be aD,-module. We defind//) to be theD,-module whose underlying
A-module isA ®,4 M, usingo’: A ~ A (o denoting the Frobenius map), with
operatorsF(A ® x) = o(A) @ F(x) andV(A ® x) = 0 *(A) ® V(x). Thus, we
obtain A-linear maps

Fj: MU+ M(j), Vj: MDD M(j+l),

satisfying F;V; = pya, ViFj = pyu+n. We will only useM© = M and
M®_ We will not abuse notation by writing, V for Fy, Vo, as this might cause
confusion with respect to issues #flinearity.

DEFINITION 2.1. We defineV 4 to be the direct limit of the diagram

me, ML pime, MO

M
(%) M
#1

A@aM-LE— A @M

in the category ofA’-modules, wherep), ¢} are the obvious ‘inclusion’ maps
(which might not be injective)V” (A ® x) = p~A ® Vo(x), andF¥ (L ® x) =
A ® Fy(x) (recall thatm is the maximal ideal oft).

More explicitly, M, is the quotient of A’ ® 4 M) & (p~*m @4 MD) by the
submodule

(@ () — FM(w), o} (w) — VM )lu em @4 M, w € A’ @4 MP}.

Forx e A ®, M andy € p'm®, MY, we let(x, y) denote the residue class in
M, represented byx, y). Trivially M ~~ M, is a covariant additive functor from
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D,-modules toA’-modules. Where = 1, the obviousA-module isomorphism
pPA ®4 M ~ M shows thatM, is isomorphic to the direct limit of the diagram

M
{p
M
in the category ofA-modules, and so the naturdakmodule map,: M — My

given by, (m) = (m, 0) is an isomorphism. This will motivate how we define and

study finite Honda systems ovaf.
There are maps

Yo | y®

o | y@

A @M — My and Fyip ifmes MY - My
of A’-modules, natural i Also, it is easy to check that th&-linear maps

1Q Ve A QM —> A @, MY, pRidipImes MY - A’ @, MY
satisfy the necessary compatibilies to inducedA&tinear map

Vu:My — A @4y MY

on the direct limitM 4. For accuracy these maps should be denoiggl, Fy 4,
andV,, 4 (and likewise we should have writt@h-4", FM.A" M-A" ,M-A" ghoye),
but we’ll only use the more precise notation when the less precise notation may
cause confusion (e.g., in our discussion of base change in Section 4). Also, observe
that viauy 4: M >~ M,, the mapF, 4 is exactlyFo: MY — M and the mapy, 4
is exactlyVo: M — M,

Using the naturalA-linear mapsM — A’ @4 M —%+ M, and MY —
rm®, MY, itis easy to check that the diagram

Fo Vo

MD M MD

| o

pime, MY P My Yu, A ®4 MY

commutes.

WARNING. In[7, Ch. 1V, Sect. 2.4ff|p~im @, MD is denotedV 4 [1].

Before proceeding further, we should remark that SiK6EK is a tamely totally
ramified extension, we can choose a uniformizesf A’ such thatt® = pe for a
suitable unitt € A*. Fix such a choice ot now and forever. This will be essential
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for many of our calculations, since it makes the matrix for multiplicationrlgn
A’ extremely simple with respect to thebasis 1..., 7¢ L.

LEMMA 2.2. If £4(M) < oo, then
Ca(Mp) =La(pm @4 MY) = L4 (A" @4 M) = ely(M).

Also, the functorM ~~ M, is exact on the category dp,-modules with finite
A-length.

Remark2.3. This extends [7, Ch. IV, Sect. 2.6, Cor. 1] to the finite-length case.

Proof.Itis not hard to che ck ‘by hand’ thaf ~~ M is right exact as asserted.
Thus, exactness will follow from the length result. The essential point here and for
what follows is the simple observation that becasse> A’ induces an isomorph-
ism of residue fields, for ang’-module N we have the equality, (N) = £,(N).

It is now obvious that » (p~*m @4 MDP) = el (M) = €4 (A’ @4 M). As for
L4 (My), which is at least a priori finite, we see from the explicit description of
M, that? 4 (My) is equal to thed’-length of

{(u,w)y e M4 M) D (A @1 M) () = FM (w), ¢ (w) = V¥ (u)}.

We will show that as anA-module, this is (non-canonically) isomorphic to
M & MDY s00,(My) = 4(My) = el (M) as desired.

In order to get theA-module isomorphism mentioned above, recall our uni-
formizerw. Anyu e m®, M andw € A’ ®4 M can be uniquely written in the
form

e e—1
u:E 7’ Quj, w:E ! @ wj,
j=1 =0

withu; € M, w; € MV The conditionpl! (1) = F™(w) says thatil’ ®, M,

e—1 e—1
l®p8ue+2nj®uj —1® F0w0+2nf®F0wj,
j=1 j=1

so the precise conditions ageu, = Fowg andu; = Fow; for1 < j < e — 1.
Meanwhile,p}! (w) = V¥ (u) says thatinp~™'m @4 M,

e—1 e—1
1® eVou, + Z p i ® Vou; =1® wo+ Z p il ® pw;,
j=1 j=1

so the precise conditions as&ou, = wo andVou; = pw; for1 < j <e —1.
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Hence, we see that we are free to chossee M andwy, ..., w,_1 € MY,
with everything else uniquely determined. This gives rise to the dedirawdule
isomorphism. O

LEMMA 2.4. If £4(M) < oo, then
Lar(kKeriy) = £a(cokeriy) = (e — 1)L (kerV),
Ly (kerFy) = La(cokerFy) = £4(kerF)

and
Lar(kerVy) = £ (cokerVy) = £(kerV).

Also, the kernels and cokernels 8f;, and V,, are annihilated bym (this is true
even without a finiteness assumptionéqiid)). Finally, the commutative diagram
above Lemma.2 inducesk-linear isomorphisms

ker Fy >~ ker £y, cokerFy >~ cokerFy,
and
kerVy >~ kervy, cokerVy >~ cokerV,,.

Remark.5. This lemma extends [7, Ch. IV, Sect. 2.5, Cor. 2] to the finite-length
case.

Proof. Certainly £, (kerty) = £4(cokeryy,), sincery is an A’-linear map
betweenA’-modules with the same finitd’-length, and likewise fofFy, and'V,,.
We'll now explicitly compute the lengths of the kernels.

By definition, keriy, = {@{! (u) — FM(w)|pd (w) = VM (u)}. Writing

e e—1
u:an®ujem®AM, w:Zn-’@wjeA’@)AM(l)
j=1 j=0

as usualp!’ (w) = V¥ (u) says exactly thaty = ¢Vou, and, for 1< j < e — 1,
pw; = Vou,. In this case, we compute i ®4 M that

e—1
o' () — F"(w) = 1® (peu, — Fowo) + Y 7/ ® (u; — Fow,).
j=1

But

peu, — Fowo = peu, — FoeVou, = e(p — FoVo)u, =0

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001788509055

266 BRIAN CONRAD
andforl< j <e-—1,
Vo(u; — Fow;) = Vou; — pw; =0,
so easily
e—1
keruy = an Qu';j|Vu'; =0
Jj=1
This enables us to see that
Ly (keriy) = La(kerty) = (e — DLa(kerV).
Meanwhile,
ker Fiy = {1’ (w) — VY w)lgg" () = F¥ (w)}.

Doing a similar computation as above (in fact, just extending the one in the
proof of Lemma 2.2), we find

kerFy = {1®@w e p'm®, MY |Fow = 0}.

Note that if 1@ w € kerFy, thent(1® w) = p~n ® pw = 0, so kerFy
is annihilated bym and clearlyZ, (ker%y) = £ (kerFy) = £4(kerF). The
description of ker#;, also shows that the naturlinear map kerFy, — ker
is an isomorphism.

Let’'s next check that annihilates cokef;,. Choosex € M. We need to show
thatfor lQ x € A’ ®4 M, m - 1,(1 ® x) maps to 0 in cokefFy,. This says that
1y (r ® x) is in the image ofFy,. But this is obvious

(T ®@x) = Fu (VY (7 ®x));

(the careful reader will note the harmless fact that the #w® x’s in the above
equality live in different tensor product modules; with this point clarified, above
we are implicitly usingr ® x = ¢% (7 ® x)).

Observe also that for e MY, 1), (1® Fox) = Fi (¢ (1®x)). This gives rise
to the naturak-linear map

M/FM = cokerFy — coker¥y,,
induced by the commutative diagram above Lemma 2.2. This is a map between

k-vector spaces with the same dimension. In order to show that this map is an
isomorphism, we need only check that it is surjective. But this is obvious since the
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A'-linear composite mag’ @, M —2> M, — cokerF,, is surjective, with coker
Fu annihilated bym.

Finally, we considefV,,. By definition, cokerV,, is the quotient oA’ ® , M
by the A’-submodule consisting of elements of the form

e e—1
zijrtjébinj +—2£:7ti69 Voni,
j=1 i=0

with arbitrarym; € M andn; € M. Sincep = Vo Fo, this submodule is the same

as the submodule of elements of the for® You 4+ > ¢_; 7' ® p;, with arbitrary
we M, u € MO, Itis now clear that cokew,, is killed by m and that as a vector
space oveA’/m ~ k,

cokerv,, ~ MY/ V(M) = cokerVy.

This map is easily checked to be an inverse to the natural map arising from the
commutative diagram above Lemma 2.2.
Now we check that kew,, is killed by m and that the naturdl-linear map ker
Vo — ker 'V, is surjective (and therefore is an isomorphism). Cho@sev) <
(A @4 M) ® (p~tm @4 MD) such thatVy, ((u, w)) = 0. Writing

e—1 e
_ i _ -1_j
u = 7 R u;, w = p T Quw;
i=0 j=1

as usual, the vanishing condition says precisely that

e—1 e
zz:ytiéb Vou; +—:£:71j ®w; =0
i=0 j=1

in A’ ®4 MY, Thus,w; = —Vou, for 1 < j < e — 1 andVo(ug + Fosw,) = O.
Using the ‘explicit’ defining conditions a1/, we readily see that such an element
can also be represented @y, 0) with Vou' = 0. Thus,

kerVy = ker(1® Vo)/{gg' () — F (w)ley" (w) = V¥ )},

where 9 Vo: A/ @4 M — A'®4 MY is the natural map. The submodule which we
are quotienting out by is nothing other than kgr Using our explicit desciption
above for ker,,;, we see that ke¥,, is killed by m and is naturally isomorphic to
ker Vy as ak-vector space in the desired natural way. O

We're now almost ready to define what a finite Honda system avés. Our
motivation is Fontaine’s classification gf-divisible groups fore < p — 1 as
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mentioned earlier, together with the arguments we have already seen in the case
e = 1. First of all, observe that it. ¢ M, is any A’-submodule, wherd/ is a
D;-module, there are naturidlinear maps

L/mL — cokerF,, and L[m]®kerVy — My [m].
Also, we define thed’-linear isomorphism
EM =M A @ M>m®sM

by A ® x — A ® x. Of course this depends heavily on the choice pbut if we
replacer by any other uniformizer, this would only have the effect of composing
£M with multiplication by an element afA’)* onm ® 4 M and so this would have
no effect on the image of a#’-submodule ofA’ ® 4 M underé . For this reason,
the role ofr here is actually irrelevant to the way in which we will us¥ below
(though we will use the notatiof! when it is needed to avoid confusion).

In the arguments whea = 1, the essential use of the condition tha, is
injective was to show tha¥ (L[p]) C kerF is an equality. It waghis condition
which was what we needed in the proof of Theorem 1.3. SW&@M(L;;(L[W&])))
(which does not depend on the choiceraiised to defin€!) is one generalization
of V(L[p]) and inside ofp~'m ® , MY we have

VM EM (A LIm]))) C ker Fuy,

we might expect to require this to be an equality. Unfortunately this condition will
turn out to be too strong in general, but it holds in many cases of interest (e.g.,
p"-torsion of ap-divisible group overd’; cf. Theorems 3.3, 3.5, Corollary 4.11).

Before definingSH/,, we make one final observation. The description of the
kernel ker#), in the proof of Lemma 2.4 shows that we have-Enear map

kerFy — kertM®/ VoM -2+ M/ p)

given by 1® w — w mod VoM. It is clear that this map annihilates the subspace
VM@EM Lt (LIm)))), so we have a naturétinear map

ker £/ VM (EM (1 H(LIm]) — ke M P/ VoM 2o M/ p).
This will be used in Theorem 3.3.

DEFINITION 2.6. Afinite pre-Honda system ove is a triple(L, M, j) with M

a D;-module satisfying 4, (M) < oo, L an finite-lengthA’-module, andj: L —

M, an A’-linear map. These form aAbelian categoryPSH/(, in an obvious
manner (here we implicitly use the exactness assertion in Lemma 2.1, and it is
also important here that we do not requjréo be injective). Where < p — 1,

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001788509055

FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION 269

we define the category dihite Honda systems over’ to be the full subcategory
SHf-(, consisting of object§L, M, j) in PSHY, such that the naturatlinear map
L/mL — coker¥y is an isomorphism an®,, o j is injective (so in particular,
j isinjective). Where < p — 1, we define the category ahipotent finite Honda
systems oveA’ to be the full subcategoryHA’;“ in PSHA’, consisting of triples
(L, M, j) in which the action ofV on M is nilpotent,L/mL ~ coker¥,,, and
Vo j is injective. The categoryH/(;c of connected finite Honda systems oxér
is defined similarly, with a nilpotence condition on theaction onM.

Itis clear that wher = 1, the definitions o H/, andSH};" coincide with the
ones given previously; we should also mention that the notion of a finite pre-Honda
system is introduced primarily to simplify the exposition in certain places, when we
wish to discuss certain constructions prior to checking that they make sense within
the restricted categorie&Hf, and SHf-(;“. Also, when discussing Honda systems,
we usually omit reference to the injective mapnd regard. as anA’-submodule
of My.

We conclude this section with some observations that will be particularly useful
whene > 2.

LEMMA 2.7. Let (L, M, j) denote an object ilPSH/, such thatL/mL —
coker¥), is an isomorphism. TheW,, o j is injective if and only if the natural
k-linear mapL[m] & kerV,; — M4 /[m] is an isomorphism.

If M is any D,-module(in particular, we do not requireM to have finiteA-
length and2 < e < p — 1, then there is a naturat-linear isomorphisrker Vy &
ker Fy >~ M 4 [m] takingker Vg into kervy,.

If e < p—1,the mapM < N is an injection ofD,-modules, and 4 (M) < oo,
then the naturald’-linear mapM, — N, is injective.

Poof. The last part of the lemma is obvious wher- 1. When 2< e < p — 1,
it follows easily from the second part of the lemma. Under either case in the first
part, j is injective, so we may safely view there as am’-submodule o, . The
‘if’ direction is obvious, so now assunigy,|; is injective. Thus, the map[m]®
kerv, — M4 [m]isinjective. By Lemma 2.4, the left side hiaglimension equal
to dim, ker Fp + dim, ker V5. Whene = 1, we have already seen in Step 4 of the
proof of Theorem 1.4 tha¥d 4 [m] = M[p] >~ M/p has the same-dimension. It
therefore suffices to prove the second part of the lemma.

Consider the natural map k&y® ker Fp — M4 given by

u,w) — AQu, p~lre1w).

Note that this requires—1 > 1 in order to make sense. Itis trivial to check that the
image of this map lies inside d¥ 4 [m]. We will show that the resulting-linear
map toM 4 [m] is an isomorphism.
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We first will check that the image is all &, [m]. Choose as usual

e—1 e
u=2nj®uj€A’®AM, w=prlnj®wj€pflm®AM(l)
j=0 j=1

and assume: = (u, w) € My is killed by m. The conditionzm = 0 says that the
element

e—1 e
(l ® pele 1+ Y 7w Qujg, pTiw @ prw.+ Y _p il @ w/'—l)

j=1 j=2

in (A @, M)® (p'm®,s MD) is equal to

(1 ® (pex. — Foyo) + an ® (x; — Foy)),
j=1
e—1

1® (yo —&Voxe) + Z pin’ ® (pyj — Voxj))’
j=1

for suitablex; € M andy; € M. Choosingyy, ..., y.-1 € MY andx, € M,
we readily see that we must have

yo=¢eVox, +ew._1 and x; =u;_1+ Foy;

for 1 < j < e—1, with the consistency conditions; = —Vou; for1 < j <e—2
(a vacuous condition & = 2) and

Fow,—1 = —pu,_1, —pew. = Vouo.

These last two conditions are independent of each other sineel. A simple
calculation shows that = (1® u, p~imre1lw), with u = ug + ¢ Fow, andw =
—(We_1+ Vou._1). SinceVou = 0 andFyw = 0, the desired surjectivity is proven.

Now choose(u, w) € ker Vo ker Fp which is sent to 0 inM 4. Writing out
the explicit meaning of this condition, we see that there exist. ., x, € M and
Y0, - -5 Ye—1 € MY such that

u = pex, — Foyo, w = pye—1 — Voxe-1,
with the extra conditionsy = ¢ Vox, andx; = Foy; for 1 < j < e — 1. Thus,

u = Fo(eVox. — yo) = Fo(0) =0
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and

w = Vo(Foye—1 — Xe—1) = Vo(0) = 0. O

3. A Functor on Group Schemeswhere < p —1

For anyG in ¥4, we defineL M4 (G) to be the objectL o (G), M(Gy), j) in
PSH/{,, whereL 4 (G) is the kernel of thed’-linear map

MG a = CWi g (Re) —2+ Ry /mR,

with R the affine ring ofG 4, CWj 4/ (Ri) = (CWi(Ry))a, andj the inclusion.
The continuoust’-linear mapw’x is a generalization ob %, defined in [4, p. 197],
and it is induced byw s and a natural surjectiod” @ s C Wi (Ry) = C Wy 4 (Ry).
By the last part of Lemma 2.7, we note that we can (and will) vi#éG,) » as an
A’-submodule o Wy 4 (Ry). Becaus&K ®4 R >~ K’ ® 4 R, no confusion should
arise from our use of the notatigR for what Fontaine writes a® ¢ in [4]. Since
e < p— 1, we also haven® = P’(R) in the notation of [4, Ch. IV, Sect. 3.1].
Clearly LM, is an additive contravariant functor froffi#, to PSH;(,.

For ease of notation, we now fix a choice@fin ¥ ¥4/, with G in ??Af,’” or
FFife(A) =p—1. LetL = Ly(G) andM = M(G,). We begin with a
length calculation.

LEMMA 3.1. £, (VM (EM (1 (LImD)))) = L (tar (G (LIM])) < €4 (L[m]).

Remark3.2. Note thatV¥ o &M Kkills ker ¢, (see the proof of Lemma 2.4
for an explicit description of kery). Thus, there is a surjectivg’-linear map
from 1y, (1, (L[m])) to VM(EM (,} (LIm]))) given byx — VM (£M(y)), where
y € A'®4 M is any element satisfying, (y) = x. This map depends on the choice
of  implicit in the definition ofs™ = £M. The length result we are about to prove
implies that this surjection is an isomorphism and when there is a full equality in
the lemma, then we have[m] ~ V™ &M, (LIm]))). We'll later see that this
full equality holds forL M 4 (G) if and only if the right exact sequence lefvector
spaces

0— MY/ VoM 2 M/pM — M/FM — 0
is actually exact.
Proof. Since
Ca (VY EM @G (LImD)))
= Lar(EM (G (LIm])) — L ((ker VM) N gY@ (LImD))),
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but €, (€Y (1) (LIm]))) = £ar (13 (L[m])) is equal to
ar(ear (3 (LImD)) + Lo (Kerty)
= Lar(n (G (LIMD)) + (e — Dy (ker V),
(by Lemma 2.4), it suffices to show
Ca((kerVM) N EM (GH(LImD)) = (e — Da(kerV).
However, kerV ™ is given by
Xe:nf Qu; EM®4 M| Xe:pflnf ®@Vou; =0 in ptme, MY
j=1 j=1

and since the defining condition says precisely tat; = 0 for 1 < j < e, we
see that

CLa(kerVMy = ¢ (kerVM) = et (ker V).

We will now show thatker V) N éM(L;f (L[m])) consists of precisely those
elements in kev ¥ for whichu; = 0, which gives what we need. For an element

e e—1
. M .
E 7T"®Mj=f E 71’®uj+1
j=1 j=0

inker V¥, we haveVou; = - - - = Vou, = 0. Thus, we want to determine precisely
when the element

e—1
an®uj+1€ A/®AM
=0

has image iV 4» which ism-torsion and in’.
Them-torsion condition isautomaticallysatsified, since

e—1 e
Ty E T Quj| = tu E T @u;
j=0 j=1

e
Y ,
= Ly o ¢ E ! @u;
j=1
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= Fuo V" [> n/®u;
j=1

= ?M Zp_lnj@)vouj
j=1
= 0.
On the other handy; € M(Gy) € CWi(Ry) has the form
u.,' = (...,0,...,0,1/!.,',0)

sinceVou; = 0, so we easily compute thatiRg'/mR,

e—1 e—1
w g oty E T/ ® Ujp1 | = E 7T]ﬁj+l,0 modmR,
j=0 j=0

whereu; o € R is a a lift ofu; o. Beware that here and later we abuse notation and
do not indicate the presence of the injectitelinear mapM, — CWi 4/ (Ry)
betweenw’s andiy,. ModulomR = 7 R, the right side is represented By, and

so vanishes if and only i, o = 0, which is to say thait; = 0. O

The next result nicely explains the failure of the exactness of
0— M/VM —+ M/pM — M/FM — 0

for Dieudonné modules of closed fibers of objectsAtF, whene > 1. Also,

the essential calculation in the proof will be needed in the proof of the important
Theorem 3.4.

THEOREM 3.3. The inclusionV¥ (6™ (i, (L[m]))) C kerFy, is an equality if
and only if the sequence

0— MY/ VoM L M/pM — M/FM — 0,
which is always right exact, is actually exact. More generally,4term sequence
0 — kerFy/ VY (Y (53 (LIm])))
— MY VoM L M/p — M/F — 0

is always exact.
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Proof. Whene = 1, we saw in Section 1 that the theorem is true (in fact,
the inclusion is always an equality and the sequence is always exact), so we may
assume now that > 1. In a couple of places below it will be crucial that 1 > 1.

Recall from the proof of Lemma 2.4 that

kerFy = {1®@w e p'm®,s MY |Fow = 0}.

Our first step is to reformulate the condition thatklw € ker F, lies in the
subspace/M(éM(%l(L[m]))). More precisely, we claim that this is equivalent to
the statement that for ouw € M® with Fow = 0, there existw’ andw” in M
such thatVow’ = w, Vow” = 0, and

Waly@ e w + 1@ w”) =0.
First assume this latter statement. Then f@ b € ker ), we see that
rt@ew + 1w’ € (L)
andVM(EM (el @ e’ + 1@ w”)) is equal to
Vi @elw'+n@uw”) = p it @e Wow' + pin ® Vouw”
= 1® Vow’
= 1Qw,
so1® w e VMEM(31(L))). But sincepw’ = FoVow' = Fow = 0, we see that
T y@ e w +10w") = (@' Qe w + 7 @w")
= w(1® pw') + iy (T @ w")
= (y o0 (pé”(n Q@ w’)
= Fyuo VM@ @w”)
= Fu(p~'n ® Vow")
=0,

soin fact 1® w € VM(EM (i3 (L[m]))).
Conversely, assumed w € V¥ (M (.1 (L[m]))), whence

e—1
1ew=VYot" Y n/eu; |,
j=0
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whereu; € M and

e—1

w | Y 7w @uj | € Liml.
j=0

Thus,

low=VH" an Quj_1| = Zpilnj ® Vouj_1,

j=1 j=1

sow = & Vou,—1 = Vo(eu,—1) andVou; = 0 for 0 < j < e — 1. The calculation

e—1 e—1
Ty E 7 Qu;| =y E T Q@u;
j=0 j=0

e—1
M i+1
= Ly o E T Qu;
j=0

e—1
= .’FMoVM an+l®uj
j=0
e—1
-1__j+1
= ?M ZP 7T'1+ ®V0uj
j=0

= Fu(p'm¢ ® Voe-1)
= Fu(l®eVou, 1)

= Fu(l®w)

=0

shows that then-torsion condition is superfluous, so it remains to see what con-
straints arise from the condition

e—1
w' g oty En’@uj =0.
j=0

If we can show that

w g oty E 7' ®u;| =0,

1< j<e—-1
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then definingw’ = cu._1; andw” = ug yields what we want. For ¥ j < e — 1,
we haveu; = (...,0,...,0,u;) sinceVou; = 0. Thus, ifi; o € R is a lift of
uj o, then the element

w/ROLM Z 7Tj®1/tj GRK’/mﬁ

1<j<e—1
is represented by

Y AlijoenR=mR,

1<j<e-1

thereby giving the desired vanishing.

Now that we have reformulated our main condition, pick M with Fow =
0. We must determine precisely when we can constwictw” € M with the
properties described above.

Identifying M and MY as additive groups (via — 1 ® x), we can write
w = (w_,) € M € CWi(Ry), with w_,, € R; satisfyingw”, = 0. Our task is to

findw’ andw” in &, such that the element

def _
w = (L Wit ..., wo, W) € CWi(Ry)

liesin M, as doesv” =4t (..., 0, ..., 0, w”) and, moreover,
waoy@ e lw +1@w”) =0.
Letw_, € R lift w_, andw’, " € R lift w andw” respectively. The final
condition above says
e B Y p Rl |+ e R
n=1

Bute —1 > 1 (), soe n¢ 10’ € mR and so the above condition is in fact
independenof w’ (and everw’), being equivalent to

-1 e-1

e i o "o

—_ E p @) +0" enR.
P n=>0

Sinces7¢/p =rtand

p @) € p R =" R,
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with p* —ne > p" —n(p—1) > 2forn > 2 (@and evenforn > life < p — 1),
our condition is equivalent to

2
(p) ' + 77w + 0" € T R.

Thus, we are forced to choos® € R, to be represented by((pn)*luﬁle +
n08) € R. Let's check thatw” € CW,(Ry) does lie inM = M(Gy). Itis
enough to check that

A M8 = (8 @ 1+ 1® (v 1idg) modr (R @4 R)
and
Ag((pm) b))
= (pm) ") ® 1+ 1@ ((pr) "i";) modr (R ® 4 R).

Equivalently, we want to show that

2

Ac(o)” = W) @1+ 1® D) modr?(R @4 R)

and

2

Nop2 2 A p?  p? 5
Ag(w-1) W’ ®1+1®w’ modpr (R Qs R).

Once we prove the result fary, we can apply the same argumenite € M. Itis
then straightfoward to keep track of powersmofn order to see that this gives the
desired result modulps2 for w_; (keep in mind thafow = 0 forcesw”; € 7 R).
So we now only consider the congruence 4@t

Sincew € M, we have that ilR; Qi Ry,

Ag, (wo) = N"m Sviw_y®@L ..., we®L1Qw_p,...,1® wo),
—00
whence
Ag (o) EN”m Sv_y®1, ..., 000L1®W_p,...,1® o)
—>00

modr (R R4 R).

BecauseSy € Z[X_y,..., X0; Y_n,..., Yol andp € n?R (sincee > 1!), we
can raise both sides to thgh power so as to obtain

Ag(ibo)” = lim Sy@?y®1,..., 05 L 1w’ ,,...,1® %))
—00

modz?(R @4 R).
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Combining the propertyp”, € =R for all n > 0 with the fact thatSy is equal to
Xo + Yo plus higher degree terms in the_; andY_; for j > O, it follows that

S’y @L ..., 0fL1ew’,,...,1Q 0}
=05 ® 1+ 1® B modr?(R ®4 R)

forall N > 1. Thus,w” as defined above is necessarilyth

Therefore, we have shown thatgl w € ker F), lies in the A’-submodule
VMEM M (LIm]))) if and only if somew’ € R, can be chosen so that e
CWi(Ry) liesin M. That is,w is required to lie inVoM. This is equivalent to the
assertion that the sequence

0 — kerFy/ VM (EM (G (LIm])))
— MY voM L+ M/pM — M/FM — 0

is exact.

It may be possible to prove Theorem 3.3 purely from the definition of a finite
Honda system (once Theorems 3.4 and 3.6 are proven), but it is not clear how to
do this.

THEOREM 3.4. (L, M) is an object inSHf{, whene < p — land(L, M) is an
object inSH/(;“ (resp.SH/(:”) whene < p—1andG is unipotentresp.connectey

Proof. Without loss of generalitye > 2. First, we will prove that the natural
map

L/mL — cokerfy
is injective, sof 4/ (L/m) < £, (cokerFy,). We will then show that the natural map
Lim] @ kerVy — My [m]

is surjective. By Lemma 2.4 and the second part of Lemma 2.7 (8ine®), this
surjectivity impliest o (L /m) > €4 (cokerFy,), so this inequality is forced to be an
equality and both maps above are isomorphisms. Using the first part of Lemma 2.7
then finishes the proof. The arguments we use are simply more elaborate versions
of the arguments used in the case 1, except we need to keep track of the powers
of .

Choosel € L € M4 lying in the image ofF),, so there is an element

e
u= Zpilrrj Qujepmes MY,
j=1
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such that¥y (u) = ¢ € L. Choosingu’; € CW;(Ry) such thatVou'; = u;, this
says that

Zﬂij(u/j) =0
j=1

in Rg/mR (here, we have used the isomorphism supplied by [7, Ch. IV,Sect. 2.7,
Prop. 2.5], applied to th®,-moduleC W, (R,)). We need to construct soniec L
such thatt = 7¢’. We’'ll show that we can choosg; € M (that is,u; € Vo(M))
and then that this is enough to construct the dedifed
Letu € R bealiftofu’; , (= u; _p+1if n > 1), whereu'; o € R can be

l —n

chosen at random for now. We're given thatiy,

S (Z;r'% ) %,

j=0 n=0

so changingi} , moduloR (i.e., changing:'; o), we can even assume thatRy
we have the essential relation

>l (L) <o

j=0 n=0

Lettingu’; cw 4(R) denote the covecta:; _,), the above can be rewritten
as

e—1
ZTFJUALR(U/]'H) = 0.

j=0

See[7,Ch. I, Sect. 5.1, Prop. 5.1] (and also [7, Ch. II, Sect. 5.6, Prop. 5.4 Remark])
for a discussion ofv 5 : CWA(J?) — Ry, defined analogously t0 5 : CWk(Rk) —
Ry Define

cﬁ_m(U/i):N"LnooSN(u —N— m®l ) Uy, m®l;

1®Ml —N—m>* " 1® l m)
in R. We first claim that for alk > 1,

Ag@; )" = L£_,W)" modp"n(R @ R).
Fixn > 1. Sinceu; e M = Homypsch, (G CWk) we have that iflR; Qi Ry,
A (Uj—ny1) = M Sy(uj _N_py1 @1, ... uj _pi1;
N—o0

1 X Mj,—N—n-l—la LR l & uj,—l’l-‘rl)’
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which says exactly that

AG(ﬁ/< ) = °C_n(u’j) modz (R ®4 R).

J,—n

Sincer” = - 7771 € pr R, ase < p — 1 (!), we can raise both sides to tp¢h
power in order to get

Al )" =L, ;)" modpr (R ®ar R).
An easy induction now shows that
Ag@; )" =L, (U)” modp'7(R®n R),

for all > 1, so takingr = n gives what we claimed above.
This can be conveniently rewritten as

P A )" = pT" Loy (U )P modn (R @4 R),

but be careful to note that the terms in this congruence generally (&R i® 4
R)g = Ry Q' Rx and not inR ® 4 K. Summing over > 1, we obtain

> p T Ag@ )"

n=>1

= ZP’"aCfn(u/j)"" modr (R @4 R).

n=>1

From what we have so far, we may deduce thaRip Qx Rk,

e—1 e—1

i —n A/ n P —n ~/ n
E ! E p AG(MJ'.HL_n)p = E ! E 14 AGK/(MJ'.J,_l,_n)p
j=0 j=0

n>1 n=>1

e—1
— J —ncnl "
= Do [ 7Y @)
j=0

n=>1

e—1

_ Jjn
= —Agy, § :” Uiti0
j=0

e—1

= —A i

- G j+10 ] >
j=0

so in fact the element

e—1
Yol Y pL (W) € Ry @ Ry
j=0 n=1
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liesinR ®4 R and modular (R ® 4 R) is congruent to

e—1
—Ag Z ”jﬁ,,j+1,0
j=0
Sinceby definition
(Lo,W)=0,_,D+1Aed,_,)
in 5V\VA(R ®a R) andw g is additive, inRx @k Rk we applyw s to get

Lo(U') + Z pL L UN =drU )L+ 1@ a(U)).

n=1

Therefore, modular (R ®4 R), we have

e—1 e—1
A/ _ 5 — i n
Ag E i 0] = —E /! E p L, (U j)?
j=0

j=0 n=>1
e—1 e—1
= > wlLoW ) — [ D wl e
Jj=0 Jj=0
e—1
®1-1® | Y mihaU )
Jj=0
e—1
= Z ’ £0(u/j)
j=0

(recall Y n/wg(U';11) = 0). Hence,
Ag (i o) = Lo(U'1) MOdT (R @4 R),

which says exactly that'y € M (sinceu’y _; = uy_j41 for j > 1 anduy € M, so
the Oth coordinate af’, is all we need to check).

Now we definet’ € M4 and we will show that’ € L andn ¢’ = £. In terms
of our original explicit description oM 4 as a quotient module, defiéto be the
element represented by

e—1

1®u's, Z p il ® Uji1
Jj=1
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Thus,

e—1

wg() =wgu'y) + Zn'/wm(u'1+1)
=1

is represented bijj;(l)n/'wﬂ(u’jﬂ) =0, so¢' € L. Also,

e
7l = (m®u'1,0)+ |0, Zp*lnf Qu;
j=2

= (0, p~t7r ® Vou'y) + | O, Z pini ®u,

j=2

e
O, pir®u1)+ |0, Z pini Qu;

=2
= Fuu),

which is equal t&. This completes the proof of injectivity df/m — coker¥,.

As we explained at the beginning, it remains to prove that the nattaéar
map L[m] & kerV,, — My [m] is surjective. Since > 2, the second part of
Lemma 2.7 shows that it necessary and sufficient to prove thab farker Fp,
there exists: € ker Vo such that the elemeiil ® u, p~1ne~1 ® w) € My [m] lies
in L. We may writew = (w_,) in CW;(Ry), with w_, € R, satisfyingw”, =0
forall n > 0. Chooset, w, € R; and consider

u=1_..,0,...,0uy)), W="_(..,W_py1,..., W, w1) € CWr(Ry),

soVu =0andVw = win CWi(Ry). In CWi 4 (Ry), we have

AQu, p~trel@w) =tew,ry(l®u + 77l @),

SO

wa(A@u, p~iret @ w))
oo
=+t (Z p”ﬁ)f_n> modrn R
n=0

inside of Rx//mR, withwy € R a lift of u;. Sincee > 2 andw”,, € =R for all

—m
m > 0, clearlyz*tp™ %) e xR forn > 3andn = 0.
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Thus, we are reduced to checking that for
N 9 A 2
up = —x Hp g + pPw’)
= —871((‘07‘[)71{5{? + 7 7'w8) modr R,

we havex € M (sincee < p — 1, the right side does lie iR). Sincee > 2, this is
exactlythe same calculation we did at the end of the proof of Theorem 3.3 (up to
the factor ofe=* € A’*, which can be cancelled at the start). O

THEOREM 3.5. The sequence
0— M/V -+ M/p—> M/F -0

is exact if and only if there is equality in Lemr8d. This exactness condition is
satisfied whe; ~ I'[p"] for I, »» & p-divisible group.

Proof. Thanks to Theorem 3.3, all we have to verify is the short exact sequence
condition whenG is the full p" torsion of ap-divisible group. This is standard:
sinceM /p >~ M(G[pl), itis enough to pick",; a p-divisible group and to check
that forM = M(T"), the sequence

0> M/V-Ls M/p—>M/F—0

is not just right exact but is actually exact. THemodule underlyingv is finite
and free withp = VF, so F actsinjectively Thus,Fm = pm’ = FVm' yields
m = Vm’', as desired. O

We now come to the essential result.

THEOREM 3.6. LM is fully faithful and essentially surjective when< p — 1.
This is also true fol. M4, and LM, whene < p — 1.

Proof. The argument is a generalization of the steps in the proof of Theorem 1.4.
As before, where = p—1 we stick with the unipotent case for now, and will return
to the connected case at the end. First, let's show that Step 1 holds far any
F F4 and any finite flatA’-algebra$. Essentially the same argument works for
e < p — 1, since Raynaud’s results [17, Sect. 3] apply wheneverp — 1. More
precisely, because we are claiming Step 1 goes through for all obje€tgjn for
e < p—1and for all objects it¥ ¥}, whene < p—1,asinthecase=1< p—1
we can reduce the proof of the injectivity 6f(8) — G, (8,) to the case wherd’
is strictly Henselian with algebraically closed residue fieldnd G - is a simple
object in the category of finite commutativ€'-group schemes. In this case, we
can argue exactly as we did in Step 1 in the proof of Theorem 1.4.

With the analogue of Step 1 pushed through, it is now straightfoward to see that
Step 2 makes sense for agyin ¥ ¥4, where we us& W, 4 in place of CW;,
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w’'s andw’y in place ofwg andwy respectively, and we define the functor from
finite flat A’-algebras t@b via the formula

G(8) = {y € Gk(8)ICW a(¥)(L) S kerwi}.

Via Fontaine’s classification gb-divisible groups oved’ [7, Ch. IV, Sect. 5,
Prop. 5.1(i)], the assertion in Step 3 applies whenew€rp — 1, using unipotence
conditions and the remark following [7, Ch. IV, Sect. 4.8, Lemma 4.10] in case
e = p — 1. It is only necessary to make minor notational changes irethe 1l
argument C Wy replacingC Wy, etc.).

Next, we prove the analogue of the difficult Step 4. Choose an obleay)
in SH], if e < p—1.1fe = p — 1, choose an objedt., M) in SH]". We
will construct an objecG ;. ) in F £ (resp. inF F) which is the kernel of an
isogeny of p-divisible groups oved’ (resp. of unipotenp-divisible groups over
A/) such tha‘(L, M) ~ LMA/(G(L,M)) in SH/:, (reSp.(L, M) ~ LM,’Z/(G(L,M)) in
SH]")ywhene < p — 1 (resp. wherL, M) lies in SH").

As in thee = 1 argument, we can construct an exact sequené® ohodules

0— My —— M; -2+ M 0,

with the M; free of finite rank over, soM; ~ M(T';) for T; a p-divisible group
overk. If V acts in a nilpotent manner a1, we can choose the; to be unipotent
p-divisible groups. Note that the sequencedéimodules

0— (M) y —s (M1)y — My — 0

is not just right exact [7, Ch. IV, Sect. 2, Prop. 2.4], but actually exact. This
is simply because by the remark in [7, Ch. IV, Sect. 2.3], we hacarenical
isomorphism ofA’-modules

AQuN+ptm®s FN~ Ny,

wheneverN is free of finite rank as a-module (and the left side is viewed as
a sum inside oK’ ® 4 N). For notational ease, we now adopt Fontaine’s notation
Xa[1] = p7im®4 XD for aD,-moduleX; see [7, Ch. IV, Sect. 2.4ff]. The natural
map N4 [1] — N4 of A’-modules is injective and via the above isomorphism is
identified with the submodule—'m ®4 FN, so we can safely writéV, /N [1]
in place of cokerfy if we prefer (for suchw). Also, recall [7, Ch. IV, Sect. 2.5,
Cor 1] that there is even a canoni&alinear isomorphismV/FN >~ N, /N 4[1].
This is analogous to the isomorphism colgr~ coker #,, in Lemma 2.4.

What we will now do is construct’-submodulest; < (M;), such that the
naturalk-linear maps

LijmL; — (M;) s/ (M;) [1] = cokerFy,
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are isomorphisms(M;) ., <— (My) 4 takesL, over into L1, and the image of
L1 under(M,), — My is preciselyL. Once thesed’-modules.L; and.£;, are
constructed, the rest of the argument is exactly like that in Step 4 in the cade
with minor changes in notation.

We constructf, as inthe case = 1. That s, we can either use the isomorphism
coker Fy ~ coker #); in Lemma 2.4 and its analogue above g% and M in
order to literally use the = 1 construction word-for-word, or alternatively (which
amounts to the same thing) we choose

e1,...,e € (M), /(My),[1] =~ cokerFy,,

giving a basis for the image oM5) 4./ (M>) 4 [1], with representativeg € (M) 4
C (M) . Lete, 4, ..., e, extend this to a fulk-basis of(M1) '/ (M1)4[1] =
coker¥y,, so the images &, 1, ..., e, in My / M4 [1] give ak-basis of

cokery ~—— L/mL.

Therefore we may (and do) choose representatives ..., e, € (M1) SO that
their images inM, under’ lie in L and constitute a minimal’-basis ofL.
DefineL; = )_ Ale;.

The natural mapli/mL; — cokerfy,, is clearly an isomorphism and the
composite map ofA’-modulesL, — (M1) , - M4 has image preciselk.

In order to constructC, as in the case = 1, the only issue is to check that any
x € ((My) 4[1]) N (M>) 4 can be represented (@13) 4./ (M>) ,[1] by an element
of £1 N (M3) . Then the construction af, will go through as desired. At this
point, we can (and will) assume> 1.

We have the exact sequenceAdfmodules

0> A @ Mo+ pim® FM,

N A/®AM1+P71m®FMli> My — 0,

with i’ the ‘inclusion’ map and (using M; = FoM.")

PAQm+u® Fom' — (L Q P(m), u @ P(m)).

Also, note that since > 1, we have (in obvious notation) temodule decom-
position

M)y = A ®x M+ p'm®,4 FM,

= 1IM)® (P RFM)®---® (pn @ FM,).

We can suppose without loss of generality that A’ ® 4 M, and by hypothesis
(or rather,i’(x)) lies in p~'m ®4 F M1, which says

e—1
i) =1® Fom + » 7/ @m;,

j=1
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with m; € My andm € M{P, Fom € M,. For 1< j < e — 1, we have
7l @mj=pin ® pm; € (Ma)al[ll,

so by alteringr, we can assume without loss of generality that= - -- = m,_; =
0, which is to sayi’(x) = 1® Fom, wherem € M” and Fm € M,. Since
P'(i’(x)) = 0, we see that the elementgL P (m) € M4 [1] maps to 0 inM,,
which is to say that it lies in kef),.

Consider the isomorphism

yM =y M pime, MY ~ A @, MP
given byy ¥ (a ® n) = 7¢*a ® n. If we combine the isomorphisms
kerVo @ kerFp >~ My[m] and kervy & Lim] >~ My [m],

we compute thatVy, (L[m]) = Vy(May[m]) = ¥ (kerFy). Thus, there ex-
ists somex e L[m] such thatr¢™! ® £(m) = Vy(x). By the second part of
Lemma 2.7, we can write = (1® v, p~lzre1 ®@ w) with v € ker Vo andw €
ker Fo. SinceVy (x) = 7¢1 ® w, it follows thatw = £ (m). Therefore we get a
critical link betweenn and L, namely the element

AQuv, p~lre-l® P(m)) € My

actually lies inL[m], with v € ker V,.
By construction,(M;) ,, —» M, takes.L; onto L, so there exists afy € £,
such that

P'l) =A@, p~iret® P(m)

in My . Inside of(My) , = A’ @4 M1+ p~tm® F M1, we can write (using" M, =
FoMil))

e—1
1=1Qy+ Zp‘ln’ ® Foz,,
r=1

SO

e—1
P'(ty) = (1 ®PM), Y P ® J)(Zr)>-

r=1

Comparing our two formulas faP’(¢4), there exist e m@, M, w € A’ @, MD
such that

e—2
(1 ® P —v), Y p A @PE)+p T Pz - m))

r=1

= (@' ) — FM(w), o) (w) — VM (u)).
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However, inM 4[1] we have
- (1! (w) — VY @) + VY EY (g5 ) — F*(w)))
= oy (w) — VMEM (FM (w)) =0,
and so inM 4/ [1],

e—2
o — Zp—lnr-i-l@ ?(Zr) 4
r=1

P ® P (zemr —m) + p i @ Vo(P(3) — v)

N

.
=) p e rE) +

r

1
N

+p I ® P21 —m) + p i @ Vo(P (),

sincev € ker V.

Thus, the elements @ m = p~7° @ m, p~in ® Voy + Z;;} pintl®
z, in (M) 4[1] have the same image i 4 [1] under»’. Now the sequence of
A’-modules

0— (M) 4[1] - (M) o[1] - My[1] — O
is the same as
0— p_lm ®A Mél) —> p_lm ®A M](_l) d p_lm ®A M(l) —> O,

which is exact sinc&V ~ N is exact from the category of-modules to itself
andp~!m s a flatA-module.

Therefore, the elementm andp 17 @ Voy+Y 21 p~ ' 1@z, in (My) 4 [1]
differ by an element ofM>) 4/[1], soei’(x) = ¢ ® Fom differs from

e—1
pim @ FoVoy+ ) p @ Fz,
r=1
e—1
=7 ®y+ZP_l7Tr+l® Fz, =mly
r=1

by an element ofM5) 4 [1]. In particular, £, lies in (M>) - inside of (M;) 4. But
mly € L1, S0e7Imly € L1 N (My)y is the desired element which represents
x € (M2)a in (M) a/(M>2) 4 [1]. Note that sincel;/mLq1 > coker Fy, by con-
struction of£4, the image ofx in £, must a priori lie inm.L; = 7w L£1. Thus, the
presence ofr in the above representative 'z ¢, for x is not unexpected.
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The argument for Step 5 goes through exactly as in thecasé.

Whene = p — 1 and we consider connected objects, the modifications to the
above argument exactly parallel the changes needed for the connected case with
p = 2 in the proof of Theorem 1.4. Note that in order to handle the variant on
which will arise, the inequalitp” — neq > 0 will arise for alln > 1, and this is
satisfied fore < p — 1. O

COROLLARY 3.7. The additive functot¥ ¥, — F F; given byG ~ Gy is
faithful whene < p — 1. The analogous additive functots ¥, — # ¥ and
FFy — FF are faithful where < p — 1.

Proof. A morphism of finite Honda systemd.,, M;) — (L, M>) vanishes if
and only if the associated mag, — M, vanishes.

4. Classification of Group Schemes whea < p — 1

We begin by recalling a result due to Raynaud, extending Corollary 1.5.

LEMMA 4.1 (Raynaud)If e < p—1, the category# ¥, is stable under formation
of scheme-theoretic kernels and is an Abelian category. A morphism is a kernel if
and only if it is a closed immersion and is a cokernel if and only if it is faithfully
flat. The formation of the cokernel of a closed immersion is as usual. The same
assertions holds fof ¥, and F ¥, if e < p — 1.

The functorG ~~ G g/ which associates to every object 8%, its K’-group
scheme generic fiber is a fully faithful exact functor waen p — 1. The same is
true on¥ ¥, whene < p — 1.

Asequenc&’ — G — G"in F ¥y fore < p — 1 (resp.in ¥ ¥, ¥ ., for
e = p — 1) is exact if and only if the closed fiber sequence is exact if and only if
the generic fiber sequence is exact.

Remark4.2. The analogue of Theorem 1.9 also carries over te thep — 1
setting by the same arguments which we used irethel case.

Proof. The second part follows from the first part, just as in the way we deduced
Corollary 1.6 from Corollary 1.5 earlier.

Now we consider the first part. When< p—1, this is essentially [17, Cor. 3.3.6
(1)], together with the fact that a closed subgroup scheme and a quotient of a
unipotent object is again unipotent (as this can be detected on the closed fiber,
where it follows from Cartier duality and the canonical splitting of the closed fiber
connected-étale sequence).

Whene = p — 1 and we consider only unipotent objects, the proof of [17,
Cor. 3.3.6(1)] still goes through, since we may use [17, Prop. 3.3.2(3)] to carry
over [17, Thm. 3.3.3] to the present setting. The connected case then follows by
the exactness of Cartier duality.
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Since passage to the generic fiber is an exact functor and all of our categories
are Abelian, the final part of the assertion comes down to the statement that a
morphismf: G, — G is anisomorphism (resp. 0) if and only if this is true on the
closed fiber if and only if this is true on the generic fiber. For the generic fiber, use
full faithfulness ofG ~~ G .. For the closed fiber, the vanishing part follows from
faithfulness of passage to the closed fibers, while the isomorphism part follows
from Nakayama’'s Lemma and flatness. O

Now that we knowL M, and LM, are fully faithful and essentially surjective,
it follows from Lemma 4.1 tha'SH/{, is an Abelian category whea < p — 1
and SH]", SH] are Abelian categories when < p — 1. Of course,SH,
SHJ", andSH]‘ are full subcategories of the Abelian categdt§H?,, so there
are obvious candidates for what kernels and cokernels should be. More precisely,
it is reasonable to expect that the composite funcioss, — PSHf-(, and¥ #,,
FFy — PSH/{/ (fore < p — 1 ande < p — 1 respectively) are exact. We now
prove that this is indeed the case.

THEOREM 4.3. Whene < p — 1, the functor¥ ¥, — PSH], is exact. When
e < p — 1, the functors¥ ¥, ¥ ¥, — PSHA’, are exact. More precisely, if

¢: (L1, M1) — (Lo, M>)

is a morphism inSH/, with ¢ < p — 1 (resp.is a morphism inSH/, SH]" with
e < p—1),thenkerp = (L', M) andcokerp = (L"”, M") satisfy

M’ =ker(M, — M), M" = cokenM, — M>)
and
L'=M")yNLy, L" =imageLy; — (Ma)a — (M") y,

and the natural magokenL; — L,) — L” is an isomorphism.

Proof. We give the argument in the case< p — 1. Whene < p — 1 and
we impose unipotence or connectedness conditions, the argument is proceeds in
exactly the same way.

Let G; be an object it 4 such thatL M 4 (G;) ~ (L;, M;), S0p = LM (f)
for f: G, — G1 amorphism in the catego® ..

Define (L', M) = LM (cokerf) and (L", M") = LMy (ker f) to be the
respective images undérM, of the cokernel and kernel of the corresponding
morphism f in & . It is easy to see tha¥’ and M” are as claimed (on the
group scheme side, one simply notes that passage to the closed fiber commutes
with formation of short exact sequences, and then one appliesxtwtcontrav-
ariant Dieudonné-module functor to everything). Let’s (temporarily) defihe-

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001788509055

290 BRIAN CONRAD

(M), NLy = ker(Ly — L) and alsaL” = imagegL, < (M2)4 — (M") 4),
SoL’ C £ andL” C L”. We must prove that these inclusionsAifmodules are
equalities and that” is the cokernel of.; — L.

For the assertion about ker = (L', M"), clearly we can (and will) assume
that f is @ monomorphism. Since monomorphismsFitF,, are the same thing as
closed immersions of group schemes, we see that the group schgite makes
sense irF £, and there is a naturaHSHA’,-morphism kelp) = LM, (G1/Go) —
(&L, M") which is an isomorphism on the Dieudonné module part. We wish to show
that this map must be an isomorphismlih?Hf,. If we let R; denote the affine
ring of G; and let:R denote the affine ring afi1/ G, then the map ofA’-algebras
R — R1isnotonly injective but is alstaithfully flat Thereforem®f = RNmR;
[13, Thm. 7.5(ii)], so

R /mR — (R g /mRy

is injective Combining this with the injectivity ofM’),, — (M) (see Lemma
2.1), it follows easily from the commutative diagram

M)y ——— M)y

| |

CWia(Ri) —> CWie o ((R1)r)

| |

Ri' /MR — (R g /mRy
thatL’ = L4 (G1/G>) is given by
L'=M(G1/G)i)a NLa(Gy) = M)y NLy =L

It remains to check that cokernels are what we think they are; that'is; L”
andL; — L, — L” is exact atL,. Since thek-linear mapL,/mL, — coker ¥y,
is an isomorphism, we at least see thattHmear mapL”’/mL"” — cokerFy is
surjective. However, this factors through the (abstradipear mapL”/mL” —
cokerFy», which is an isomorphism, so the mafy /m.L” — L”/mL” induced
by the inclusion.L” C L” is surjective. By Nakayama’s Lemma, we conclude

c[i// — L”.
Finally, we check that., — L, — £” is exact atL,. Since we have already
proven thate” = L” always holds, we may reduce to the case in whficly, —

G, is an epimorphism, s&f; — M, is injective andR; — R, is faithfully flat.
Our assertion amounts to the claim tlatN (M) 4 = L4, but this follows from
the same commutative diagram argument which we used above. O
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It is clear that ife < p — 1 andG is in ¥ 4, then we can defin€ in the
obvious manner as a functor fromadic A’-rings toAb in a manner analogous
to the earlier definition foe = 1 in Step 2 of the proof of Theorem 1.4. The
natural transformatiov — G of functors onp-adic A’-rings (not just finite flat
A’-algebras) is an isomorphism. The same statement holds=ifp — 1 and we
requireG to be unipotent. The proofs in both cases are essentially the same as in the
casee = 1, except that we use the general formulation of Fontaine’s classification
of p-divisible groups (i.e., whea < p — 1) rather than the formulation in the
special case = 1 < p — 1. In particular, fore < p — 1 andG in & ¥, (resp. for
e = p—1andG in ¥ ¥},), we can intrinsically recover from M (G) (resp. from
LM}, (G)) thegroup functorG ~ G on finite flatA’-algebras. In fact, with a choice
of algebraic closur& of K we canfunctorially recover the grougchemeG; cf.
Remark for Lemma 4.1. When = p — 1 and we restrict attention to connected
objects, we have a similar result, though the definitiozafieeds to be modified
in order to account for the different formulation of Fontaine’s classification of
connectedp-divisible groups in this case (just like fgr = 2 earlier). In case
e < p — 1 and we look at connected objects, there is a natural map between the
two definitions ofG, compatible with the isomorphisms of each with so these
functors are all naturally identified. Similarly, § = p — 1 and we conside&
which are simultaneously unipotent and connected, the two definitions are
naturally isomorphic.

Note that by the second part of Lemma 4.1, we can VigW, as a (very
mysterious) full Abelian subcategory of the Abelian category of commutative finite
K'-group schemes of-power order where < p — 1, and similarly forF #,,

F ¥, whene < p — 1. If we are given some finite commutati€&-group scheme

with p-power order and know that it is the generic fiber of sathen ¥ %, with
e<p—=1(orinFF,, F¥F; withe = p — 1), thenG is unique up to canonical
isomorphism and we can readily read off a small amount of information abdut

a special case (the argument is the same as the one needed to justify [9, Rem. 3.4])

THEOREM 4.4. Assume thak’ has residue fieldk = F, (i.e., K’ is a finite
totally ramified extension @,). Letp: Gal(K'/K') — Aut(M) be the continuous
representation associated to the generic fiber of an objedh F %,/, with G
unipotent or connected f = p — 1. AssumeM = G(K') has the structure of a
finite-length®-module, compatible with the Galois action, whérés a complete
mixed characteristic discrete valuation ring with a finite residue figlthaving
characteristicp. Prolong the@-action onG - to one onG (by Lemmad.1). Then
there is a noncanonical isomorphism®@¥fmodulesmM (G;) ~ M.

Proof. SinceM (G,) andM are both finite-lengti®-modules, in order to show
that they are isomorphic it suffices to show that they have the same invariant factors.
The invariant factors of a finite-length-moduleN are determined by the invariant
factors ofro N, together with the values @y (ro N) and{y (N).
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If we let 7o G denote the ‘image’ of the morphism,: G — G in the Abelian
category¥ ¥, whene < p — 1 (resp. in the Abelian categorigs ¥, or ¥ ¥,
whene = p—1), thentgM = (7oG) (K’) and so fory = |F|, the order ofro G is
g‘o ™M "which is also equal to the order 6f,G);. But sincek = F,, this order
is equal to the cardinality oM ((mo G),) (cf. [Ch. IIl, Prop. 3.4(i), Prop. 4.5(i)]),
which is equal tgy ‘oM (TG |n a similar manner, we havigy (M) = £o (M (Gy)).
Since M((mpG);) =~ moM(Gy) by standard exactness arguments, it remains to
verify that the finite-length®-moduleszo M(Gy) ~ M((7oG),) andrgM =~
(10G)(K’) have the same invariant factors. That is, we can work wiiG in
place of G. However,7y G is a proper closed subgroupschemeGotinlessG is
trivial, so we are reduced to the case whéras trivial, which is itself a trivial
case. O

Some other constructions dnF, which we wish to translate into the language
of finite Honda systems are Cartier duality and base change. Let us first consider
Cartier duality.

If M is aD;-module with finiteA-length, we definds* = Hom, (M, K/A) as
an A-module andF (¥):m +— o~ (W (V(m)), V(¥):m — o (F(m))). There
is @ naturalD,-module isomorphismV ~ M** as usual. FoiG in ¥ F; with
Cartier dualG, Fontaine constructs in [7, Ch. I, Sect. 5.3, Cor. 2] an isomorphism
M(G) ~ M(G)*, natural inG.

We have not been able to fully justify a formulation of Cartier duality in terms of
finite Honda systems, but there is a reasonable candidate which we now describe.
Let M be aD,-module with finiteA-length. We will construct a symmetric pairing

My ®@u (M*) g — K'/pT'mA,
so we begin with a pairing
(A @ M) ® (p~'m @4 MV)®
R (A @ M) ® (p"'m®@4 (MHP)) > K'/p~'mA,
defined by
CRx,p YR @9, p iRV
= oA () + p i e(Fo(0) + p B - Y () + A+ ¥ (Vox));

(here we have implicitly used a canonical isomorphighi*)®® ~ (M®)*). It
is straightfoward to check that we can pass to quotients and get a well-defined
symmetric pairing betweem ., and(M*) 4 as desired.

In order to check that this is non-degenerate, we want to verify that the map

em: My — Homy (M*) 4, K'/p~tmA’)
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is an isomorphism. Applying® , W (k), we may assume (with a little compatibility
checking) that is algebraically closed. Also, by functoriality and exactness, we
may assume tha is a simple object, s&f = k with eitherF =V =0orF =0,

V =0"torV =0, F = 0. By length comparsions, it is enough to check #at

is injective. This is easy.

Given a finite Honda systerl., M) (connectedand unipotent ife = p —

1), we should define the dual Honda systéntf, M*), with L* C (M*), the
annihilator of L € M, under the above pairing.A(fL, M) = LMy (G), then
Fontaine’s duality gairing betweeM (G;) and M((G);) = M(Gy) gives rise to

an isgmorphisnM(Gk)A/ >~ (M(Gr)*) 4, and the essential claim is that this takes
£L4(G) over toL*. We do not see how to prove this, though clearly it is enough
(by a duality and length argument) to show that (G) lands inside of.*.

Now let us consider base change, which can be useful for descent considerations
(as we will see in the proof of Theorem 5.2). In this casecamprove things. We
first consider the simpler case of what we will gafleudo-étaldase change. Let
(A, n) be a mixed characteristic complete discrete valuation ring with residue field
x perfect of characteristip. DefineA = W (x) and suppose we are given a map
of ringsh: A’ — A’, necessarily local and faithfully flat, such thatn)A’ = n.

In particular,e(A’) = e(A’) = e. We leth: k — « denote the induced map on the
residue fields. When the above hypotheses are met, we say ihaseudo-étale
(note that we allow: to be a nonalgebraic extension).

Fix such am and choos& in ¥ #, (unipotent or connected &= p — 1), so
G x o A/ trivially lies in & ¥, (and is unipotent or connecteceit= p—1). We wish
to explicitly define a ‘base change’ functBy,: PSH], — PSH,, which takes
SH], overintoSH/, fore < p—1 and likewise for unipotent and connected Honda
systems when < p—1. Whene < p—1we wantto hav®,0LM, >~ LM, oB,,
whereB,,: ¥ £, — F ¥4 is the usual base change functor. We also want a similar
statement in the unipotent and connected settings wherp — 1. Later, we will
carry this out without a pseudo-étale hypothesis.

We begin with a few preliminary definitions.

DEFINITION 4.5. For aD;-moduleM and any perfect extensidgnk — «, define
M; = A ®4 M as anA-module (usingW (h): A — A = W(k)) and define

Fyu,(A®x) =0(X) ® Fu(x), Vi, A ®@ x) = o ) ® Vi (x),
so M; is a D,-module. For(L, M, j) in PSH/, andh: A’ — A’ a pseudo-étale
extension as above, defiig = A’ ®4 L.

It is obvious, by the way, that there are natusétmodule isomorphisms
(MD); ~ (M;)Y) compatible with theF andV maps, so we may unambiguously

write Mhij ),

THEOREM 4.6. For a pseudo-étale extensidgn A’ — A’, there is a functorial
isomorphism ofA’-modulesA’ ® 4 (M 4/) >~ (My) ,, and a naturalA’-module map
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Jn- Ly — (My) ,,, with ji, injective if and only ifj is injective. Whem < p—1, the
object(Ly, My, ji) in PSHi, lies inSHg{, ifand only if(L, M, j) lies inSHj(,, and
similarly for unipotent and connected Honda systems whe€rp — 1. The additive
covariant functorB,: PSH{, — PSHY,, defined by(L, M, j) ~ (L;, My, j;)
is exact and satisfieB, o LMy >~ LMy o B, whene < p — 1 and satisfies
By o LMY ~ LM", o BY, B, o LM, ~ LM¢, o Bf, whene < p — 1 (with
B}, B; the restrictions ofB,, to the categories of unipotent and connected objects
respectively.

Proof. Trivially, €4(M;) = £4(M) < oo and also, sincé: is pseudo-étale,

A’ ®4 m — nis anisomorphismso there is an obvioug’-module isomorphism
A Qx (A ®sM)®(p 7 mes MP))
~ (A @u Mp) & (p @4 M),

Since A’ is A’-flat, we can pass to the quotient to obtain Afmodule map
A Qa4 (My) — (My) ,,, Which is certainly surjective. However, both sides have
the samet’-length (namelye£ 4 (M)), so this is an isomorphism, visibly functorial
in M. The definition ofj, and the claim about its injectivity are obvious.

The above isomorphism is compatible with the isomorphi§r® - (M 4/[1]) =~
(My) ,,[1] and this enables us to identif_ﬁMﬁ with idy ® Fy,. In this way, the
k-linear map

L,/nL;, — coker}‘Mﬁ

is the same as applying the base extensgiomthek-linear map
L/mL — cokerf),.

Also, via theA’'-linear isomorphism
A @ (A @4 MP) = A @4 M

we may identifyVy. o j, with the base change lyof Vi, o j. Sinceh andh are
faithfully flat, we have proven that when< p — 1, (L,, M5, j,) is an object in
SHL if and only if (L, M, j) is an object irSH/(/, and likewise for unipotent and
connected Honda systems wher p — 1.

We now must check that the functat, M) ~» (L;,, M;) on Honda systems is
compatible with pseudo-étale base change on the group scheme side. We give the
argument in the general case wher: p — 1. The argument foe < p — 1 with
unipotence or connectedness hypotheses is essentially the same.

Let G in ¥ 4 have affine ringR and let¢ = G x4 A’ have affine rings.
There’s a natural map db,.-modules

A@ACWk(QRk) — CWK(/SK)
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This map clearly gives rise to a map Bf.-modules with finiteA-length
A Q@ M(Gr) = M(Gi)

and this is an isomorphism far/k finite, by [7, Ch. lll, Sect. 2.2, Prop. 2.2(i)].
In fact, as Oda explains in [14, Cor. 3.16], this remains true without a finiteness
assumption offik: k], and so permits us to identifyf; with M (G, ).

Since Oda’s definition of¢ is not quite the same as Fontaine’s, for the con-
venience of the reader we now briefly explain how to directly deduce the fact that
for H any object inF ¥, A ®4 M(H) — M(H,) is an isomorphism, granting
this whenk/k is a finite extension. Without loss of generality, we may assume
k is algebraically closed. We can always replacky a suitable finite extension
inside ofx (due to the result in the case of finite extensions). Since we may also
begin by assumind{ is a simple object inF %, passing to a finite extension of
k and using compatibility with respect to formation of products reduces us to the
case in whichH is eithero,,, u,, or Z/p. It then remains to check that the
linear mapc ®; M(H) — M(H,,) between 1-dimensional spaces is nonzero. But
M(H) — M(H)) is visibly injective.

Next, note that our above constructions show that there is always a natural
(surjective) map ofA’-modulesA’ ® 4 (Na) — (Ny),,, for any D,-module N,
regardless of whether or néf, (N) is finite. By [7, Ch. IV, Sect. 2.6, Prop. 2.5],
this map is an isomorphism wheévi = C W, (R;). Since there is also a canonical
isomorphism ofA’-modules

A Ru (Rg/mR) ~ S5/ /08,

where X' is the fraction field ofA’, it follows that the isomorphisniMy) ,, =~
M(G) 4 takesL, over toL 4(9). ‘
In other words, we have constructed an isomorphistf $iH 7,

(L, My) =~ LM 4 (G x4 A"

functorial inG. SinceB,, is trivially additive, covariant, and exact, we're donel

Now consideri: A” — A’ which is a totally ramified finite extension and fet
be the maximal ideal oft’. Choose a uniformizefl of A’ so thatl1*™*) = pe for
somee € A*. We assume of course thatA’) < p — 1.

Fix Gin FFy if e(A) < p—1(resp. inFF), or FFy)if e(A) =p—1)
and let(L, M) = LM, (G) (resp.LM},(G), LM¢,(G)). Note thatA” andA" have
the same residue field agjd= G x » A’ has the same closed fiber @sand§ is
unipotent ifG is. Thus, we can writd. M 4 (§) = (L, M) if e(A’) < p — 1 (resp.
LMY, (§) or LM, (§) = (L, M) if e(A) = p—1),With L = L (§) € M. We
wish to describel in terms ofL and M, in a manner which is functorial i&.

There’s certainly a naturad’-module map/: My, — M/, So there is am4’'-
module map/;: A’ @4 L — My .
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LEMMA 4.5. The image of/, is just £ and the induced map oft’-modules
A’ @4 L — L is an isomorphism.

Proof. Let R and § be the affine rings o0& and§ respectively. Sincel/m =~
A’ /n, the natural mapR/m — §/nandRg /mR — Sx /nd are isomorphisms
and so are injective. Thus, the imagekflies in £, thanks to the commutative
diagram

My My

| |

CWi a(Ri) — CWi 4 (8k)

| |

Rg' /MR —— S5/ /n8.

We'll show now that the map;: A’ ® » L — L is an isomorphism modulo and
so therefore is surjective.

As k-modules we haveA’ ® 4 L)/n >~ L/m, soa; modn is the top row in the
commutative diagram df-vector spaces

L/m L/n

A

cokerFy o+ — CokerFy 4

F]

M/FM = M/FM

and sox; modn is an isomorphism.

Now we prove thatd’ ® ,» L — JL is injective. It suffices to prove injectivity
on n-torsion. Note that the map™'m @4 M®P — p~'n ®4 MD induced by
the inclusionp~'m < p~'n givesrise to &-linear map ketFy, 4 — kerFy 4,
which is anisomorphism thanks to the explicit kernel formulas in the proof of
Lemma 2.4.

Using Theorem 3.4 and isomorphismg’ andv¥ introduced in the proof of
full faithfulness in Theorem 3.6, we have the identificationg-@Ector spaces

Llm] = Vy a(L[m]) = Y (ker Fiyy a1) ~— kerFy a
and
LIN] = Vi 4 (L[n]) = Y (ker Fypu) — KerFa a0

Combining this with thek-vector space isomorphisi) : L[m] ~ (A’ ®4 L)[n]
given byx — (re)(ITe) ! ® x, it looks like we should have the desired injection

https://doi.org/10.1023/A:1001788509055 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001788509055

FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION 297

on then-torsion. In order to justify this, we need only check that the diagram of
k-vector spaces

Iy

L[m] (A @4 L)[n] L[n]
Vu,a(L[m]) Vv (L[n])
ker?M’A/ = ker}'M,A/

commutes. The careful reader will observe that although thelmdppends on the
choices ofr andIl, the bottom maps in the left and right columns depend on the
choices ofr andIT respectively (viay andy:}), so itis not a priori unreasonable
to expect that the above diagram commutes.

Let's check the commutativity. By Lemma 2.7, we may write an element of
¢ € L[m]inthe form¢ = (1@ u, p~lnA-1 g w), withu ¢ M andw € MY
satisfying Vou = 0 and Fow = 0. The map down t&y 4 (L[m]) € A’ @4 MY
send! to 7¢47~1 @ w. Note that this isSndependenof «. If we go across the top
row and down toV,, 4 (£[n]), we obtain the elemedl**) 1@ w e A’ ®4 MD.
Here we have used the ‘independence’akemark and the easy identity

(ns)(l’[s)*ln“(”)*l — [1¢A)-1,

Appending the natural isomorphisms k&y ~ ker ), . and kerFy >~ ker £y, 4
(from Lemma 2.4) to the bottom of the diagram and considering the element
ker Fp, the commutativity follows. O

We are now in a position to define a base change functor without a pseudo-
étale hypothesis. Ldi: A’ — A’ be a ring extension which induces an extension
h:k — « on (perfect!) residue fields. For an objéét, M, j) in PSHA",, we define
the object(L, M, j), = (L,, Mz, jp) In PSHj by using the definition of; as
given earlier andj, mapsL,, % 4 ®a L to (My) 4 as anA’-submodule in the
following manner: there is a naturdl-linear mapM — M; = A ®4 M (where
A = W (x)) which induces a’-linear mapjy: My — (M;).«. There is a natural
mapj,: L, — (Mj).4 defined using: L — M4 andjj . Whene(A') < p—1and
(L, M, j)isin SH], thenj, is injective and L, M, j), is in SHY, by Lemma 4.7.

If e(A) < p—121and(L, M, j)isin SHf{,’”, then we get the same assertion using
SHY", and likewise in the connected case.

The construction 0B, in the pseudo-étale case is extended by the following
theorem, whose proof is clear in view of what we have already done.
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THEOREM 4.8.Suppose(A’) < p—1. For h as above(L, M) in SH/{,, (L, M),
lies in SHY,. The additive covariant functds;,: SH;, — SHL given by(L, M) ~~
(L, M), is exact and satisfid8, o LM, >~ LM 4 o B, whereB,: F Fy — F Fu
is the usual base change functor.
If hi: A’y > A’ andhy: A’ — A’z are two such base changes, then there are
natural isomorphism&y, j,: Bn, o By, =~ Byyon,
which satisfy the ‘triple overlap’ compatibility; that is, the natural transformations

Ohq,hy © Bh3 o Olhlohz,h3: B(hlohz)ohg - (Bh1 o th) © Bh3

and

th_ o ahz,hg o ahl,hzohg: Bhlo(hgohg) - Bh1 o (th o Bhg)

areequal.

If we relax the ramification to merely not exceed- 1, then the same assertions
are true for the full subcategories of unipotent group schemes and unipotent Honda
systems, as well as for the full subcategories of connected objects.

For any morphismy: (L1, M1) — (L, M) in PSHj;,, we shall lety;, denote
the induced morphismB, (¢): (L1, M1), — (Lo, M3), in PSHY,. This notation
will be used throughout Section 5.

Now we prove some facts concerning finite Honda systems which are quite
critical in applications of the present work to the deformation theory of Galois
representations.

THEOREM 4.9.Whene < p — 1and X; = (L;, M;) are twop-torsion objects in
SH, for which the sequences

0— M;/VM; —+ M;/p =M, - M;/FM; — 0

are exact, anyp-torsionobjectX in PSH/, which is an extension of; by X, in
PSH], necessarily is an object iiH,. If e < p — 1, the same is true witli H /"
or SH/“ replacingSH}.

If e < p—1, (L, M, j)is an object inPSH/,, andM ~ (A/p")® as an
A-module, then(L, M, j) lies in SHf-(, if and only if the objec(L[p], M[p], j,)
in PSH, lives inSHY, (with j, the map naturally induced hyon p-torsion) and
L/p — My /p is injective. Ife < p — 1, then the same assertion is true with
SH!" or SH! replacingSH,.

Remark4.10. Note that the injectivity of./p — Ma//p holds if L is anA’-

module direct summand @f 4. This is the case in the application of this result to
studying the deformation theory of Galois representations.
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Proof. Note that for anyX = (Lx, My, jx) as in the first partjy is necessarily
injective. Also, for(L, M, j) as in the second patrt,is clearly injective if and only
if j, isinjective. Thus, throughout we may assume thaj-alaps are injective and
we therefore omit reference to them in what follows.

We now prove ‘if’ in the second part of the theorem (‘only if’ is clear). Since
m-torsion lies inside ofp-torsion, certainlyL[m] & kerV,; — M4 [m] is an iso-
morphism. It remains (for the second part of the theorem) to check that—
coker ¥y, is an isomorphism.

The D;-module isomorphismd/ /p >~ M| p] induces amd’-linear isomorphism
(Ma)/p = (M/p)a =~ (M[p])a and by the injectivity hypothesis, we have an
injectionL/p — (M[p])a >~ M4 [p] with the image landing inside df[p]. An
A’-length calculation shows that this is an isomorphism dritp]. Using L /m ~
(L/p)/m, we get a commutative diagram bivector spaces

~

L/m —— cokerfFy, <« M/F
(LLp])/m —— cokerFyp) ~—— MIpl/F

so the left arrow in the top row is an isomorphism.
Now consider the first part of the theorem. The commutative diagrai of
vector spaces

Li/m Ly/m Lo/m 0

T

cokerfy, — cokerfy, — cokerfy, 0
My/F My /F M,/ F 0

has an exact bottom row, so easily the middle row is also exact. Since the top row
is exact as well, we can conclude that the nigym — coker¥),, is surjective.

If Mi/F — My/F is injective, then it is easy to see that the left maps in each
row above are injective, from which the injectivity ofy/m — coker¥),, would
follow.
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In order to prove thadM,/F — My/F is injective, we will make essential use
of our p-torsion hypothesis. More precisely, sinke = M;/p andMy = My/p,
we have the following commutative diagram with exact rows and columns:

0 0
My/V — Myx/V My/V 0
F F F
0 M4 My My 0
My/F — My/F My/F 0
0 0 0

(the main point is the injectivity oM, = M./p — Myx/p = My). From this
diagram we see that the m#&p Mx/V — Myx/p = My is injective, and also we
see that the rows all form short exact sequences if we fill in the missing 0’s on the
left. In particular,M,/F — Myx/F is injective.

Since it is obvious thaV,, o jx is injective, we are done. O

We also have the following result concerning objects killedpyythis can be
useful when lifting certain finite group schemes from characterjstizc character-
istic O (cf. proof of Theorem 3.5).

COROLLARY 4.11. Let(L, M, j) be an object irPSHf(, which is killed byp and
has the properties that is injective,L /m — coker), is an isomorphism, and

0—> M)V -L2e M/p=M > M/F - 0

is an exact sequence.df= p — 1, then assume that (resp.F) acts in a nilpotent
manner onM. Then(L, M, j) liesin SH/{, ife < p—21landitlies inSH/{;“ (resp.
SH[ife=p—1

More precisely, ife < p — 1thenLM, induces an anti-equivalence of cat-
egories between the full subcategorypeforsion objectss in & F, for which the
seqguence

0= MGV —o MG /p = MGy — M(G)/F — 0
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is exact and the full subcategory pftorsion objectg L, M, j)in PSHj;, for which
L/m — cokerFy, is an isomorphismj is injective, and the sequence

0— M)V -Lv M/p=M > M/F -0

is exact. Ife = p — 1, the same statement is true for the corresponding categories
consisting of unipotent objects killed Iy and likewise with the categories of
connected objects.

Proof. If ¢ = 1, then sinceFM < ker V, the hypotheses imply thdt[p]®
ker V. = L& ker V surjects ontoM = M/p, with both sides having the same
A-length. This settles the= 1 case.

Now we suppose > 2. We begin by proving that the inclusion

VMEM (G (LIm]))) S ker Fy
is an equality. Since M = 0 and the sequence
0— M)V L2+ M— M/F—>0
is exact, we have
kerFy = {1® Voxlx € M} C ptm @4 (M)D.
Pick anyx € M. The isomorphisni /m ~ coker %3, shows that we can write
w1 ®x) =€+ Fyu),
wheret € L andu € (M)4[1] = p~m ®4 (M)D. Sincep kills M, so p also
kills (M) 4, we see that multiplication by~ on (M) 4 has its image inside the
m-torsion submoduléM) 4 [m], SO
(@@ x) = 77 4+ Fy (),

with 7¢7* € L N (M) x[m]) = L[m] and, foru = Y _; p~'n/ @ uy,

e
ﬂeilu = l®8u1+ E pilﬂj+eil®u./
j=2

= 1Qeui + Z plen’l® pu;
j=2

= 1®cu;.

Thus,y (7 1®x) =0 —¢- Fu(1®z), wheret’ € Lim] andz = —uq € (M)D.
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SinceFu(1®z) = Fu(eM(1®2z)) = iyo F¥(1®7z) = 1y (1® Foz), we have
that for allx € M, there existg € (M) such that

m(1® Foz + 7' ® e x) € Lml.
Combining this with
VMEM1® Foz+ 7 @e ™) = VM(r ® Foz + p ®x)
= p ' ® VoFoz +1® Vox
= 1® Vyx,

(VoFo = p kills (M)®1), we have shown that kefy, € VY (M (1,1 (L[m]))), the
reverse of the usual inclusion.
We will now use the equality

kerFy = VM (EM (i (LIm])))

in order todirectly prove that(L, M) arises from¥ #, (and from¥ F}, (resp.
F F.)if V (resp.F) is nilpotent onM) and so(L, M) lies inSH], whene < p—1
and inSHJ" whenV is nilpotent onM and inSH/ when F is nilpotent onM.
At this point, we will not require thep-torsion condition anymore. The argument
is simply a modification of the proof of essential surjectivity in Step 4 of the proof
of Theorem 3.6 in the case> 2. More precisely, we construdtl,, M,, and.L,
in exactly the same way. As for the construction.£f, that also reduces in the
same manner to the consideration of whethee ((M1)4[1]) N (M>5)4 can be
represented iiM>) 4/ (M>) 4 [1] by an element of£; N (M>) . It is at the stage
where we invokeV,, (L[m]) ~ ¥ (ker F),) in Step 4 that the argument needs to
be slightly altered.

Using the same notation as in the proof of Theorem 3.6, we use the expression
above for kerfF,, in order to write

1® P(m) = Zpilrrj ® Von;

j=1
in (M) 4[1], where the element

e—1
Z]Tj ®I’lj+1€ A/®AM
=0

has image inM) 4 that lies inL. Recalling the general formula for key for any
D;-module N (see Lemma 2.7), a simple calculation shows that we may suppose
without loss of generality that; = 0 for 1 < i < e. Clearly Von; = 0 and

Vone = e 1P (m).
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By construction,(My) ,, — (M) 4 takes.L; onto L, so there exists aty € L,
such that

Py =A®@n1+nmtxn,0)
in M4 . Now inside of(M1), = A’ ®4 M1 + p~im ® F My, we can write

e—1
1=1y— Zp‘ln’ ® Fz,,
r=1

SO

e—1
P'(ly) = (1 ® L.y p i ® ﬂ’(zr))

r=1
Consequently, there exigte m ® 4 M andw € A’ ® 4 (M) such that
e—1
(1 Py -1@m—7"'®n,» pla"® J’(m))
r=1
= (93" ) — FM (w), ¢ (w) — VM (w)).
However, in(M) 4 [1] we have
- oy (w) — VM) + VM (EM (95" () — FM (w)))
=o' (w) — VMEM(FY (w)) =0,
and so in(M) 4[1],

=

e—
O — p_lT[r+l® J)(Zr) +

r

Il
N

+V(r @ P(y) — 7 @n1— 7 @n,)

e—1
— prlnrﬁ*l@ J)(Zr) +

r=1
+p*ln Q Vol (y) — pflrr ® Voni — e ® Von,.

Recall thatVon, = ¢ =12 (m) andVon1 = 0, so the elements@m andp~'r ®
Voy + Y21 p it @ 7, in (My) [1] have the same image i) 4[1] under

r

P’. Now the sequence of’-modules

0— (M2)4[1] — (M) 4[1] - (M) 4 [1] — O
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is the same as
0— p_lm XA Mél) — p_lm XA Mil) — p_lm Ra (M)(l) — 0,

which is exact sinc&v ~ N is exact from the category of-modules to itself
andp~!m is a flatA-module.

Therefore, the elements @ m and p~'7 ® Voy — Y_1 p "t ® z, in
(M,) 4 [1] differ by an element ofM>) 4[1], s0i’(x) = 1 ® Fom differs from

e—1
I 7T®F0V0y—ZP bl @ Foz,
r=1
e—1
=7TQ®y— Z p it @ Foz,
r=1

:ﬂfl,

by an element ofM>) 4 [1]. In particular, £, lies in (M>) 4 inside of(M1) .. But
w1 € L1, SO this is exactly what we wanted to prove. O

The above two results show that when analyzing cepaiorsion group schemes
over A’, we have the technical freedom to work withihS H f-(, without straying
outside of the essential imagebM 4. It is precisely this sort of technical freedom
which one needs in [4], since checkiegplicitly whether an object constructed in
PSH/, actually lies inSH}, or SH]" or SH}* can be very cumbersome.

For later use, it will be convenient to state a key lemma which we did not bother
to state explicitly in the = 1 case, but which was essentially proven in the course
of the arguments in Section 1.

LEMMA 4.12. Assume < p—1. LetI'; — I'; be anisogeny af-dimensionalp-
divisible groups oveA’ with kernelG, soG isin F F,. Let(L;, M;) = LM 4 (T;)
in H" . Define theD,-moduleM = coker M, — M,) and define thet’-module

L =imageLy — (M) a4 — My).

Under the natural isomorphism db,-modulesM ~ M (G,), the induced map of
A’-modulesM >~ M(Gy) 4 takesL isomorphically over ta. 4 (G), so (L, M)
in PSH/{/ actually lies inSHf{,. The isomorphisniL, M) ~ LM, (G) depends
functorially (in an obvious manngron the given isogeny g#-divisible groups
'y — I, and is compatible with base changpreserving theé < p — 1
condition.

In particular, if I is a p-divisible group overA” with (£, M) = LM (),
then<L is an A’-module direct summand &f 4, and there are natural |n1ect|ons of
A’-modulesL/p" — (M/p™) » and isomorphisms mPSHA/ (even mSHA,)

LMy ((T[p"D) = (L/p", M/p"),
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which are compatible with change in as well as base change, and are functorial
inT.

If we impose unipotence conditions on all group objects, the same statements
are true withe < p — 1, and likewise with connectedness conditions.

Proof.Firstassume < p—1. As we explained near the end of the proof of The-
orem 3.4,M, >~ M(Gy)4 takesL over into L 4 (G) and moreovel. >~ L 4 (G).
The functoriality properties ofL, M) ~ LM 4 (G) are clear from the construction.
The special case gf-power torsion of g-divisible group is clear; the only point
of interest is thate/ p" — (M/p™)x >~ M,/ p" is injective because’ is anA’'-
module direct summand @l 4. This direct summand property holds because the
composite mapt/m — My /m — cokerFy, is ak-linear isomorphism [7, Ch. IV,
Sect, 4, Prop. 4.2(i)], so the inclusiaf < M, is injective modulom. Since
M is afinite freeA’-module [4, Ch. IV, Sect. 2.3 Rem.], this implies thais an
A’-module direct summand af 4.

If e < p—1, usingL MY, or LM, in place ofL M, permits the same arguments
to go through with unipotence or connectedness conditions. O

5. Descent Formalism and Abelian Varieties

As an application of our study of base change for finite Honda systems, we will
prove an interesting theorem on good reduction of certain Abelian varieties.

To start off, let’s quickly review the formalism of Galois descent in our situation
(see [1, Sect. 6.2] for further details). L&’ be a finiteGalois extension of the
fraction field K’ of A" with e(KX') < p — 1, and let(A', n) denote the valuation
ring of X', as usual. The descent data off&group schemg which encodes the
fact that it arises as the base extension of a spedifiedp schemever K’ is a
collection of commutative diagrams of schemes

Vg

¢ ¢

o

Speck’ -~ Speck’

for all y € Gal(X'/K'), with yg o y5 = (¥ o y)g, (idx)g = idg, and eachyy
must be compatible (over the action pfon the base) with thgroup scheme
structure morphisms fo§. over X'. Of course, in a situation as affine as this one,
Galois descent data is always effective. Also, note that ugiegy = idx yields
(idx)g = idg as a consequence of the other conditions if we axiomatize the fact
that eachyg is anisomorphisnof schemes.

A more convenient way to say all of this is that if we gt denote the base-
extended.X’-group scheme§, = § Xspecxr SPeECK’, using y*:SpeckK’ =~
SpecX’, then we require the existence of isomorphismskdfgroup schemes
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v5: 4 — G, such thatforaly,y € Gal(X'/K'), (vg)5 o Vg = (¥ o y)4. Here, for
any morphism ofK’-schemeg: X — Y we denote byf, the morphismX, — Y,
induced via base extension bpy; note that in the above we have implicitly used
the natural isomorphisrX, )y >~ Xz, .
Now make the further assumption thgtis the generic fiber of an objegl
in F ¥4, with 4o unipotent or connected #(K’) = p — 1. By the final part of
Lemma 4.1, the above data gnis equivalentto corresponding data df,. Here,
we use the usual action of Ggk’/K’) on A’ and we replaceX’-group scheme’
by ‘A’-group scheme’ (note that in Lemma 4.1 we only have full faithfulness with
respect to morphisms of group schemes, not just of schemes, over the base). Of
course, in the category ok’-schemes this generally does not constitute descent
data down tad’, since the cover Spe4¢’ — SpecA’ is typically far from Galois.
Since an automorphism: A" — A’ is trivially pseudo-étale, Theorem 4.6
enables us to reformulate all of this intrinsically in the categB§yH !, We state
this more formally as a definition. Note that the contravariancé Mt , LM},
andL M, will cancel out the contravariance of Spec implicit in the descriptions of
the action of Gal.X'/K’) above, leaving us with a more psychologically pleasing
left action of Gal(.X’/K’) rather than a right action.

DEFINITION5.1. Foran objectZ, M, j)in PSHi/,descentdataD on(L, M, j)

(relative toA’ — A4') is a collection ofP S H/ -isomorphisms

[ylp: (L, M, j), — (L, M, ),
forall y € Gal (X'/K"), such thalyilp o ([y2]10)y, = [v1 0 y2lo.

If one were interested in generalizing the considerations of Ramakrishna [16] to
study a local deformation problem analogous to the one in [7] (suitably modified
to force thep-divisible group to arise over an extension witk p — 1), a natural
thing to study would be the Abelian categoIQ/PSHf, whose objects consist of
pairs ((L, M, j), D) with (L, M, j) an object inPSH’, and D a descent data
on (L, M, j) (relative toA” — A, even though we omit mention of’ in the
notation); we define a morphism

((L1, My, j1), D1) — (L2, M, jo), D>)

to be a morphisng: (L1, M1, j1) — (L2, M>, j,) compatible with the descent data
(i.e.,polylo, =I[vlo, 09, forall y € Gal(KX'/K")). Full Abelian subcategories
DSH], (whene(X") < p—1)andDSH}", DSH}" can be defined in the obvious
manner, but we don't have any need for them, essentially because of Theorem 4.9.
When considering the computation of Estalong the lines of argument as in [16],

. . , ——f -
one is also led to consider the full Abelian subcategbrf SH ,, consisting of
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p-torsion objects. It is trivial to check that the forgetful functdbg’\ﬁ]i/ —
DPSH/, andDPSH/, — PSH, are exact. This is used in [4].

We'll now use the descent formalism in order to prove a ‘good reduction’ the-
orem for certain Abelian varieties. First, let's formulate a theorem apdlivisible
groups which will be the means by which we study good reduction of Abelian
varieties.

THEOREM 5.3. Let X’ be a finite(not necessarily Galoiglextension ok’, with
valuation ringA’ ande(KX') < p — 1. LetI'x, be ap-divisible group overlk’ and
assume that there existsgadivisible groupI™ over A’ such thatl'x: x g K’ =~
I x4 K’ as p-divisible groups ovetK’. Suppose thalx/ [p] >~ G x4 K’ as
K’-group schemes for som& in ¥ F,. If e(KX") = p — 1, then also assumé&
andI" are both unipotent or both connectéttie latter condition being equivalent
to the unipotence/connectedness @fp]). Then there exists a-divisible groupl’
over A’ such thatl'y, >~ T x4 K’, with I" unipotent/connected if’ and G are
unipotent/connected.

Before proving Theorem 5.2, let’s explain how it is used to prove the following
result

THEOREM 5.3.With K" and X’ as in Theorend.2, let X k- be an Abelian variety
such thatX acquires good reduction oveX’. Also, suppose thé[p] >~ G x o K’
for someG in £ 4. If e(K') = p — 1, then assume that eithéf is unipotent and
the Néron model ok x g K’ over A’ has unipotenip-torsion, or that these finite
flat group schemes are connected. Thehas good reduction ovek’.

Proof. DefineI'x to be thep-divisible group associated t&,x/, SOT'x/ x g
K’ ~T'x 4 XK', wherel is the p-divisible group of the Néron model of x g K’
overA'. If e(KX’) = p — 1, our p-torsion hypothesis on the Néron model implies
thatT" is unipotent or connected. Theorem 5.2 ensureslifat~ I' x4 K’ for
somep-divisible groupI” over A". By a theorem of Grothendieck [11, Cor. 5.10],
this implies thatX k- has good reduction.

We should stress that [11, Cor. 5.10]nsichstronger than what we actually
need. All we need is the fact that K is a henselian discrete valuation ring with
a characteristic 0 fraction fiel@ and with residue characteristje, and X is an
Abelian variety overk which acquires good reduction over a finite extension of
K, thenX has good reduction oves if and only if the p-divisible group ofX has
good reduction oveK . The proof of this fact can be extracted from the end of the
proof of [11, Cor. 5.10], requiring just the usual Néron—Ogg—Shafarevich criterion
and none of the theory of semi-stable reduction for Abelian schemes.

For the convenience of the reader, we explain in more detail the relevant part
of Grothendieck’s argument (phrased in a self-contained manner which bypasses
semi-stability considerations). Lé&f’/K be a finite extension over whick’ =
X x g K" acquires good reduction and Itz be ap-divisible group equipped with
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an isomorphisnT,x >~ T,(X) of p-divisible groups ovelk. We want to show

that X,x has good reduction. Since the Néron model is of formation compatible
with passage to the strict henselization of the base (either by [1, 7.2/2] or the actual
construction), we can assume thats strictly henselian, and then th&t' /K is
Galois with Galois groug. Let R’ denote the valuation ring df’, and letk’/k
denote the (finite, purely inseparable) extension of residue fieldsXlgtdenote

the (proper) Néron model df;K,.

Pick a primel¢ # p. Since the¢-adic Tate moduleT,(X’) is a constant’-
divisible group (as it is the generic fiber of @rdivisible group7;(X’) over the
strictly henselianR’), there is a natural action @ on 7,(X) via the ‘geometric
points’ (which all arise ovek’). We need to prove this action is trivial. Equiva-
lently, for eachn we have an action aff on X'[¢"](K’) defined by

gx)=(1Ax gil)* oxog",

whereg*: Spec¢K’) — Spec(K’) and(1 x g™H)*: X' = X xx K’ — X' are the
natural maps, and we want to prove this action is trivial.

Letting (-), denote base change by the automorphisngon either Spec¢K"’)
or Spec(R’)), the isomorphismsY’ ~ X;_l over g* extend to isomorphisms
[g]: X' ~ x;,l. Sincek’/k is a purely inseparable extension, so Alt/ k) is

trivial, passing to the closed fiber givisautomorphismgg]: X’ ~ X’. The Néron
property of X’ and the strict henselianity @t’ give identifications

X'T"1(K") = X" UR") = X'Te" 1K),

under which the action off on the left side translates into the induced action by
the [g]'s on the right side. Thus, it is enough to prove that for each G, the
automorphisnig] of the Abelian varietyX’',, is the identity. This assertion does
not have anything to do with and can be checked by looking at the action on the
p-divisible group ofX’,,.. Thus, it is enough to prove that thedivisible group
maps

T, ([gD): Tp(X') = Tp(X,1) = Tp (X)) gt
(overg*: SpecR’) >~ SpecR’)) induce the identity on the closed fiber.
Now I' xgx K =~ T,(X) enters the picture. Base changing &6, we get an
isomorphism ofp-divisible groups ovekK’

(F XR R/) X R’ K' ~ Tp(X/) X R’ K/,

compatibly with the isomorphisms on each side witktwists (with the ones on
the right coming from thd',([g])’s), so by Tate’s theorem [19, Thm. 4] we obtain
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an isomorphism op-divisible groups: I" xz R" >~ T,(X’) over R’ such that the

diagrams
I xg R " T,(X")
[g]
—1yx(;
(T xg g1 S0 7,01

commute. Passing to the closed fiber and noting that the left side reduces to the
identity and the two rows reduce to the same map, it follows that the right side
always reduces to the identity, as desired. O

The unipotence/connectedness condition ongthiersion of the Néron model
is satisfied wherX k- is an elliptic curve with potentially supersingular reduction.
This was the source of the original motivation for proving Theorem 5.2. More
precisely, the theory of finite Honda systems can be used to study the deformation
theory of Galois representations, and in particular the problem of classifying Galois
representations of Gan/Qp) which ‘come from finite flat group schemes’ over
K’ (or X'). In [4] this is carried out, and one gets universal deformation ritigs
and Ry, together with a natural maRg: — Ryx-. This map turns out (by compu-
tational observation) to be an isomorphism. An ‘explanation’ for this isomorphism
is provided by Theorem 5.2.

With the application to Abelian varieties settled, we now carry out the compu-
tations:

Proof of Theorenb.2. Note that Galois descent for schemes carries ovgf to
divisible groups because of the way in which they are built up out of genuine (i.e.,
nonformal) group schemes. This will be implicit in our use of descent below.

We can certainly replac&’ by the maximal unramified extension of it within
XK', by Galois descent of (group) schemes, so we may (and will) assume that
K'/K' is atotally ramifiedfinite extension. In particular, the residue field/n
can be identified witlt. Also, note that ag(’-group schemes,

F/[p] X 4/ K~ FK’[p] XK K ~G X A K' =~ (G X A A/) X 4/ r]{/,

so by Lemma 4.1 it follows thal'[p] ~ G x4 A'. This will be used below.

We also emphasize that viie a choice of isomorphisnirg/[p] >~ G x4 K’ for

the purposes of our constructions below. In what follows, we will consider only
the casee(K’) < p — 1. Whene(KX’) = p — 1 and there are unipotence or
connectedness conditions, the arguments go through with only minor notational
changes (e.gL MY, in place ofLM 4, etc.).
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Let LMy (I'") = (L', M) in HY. As was noted in the second half of
Lemma 4.12, we hav& M, (I''[p"]) =~ (L'/p", M’/ p™), with this isomorphism
functorial inT" and compatible with change inand base change as in Section 4.
We will need to use these isomorphisms below in the case when the base is the
valuation ringA” of the Galois closureX” of K’ over K’. Note that sinceX’/K’
is a totally ramified extension of degree=ge; e(K’'/K’) prime to p, we have
K" = K'(¢,) and sce(K") = e(K’). This is the main reason it was important to
reduce to the case in whick’/ K’ is totally ramified.

Sincel"[p] ~ G x4 A/, we see thal'[p], ~ G, (recallk ~ A’/n). Thus,
M(Gy) =~ M [pl) =~ M’/ p. There is am’-submodule. < (M’/p) 4 such that
LM, (G) ~ (L, M’/ p) and the results in Section 4 enable us to relagndL’/p.

In fact, sinceA” — A’ is a totally ramified finite extension, Lemma 4.5 and the
isomorphismG x4 A’ >~ I''[ p] imply that the natural magy’ @4 (M),)) — M/,
of A’-modules induces as/'-linear isomorphism4’ ® 4 L ~ L'/ p.

Now choose amA’-module direct summand. < M/, such thatL/p —
M,,/p =~ (M'/p)s has imageL. We make the crucial claim that we can choose
L c M, € M|, tolieinside ofL’ (recall thatM’,, — M’ is injective, as it is
compatible with

K'®y (My) =K' @M — K' @M =K' ®@u (M),
by [4, Ch. IV, Sect. 2.3, Prop. 2.1)).

The construction of such dnwill require a long argument. First of all, consider
the commutative diagram

(M'/p) a (M'/p) u

| |

CWia(Ri) — CWi 4 (1)

’
w
’ ]

Ry /mR 850 /08

with 8 = A'® 4 R the affine ring ofG x 4 A’. The bottom row is an injection, as we
noted at the beginning of the proof of Lemma 4.5. Recalling thet, (I''[p]) ~
(L'/p, M’/ p), this diagram enables us to conclude that keingl (M’/p) 1 of the
left column containgL'N(M,))/p — M, /p =~ (M'/p) «. Here, the intersection
uses the fact mentioned earlier that the natural igp — M/,, is an A'-linear
injection, as it is compatible with the injectiok’ ® 4 M — KX’ ®4 M'. Also,
the map(L' N (M")a)/p — M, /p is injective becausd’ N (M’ 4) is an A'-
module direct summand d’,,. In order to justify this direct summand property,
itis enough to show that’ is an.4’-module direct summand @', > M,,. Since
M’,, is afinite freeA’-module, it suffices to check that/n — M/, /nis injective.
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But this is clear, since we have an isomorphismVMa ~ M',,/M’,,[1], with the
latter a quotient o', /n.

We will show that the inclusionZ’' N (M/,))/p < L of A’-submodules of
(M’/p)a is an equality. This will finish the proof, by taking =qer L' N (M',,).
Note that at this point it is not even clear thatn (M,,) would ever benonzero
(for e(KX’) > 1). Proving that the above inclusion is an equality in something that
can be checked after making a faithfully flat base extension, so we will show that

A @4 (L'N(M)/p) — A Q@ L

is an isomorphism. Recall from our discussion of totally ramified base change in
Section 4 that the natural’-linear map froma’® 4 L to (M’ / p) . is injectivewith
imageL’/p (sinceG x 4 A" ~ I''[ p]!), so what we wish to prove is equivalent to
showing that(L' N (M),))/p and L have images ifM’/p),, (Via (M'/p)a —
(M'/ p) 4) with the sameA’-linear span. Since th&/'-linear span of the image of

L is preciselyL’/ p, it is sufficient to prove that thet'-linear map

A @ (L'N (M) — L'

is an isomorphism.

The first thing we will show is that the above injection remains injective modulo
n, soA’ ®4 (L' N (M) is at least anad’-module direct summand df’. Well,
modulon the map iSL' N (M/,)))/m — L’/n and this fits into the commutative (!)
diagram

~

(L' N(M,))/m L'/n M M (1]

~

~

L/m cokerFyyp s ~—— M'/FM',

so if the left column is injective, then the map’ N (M’,,))/m — L'/nis in-
jective also, as desired. The injectivity of the left column says exactly(ihian
(M',))/p € L is anA’-module direct summand; in order to prove this latter con-
dition, it suffices to prove that that.’ N (M),))/p S (M'/p)a =~ M,,/p is an
A’-module direct summand. But as we noted abdve) (M’,,) is an A’-module
direct summand o#//,,, so just reduce modulp.

Since the inclusionA” ®4 (L' N (M),,)) — L’ has been proven to be an
isomorphism onto am’-module direct summand, in order to prove that this sub-
module actually fills up all ol.’, it is enough to check that we have an isomorphism
after passing to the generic fiber, which is to say that we want to show

K @ L' NM) L K @4l
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inside of X' @4 (M) = XK' @u (M) If X' ®4 L' C K @4 (M) =
K @k (K' ®4 (M) is aK'-rational subspacgi.e., of the formX’ @k V for
somek’-subspace/ of K’ ®4 (M) ~ K' ®4 M’), then

K ®uLl = K O (K & L)N (K @x (My)))
= K @k (K' ®u (L' N (M}))
= K'®u (LN (M})),

as desired. Clearly it even suffices to prove thatiiesubspace
K'Qu L C K" Qa (M)

is a K’-rational subspace, wittk” the Galois closure oK’ over K’. Note that

K" = K'(&,), Whereeg =qer e(K'/K’), s0 the inclusion of valuation ring$” —

A" is a finiteétaleextension and4” hasA[¢,,] as its maximal unramified subring
(i.e, this is the Witt ring of the perfect residue fields,,) of A” andA = W (k)

as usual). This will permit us to apply our previous base change formalism (after
passing to an inverse limit).

The idea behind the proof tha” @, L' € K" @4 M, = K" @k (K' @4
(M) is K'-rational isthalL’, M") = LM 4, (I"") wherel” x 4 K’ >~ I'g' x g+ K.
This latter isomorphism base extends to the isomorphisry, K" >~ T'gs x g K"
and we now ought to be able to transfer Galois descent formalism afKGa1K”)
from the right side to the left side.

More precisely, we note that fdl” = A" @, L' andM"” = A[g,,] @4 M’,

LMy (T x4 A”) >~ (L", M").

To see this, simply consider the analogous assertion fopth®rsion via The-
orem 4.6 and pass to the inverse limit, using the fact that the nattfrahodule
map M’,, — lim__ ((M"/p")) is an isomorphism, thanks tQ\’,)/p" ~
(M" ] p™) 4r. Sincel’” =get IV x 4 A" has generic fiber isomorphic & x g K,

for eachy € Gal (X”/K’) we have a morphism g#-divisible groups ovetK”
[y]:F// X!A’/’ J{‘// N (F// XEA)” J{//)V ~ F//V XEA)” :K//,
satisfying[id ] = idrr. ,, %7 and[ylyol[y] = [yoy]lforally,y e Gal(K"/K").
By Tate’s full faithfulness theorem fags-divisible groups [16, Thm. 4], or even
just by repeated applications of Lemma 4.1 (sia¢&"”) = e(XK’)), we get the
same formalism canonically ovet”. We will use this formalism to show that for
eachy € Gal (K"/K"), the X”-semilinear map

y @ LK ®@x (M) > K" Q@u (M)
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takes the subspack” ® 4 L’ to itself. The classical formulation of Galois descent
(i.e., the normal basis theorem) then would yield thdt® 4 L’ is K'-rational, as
desired.

To start off, defineL”, and M"; to be the base extensions bf and M” by
the respective base changesA” — A" andy: A[¢,,] — Al¢,,l. Passing to the
inverse limit on our discussion in Section 4 gives rise to the natdfamodule
isomorphism

Gyt A @ (M) = (M) ar,

where on the left side we use A” — A”. A simple ‘passage to the inverse limit’
argument based on Theorem 4.6 also shows that

LMy(T") =~ (L, M),

where we usg, to embedL”, as an4”-submodule otMg) A
The ‘Galois descent’ formalism ovet” translates intdy,,-module maps

[y] M; —- M,
for all y € Gal (X"/K"), such thaly ] takesL"”, overintoL” (!) and

[yal o [yaly; = [yioyal.
Consider the/-semilinear map of4”-modules

[V1470]
My — A" @ (M) ——

M,
given bym +— [y 14 0 j, (1®@m) (of course, the base change — A" implicitin
the tensor product is the one induced)by Since the map1’;, — A" ® 4 (M'},)
used above takes” over to jy‘l(L;ﬁ) (by definition!), we see that the composite
y-semilinear map takes” over to itself. Therefore, as long as this map fixes every
element of the natural copy af/,, sitting inside ofd’;,, it follows that the induced
semilinear map ot ® 4 (M';,)) = K" ®4 (M) is exactlyy ® 1. In other words,
y ® 1 takesK” ® 4+ L” over into itself, which iexactlywhat we had promised to
show.

It remains (for the construction df inside of L") to check thatV’,, is fixed in
the manner just described. Since we have an inclusion of subs&t$,afiven by

M cM' <My,
in the obvious way, it is in fact enough to consider tig,,]-linear map

[y): ML — M"
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and to show that this takesg m to m for everym € M’ — M”. We can rewrite
this as a/-semilinear map ofA[¢,,]-modules

A[é‘eo] ®A M/ - A[é‘eo] ®A M/

and we want to show that for alt € M’, the element ® m is fixed by this map.
That is, the (abstract) semilinear action of G&l (¢.,)/K’) ~ Gal (K (¢.,)/K) =~
Gal (k(¢.,)/ k) on Al¢,,] ®4 M’ arising from the above generic fiber descent form-
alism should fixM” and so should be the obvious action.

By [7, Ch. Il, Sect. 2.2], this ‘obvious’ action is precisely what we get if we use
the functorM to translate the canonical Galois descent dat&alfoy x k(¢.,) down
to I'; into the language of of Dieudonné modules (much like in the discussion at
the beginning of this section). The prolonged ‘Galois descent data’ formalism of
Gal(KX"/K’)yonT’ x 4 A" induces (abstract) ‘Galois descent data’ formalism of
Gal (K'(¢.,)/K') = Gal (k(¢.,)/ k) on the closed fiber; we must verify that this is
exactly the usual Galois descent data on this closed fiber. The key point will be that
the projection Gal.X”/K’) — Gal (K'(¢.,)/K’) has a section, namely the inverse
to the natural isomorphism GaK”/X') ~ Gal (K'(¢.,)/K") which arises from
the linear disjointness oK’ andK’(¢,,) overK’.

Sincel” x 4 K’ >~ I'gr x g K’ @asp-divisible groups ovelX’, we are reduced to
showing that if we begin with the canonical Galois descent datdfot 4 K") X 5
K" down toI'" x 4 K’ and ‘formally’ prolong it to the entirgy-divisible group
[ x4 A” (by Tate's theorem or Lemma 4.1), then the induced formalism over the
closed fiber is exactly the canonical Galois descent dat@lfox 4 k) X k(&)
down toI'” x 4 k = I'’;. However, this assertion is a direct consequence of the way
in which Galois descent of fields is realized as faithfully flat descent and the fact
thatA’ — A" is aGalois extension of discrete valuation rings (see [1, Sect. 6.2,
Example B] for more details). This completes the construction of the dekired
M, € M/, lying inside ofL’.

Let us see how such ah enables us to constru€t of the desired sort. The
commutative diagram

~

L/m

M, /M, [1]

M |FM'

L/m — cokerFyp.x ~— (M'/p)/F(M'/p)

shows thai(L, M) lies in Hj,, so(L, M) ~ LM, (T") for a p-divisible groupI
over A’. Certainly theA’-submodule

LEA/(F X A 0“)/) - M, - J</®A M’
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containsL. = L, (T"). Thus, A" ®4 L lies inside of L 4, (I" x4 »A’). Modulo n,
however, this inclusion is precisely the top row in the commutative diagram

L/m Ly (T x4 A)/n
My M1 M/ M [1]
M /FM =  MJFM,

SOA' @4 L = Ly (T x4 A')inside of K’ ® 4 M'. Since we are assuming that
lies inside ofL’, soA’ ® 4+ L C L', the commutative diagram

(A Qa4 L)/n

L'/n

~

My /M1 = My/M,[1]

forcesA’ @4 L = L'. Therefore, LM ,(I'") = (L', M) = (A Q4 L, M) is
isomorphic toLM 4 (I" x o 4A'), from which we get an isomorphism of formal
A’-group schemelb x 4 A >~ T7.

Passing to the generic fiber, we get an isomorphismp-divisible groups over
!K‘/

(F X Al K/) Xk’ K ~T’ X 4! K’ =~ g Xk K.

Recall that by hypothesi§ s/ [p] >~ G x 4 K’ for someG in F £, andI is defined
so that

LMy (T[pl) >~ (L/p,M'/p) = (L, M'/p) ~ LM+(G),

so G =~ I'[p]. On the generic fiber this giveSg/[p] >~ T'[p] x4 K'. Hence,
I' x4 K’ andT'k: are two p-divisible groups oveik’ which become isomorphic
over X’ and havep-torsion subgroups which are isomorphic 0%t

Sincel'x andTI” x 4, K’ have the same height(as this can be computed after
base extension t&’), upon fixing a choice of algebraic closuk& of K’ and a
K’-embeddingK’ — K’, we may viewl'x andI" x4 K’ as continuous Galois
representationg,: Gal(K'/K') — GL,(Z,); (i = 1,2) such thal;oﬂGan,) ~
p2lcazr xn @nd for p; =qer pi mod p, there is an isomorphisip, >~ p,. In fact,
we claim that thesamematrix . € GL;, (Z),) can be used to conjugate| gz, )
iNto p2lga g7, 4, @nd o1 into p2. Such a conjugation by. gives a ‘compatible’
choice of bases and so would allow us to assumedfiglyz7, x andpzlgaz, 4,
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are literally equal as arep; and p,. Lemma 5.4 then would yielgh, ~ p5, SO
'y ~ T x4 K’, which is what we wanted to prove.

The rigorous justification of the existenceofs based on giving a more canon-
ical description of the meaning of the existenceuofConsider the isomorphism

(F X 7l K/) XK’ K~ 'k Xk X'
from above. This induces an isomorphismJéf-group schemes
@1. (F[p] X A K/) XK’ K~ FK/LD] XK’ K~ (G X A K/) XK’ JC/,

the latter isomorphism being induced by the base extenior> KX’. However,
by using the isomorphisnt ~ I'[p] obtained at the end of the above lengthy
construction of_, the base extensiaf’ — X’ gives rise to an isomorphism

0. (C[pl x4 K') xgr K' >~ (G x o K') xg K'.

The existence of. is precisely the assertion that = ¢,.

These map, ¢ lift to isomorphisms of the correspondimf-group schemes,
so by the faithfulness of passage to the closed fiber (Corollary 3.7) it suffices to
check that the induced maps on the closed fibers coincide. Sihce A’ in-
duces an isomorphism on the residue fields, we have two (abstract) isomorphisms
M(Gy) >~ M(T'[plr) which we must prove are the same. Frofip] >~ G x 4+ A’
we getM(Gy) ~ M(I'[pl) >~ M’/ p; an isomorphismM’ >~ M (T) is furnished
by thedefinitionof ", so we have also an isomorphisWf/p ~ M [ply). The
composite isomorphism (G) >~ M(T'[pli) is precisely the map induced from
¢1. Now consider the isomorphisii[p] >~ G constructed above via Honda sys-
tems (actually, it is the inverse that we constructed). On the level of closed fibers,
it is obvious that we havexactlythe same map on the Dieudonné modules as was
just described. Hencey; andg, do indeed coincide. O

We now prove the lemma which was critical in the above proof.

LEMMA 5.4. LetG be a profinite group and? an open normal subgroup of index
prime to p, with p a prime. Letp;: G — GL,(Z,) be two continuous representa-
tions for whichp.|y = p2|y and p1 = po, Wherep; is the residual representation
i modp. Thenpy =~ p,.

Proof. Let p denote the common restriction pf and p, to H. Define f(g) =
01(g)p2(g)~ L. Itis easy to check that this is a function from the graupH to the
groupk, = ker(GL,(Z,) — GL,(F,)). Moreover, given thap, is a representa-
tion, the condition thap, is a representation is equivalent to the condition

f(g182) = f(g1) - p2(g1) f(g2)p2(g1) ™t
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In particular, if we takeg; = & to be any element off andg, = g to be any
element ofG, then

f(g) = f(hg) = p(h) f(gp)™L,

so f takes its values in the subgroup of invariants under = p;|y. Note
that this is a closed subgroup &f, and so is a prgz group with aG/H-stable
solvability series (using the conjugation actionogj.

Since the Abelian higher cohomology 6f/H on Abelian p-groups always
vanishes, the standard short exact sequence arguments and compactki¢ss of
show thatH(G/H, KF) is the trivial pointed set (here, we are using continuous
nonAbelian cohomology). Hence, there exists K such that

() =xtpa(g)xp2(g) .

In other words,x € GL,(Z,) conjugateso, into p1, so we have the desired iso-
morphism. 0

We conclude by mentioning a question raised by Nicholas Katz. Fix a prime
p. Choose a local fiel& with characteristic O and having a valuation ring with a
perfect characteristip residue field. Letk’/K be a finite extension. Consider an
Abelian varietyA x such thatA k. has good reduction. For a positive integer
say thatA[p"] hasgood reduction oveK if there is a finite flat x-group scheme
G and aK-group scheme isomorphisdi[p"] >~ G x¢, K. Does there exist an
explicit strictly increasing sequence of positive integdls p) < e(2, p) < --- <
e(n, p) < ---sothatif (for somer) e(K') < e(n, p) andA[p"] has good reduction
over K, then A has good reduction ovek ? Intuitively, if K’/K is fixed, is there
a p-power torsion level depending only @QK’) so that detecting good reduction
for an Abelian variety oveK is equivalent to good reduction ové&r and good
reduction for a suitable torsion level ov&r? We showed above that one should
takee(l, p) = p — 1. The existence of a sequenfgn, p)} would be a nice
complement to [8, Cor. 5.10].

Appendix

In this appendix, we would like to clarify an important point in the proof of
Fontaine’s classification of smooghformal group schemes ovér, wheree(A’) <
p—1(ore(A’) < p — 1if we restrict attention to connected or unipotent objects).
The point of interest arises on [4, p. 180], where one has a system of equations
¢+ Ax + Bx? = 0, wherex is an unknown vector with entries in arF ,-algebra

S, ¢ is a given vector ir§”, A is an invertiblen by n matrix oversS, B is a nilpotent

n by n matrix overS, andx” denotes the vector obtained framby raising the
entries to thepth power. It is asserted that such a system of equations admits a
unique solution. In this level of generality, the claim is not quite true, because
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the matrixA~1B might not be nilpotent. We would like to explain why this does
not cause problems. More precisely, we will show that in the particular setting
considered in [4], the matrix—1 B is actually nilpotent and that this suffices to get
existence and uniqueness of solutions. Since this is just a technicality that is only
of interest to someone reading [4], we take the liberty here of using the notation in
[4] without comment (it would be too much of a digression to recall here all of the
notation we need).

For a ‘bad’ example, consider the hypothetical possibility tfat: X1 + X, +
(1/p) X5, a5 = X1, x9 = 0 mod p, andx{ is allowed to be anything. We then get
the simultaneous equations

yi+y2+y5 +n=0, y1+y2=0.

If y1 = v» =0, then(0, 1) and(0, 0) are both solutions. i, = 1, y» = 0, then we
need to solve the equatidfY — T + 1, which has no solution if our characteristic

p ring is F,. We need to make fuller use of our group scheme setting in order to
rule out examples of this type. The key fact is

THEOREM A.1. There is a matrix identity

c\ 1 c p
(Bai) (Eﬂ’ai) __ ((aV(xD) ) Ny
dX, X" dX;
where the right side is the negative of the matrix obtained by takingsemi-
linear) matrix of V with respect to the-basis{X;} of thek[V]-modulem/m? ~
M/FM = M°/FM° and raising the entries to theth power.
Granting this, we can choose coordinalésso that the matrix of the nilpotent

V onm/m? with respect to the basisx;} has all entries 0, except for some lower
diagonal(i, i + 1) entries which might equal 1. It would then remain to prove:

LEMMA A.2. LetS be anF,-algebra,c € ", N = (v;;) ann by n matrix with
v;; hilpotent forj # i + 1. Then the vector equation

x=c+ Nx?

has a unique solution € S (here, as above;? € §" denotes the vector obtained
by raising the entries i to the pth powey.

Proof. By standard limit arguments, we may assuté a localization of a
finite typeF ,-algebra. Uniqueness can then be checked over the completion, and
once we have uniqueness in general, existence can be obtained by descent from
the completion. Thus, we may assume tlas a complete local noetheridf,-
algebra with dinite residue fieldk, in which case it is enough to work over the
artinian quotients of. That is, we may assumgis afinite local F,-algebra. We
want to show that the map of sgtsS” — S” given byx — x — Nx? is a
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bijection. SincesS is a finite set, it suffices to check injectivity. Singes additive,
it is enough to check that = Nx” impliesx = 0. If x = 0 modmg, we can
iterate, so it is enough to pass fgmg. That is, we may assumg is afield and
N = (v;;) is a lower diagonal matrix. Any product ef+ 1 such matrices is 0, so

x=Nx?=N.. N”x"" =0 whereN") = (v]). 0
Now we prove Theorem A.1

Proof. The key input from the theory of formal group schemes is [4, Ch. lll,
Prop. 3.1], which givesi®;, = V(ag,). SinceR® = k[[ Xy, ..., X, ]I, we have
a o~ -linear ring mapV:k[[X4,..., X, — k[X4,...,X,] (whereo denotes
absolute Frobenius 0 and we compute that fof € k[ X4, ..., X,.]1,

5%7(V(f))—'2267 ( v xm).. auqxw») 8g;§0.
Thus,
s IV (X))
Xe: < 8X ..... a(V(X,,)))) 0X, .
This yields

oPac dal P
L = 1)! ©) modm
ax7 = P ( 0X, ) "

dao, AV (X .
= ‘Z“l(& Io) ( VxXy |0> modii
e X, oX,

oot V(X N
%o ( e)lo modm.
aX 0X,

Therefore, we get the matrix identity asserted in the statement of the theorem.

We conclude by noting that the existence and uniqueness assertion for the sys-
tem of equations on [7, p. 183] is a special case of the general claim that for any
F,-algebras$, anyn by n matrix A with entries inS, andy € $" any vector with
nilpotent entries, the vector equation

y+x+Ax?P =0

has a unique solution ifi* with nilpotent entries. The proof proceeds exactly like
the proof in the Lemma A.2, via reduction to the case in wtids a finite local
F,-algebra, and we then want to show that the additive Sfap> S" given by
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x — x + Ax? induces a bijection on vectors with nilpotent entries. The map
certainly sends ‘nilpotent’ vectors to ‘nilpotent’ vectors, so by a counting argument
it is enough to check that if + Ax? = 0 andx has nilpotent entries, then= 0.

But this is clear.
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