
2 

A charge coupled to its electromagnetic field 

We plan to study the dynamics of a well-localized charge, like an electron or a pro
ton, when coupled to its own electromagnetic field. The case of several particles is 
reserved for chapter 11. In a first attempt, one models the particle as a point charge 
with a definite mass. If its world line is prescribed, then the fields are determined 
through the inhomogeneous Lorentz-Maxwell equations. On the other hand, if 
the electromagnetic fields are given, then the motion of the point charge is gov
erned by Newton's equation of motion with the Lorentz force as force law. While 
it then seems obvious how to marry the two equations, such as to have a coupled 
dynamics for the charge and its electromagnetic field, ambiguities and inconsisten
cies arise due to the infinite electrostatic energy of the Coulomb field of the point 
charge. Thus one is forced to introduce a slightly smeared charge distribution, i.e. 
an extended charge model. Mathematically this means that the interaction between 
particle and field is cut off or regularized at short distances, which seems to leave a 
lot of arbitrariness. There are also strong constraints, however. In particular, local 
charge conservation must be satisfied, the theory should be of Lagrangian form, 
and it should reproduce the two limiting cases mentioned already. In addition, 
as expected from any decent physical model, the theory should be well defined 
and empirically accurate within its domain of validity. In fact, up to the present 
time only two models have been worked out in some detail: (i) the semirelativis
tic Abraham model of a rigid charge distribution; and (ii) the Lorentz model of a 
relativistically covariant extended charge distribution. The aim of this chapter is 
to introduce and explain both models at some length. On the way we recall a few 
properties of the inhomogeneous Lorentz-Maxwell equations for later use. 

A short preamble on units and other conventions is in order. We use the 
Heaviside-Lorentz units. In particular, the Coulomb potential is simply the inverse 
of the Laplacian with no extra factor. The vacuum susceptibilities are c:o = 1 = fLo, 
which fixes the unit of charge. c is the speed of light. Mostly we will set c = 1 for 
convenience, thereby linking the units of space and time. If needed, one can easily 
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8 A charge coupled to its electromagnetic field 

retrieve these natural constants in the conventional way. At some parts below we 
will do this without notice, so as to have the dimensions right and to keep better 
track of the order of magnitudes. In the nonrelativistic setting we use V' x for ro
tation, but switch to the more proper exterior derivative, Y'gA, with g the metric 
tensor, in the relativistic context. We will use standard notation as often as possi
ble. Since a fairly broad spectrum of material is covered, double meaning cannot 
be avoided entirely. At the risk of some repetition we strive for minimal ambigu
ity within a given chapter. In the classical part of the book we use boldface italic 
letters, x, for three-vectors and boldface roman letters, x, for four-vectors. In the 
quantum section such a notation tends to be cumbersome and we use lightface 
letters, x, throughout. 

2.1 The inhomogeneous Maxwell-Lorentz equations 

We prescribe a charge density, p(x, t), and an associated current, j(x, t), linked 
through the law of charge conservation 

at p(x, t) + V' · j(x, t) = 0. (2.1) 

Of course, x E .!Pi.3 and t E .!Pi., where we use .!Pi.3 to describe physical space and .!Pi. 

as the time axis. The Maxwell equations for the electric field E and the magnetic 
field B consist of the two evolution equations 

c- 1atB(x, t) = -V' x E(x, t), 

(2.2) 

and the two constraints 

V' · E(x, t) = p(x, t), V' · B(x, t) = 0. (2.3) 

<)How are the Maxwell equations written and named? According to my survey, 
there seems to be no universally accepted standard. As indicated by the name 
"electromagnetic", the order E, B is very common and also adopted here. In 
the Lagrangian version B is position-like and - E is velocity-like, which would 
suggest the opposite order, namely (B, -E). In the nineteenth century the time
derivative was written at the right side of the equation. By present standards, in 
evolution equations like the Boltzmann, Navier-Stokes, and Schrodinger equation, 
the time-derivative is always at the left, which is also our convention here. 

The common practice is to call the first equation of (2.2) together with the sec
ond equation of (2.3) the "homogeneous Maxwell equations" and the remaining 

Paragraphs indicated by 0 give explanations of notation and names. 
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2.1 The inhomogeneous Maxwell-Lorentz equations 9 

pair the "inhomogeneous Maxwell equations". We follow here the convention 
used in the context of wave equations and call (2.2) with j = 0 the "homogeneous 
Maxwell-Lorentz equations" and (2.2) with j =J. 0 the "inhomogeneous Maxwell
Lorentz equations". The constraints (2.3) are always understood. "Maxwell
Lorentz equations" and "Maxwell equations" are used synonymously. <) 

We solve the Maxwell equations as a Cauchy problem, i.e. by prescribing the 
fields at time t = 0. If the constraints (2.3) are satisfied at t = 0, then by the con
tinuity equation (2.1) they are satisfied at all times. Thus the initial data are 

E(x, 0), B(x, 0) (2.4) 

together with the constraints 

V' · E(x, 0) = p(x, 0), V' · B(x, 0) = 0. (2.5) 

The choice t = 0 is merely a convention. In some cases it is preferable to prescribe 
the fields either in the remote past or the distant future. We will only consider 
physical situations where the fields decay at spatial infinity and thus have the finite 
energy 

(2.6) 

In a thermal state at nonzero temperature, typical fields fluctuate without decay 
and one would be forced to consider infinite-energy solutions. 

The Maxwell equations (2.2), (2.3) are inhomogeneous wave equations and are 
thus easy to solve. This will be done in Fourier space first, where the Fourier trans
form is denoted by~ and defined through 

(2.7) 

Then, setting c = 1, (2.2) becomes 
~ ~ 

atB(k, t) = -ik x E(k, t), 

atE(k, t) = ik x B(k, t) -l(k, t) (2.8) 

with the constraints 

ik 0 E(k, t) = p(k, t)' ik 0 B(k, t) = 0 (2.9) 

and the conservation law 

atiJCk, t) + ik. }Ck, t) = o. (2.10) 
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10 A charge coupled to its electromagnetic field 

To solve the inhomogeneous equations (2.8), we rely, as usual, on the solution of 
the homogeneous equations, 

Eo(k, t) = (cos lklt + (1 - cos lklt)k Q9 k)E(k, 0) + (I~ I sin lklt )ik x B(k, 0), 

Bo(k, t) = (cos lklt + (1- cos lklt)k Q9 k)ii(k, 0) - (_..!__sin lklt)ik x E(k, 0). 
lkl 

(2.11) 

Here k = k Ilk I is the unit vector along k and for any pair of vectors a, b, a Q9 b is 
the tensor of rank 2 defined through (a Q9 b )c = a (b · c) as acting on the vector c. 

We insert (2.11) in the time-integrated version of (2.8). Taking account of the 
constraints, making a partial integration, and using charge conservation, we arrive 
at 

E(k, t) =(cos lklt)E(k, 0) + (lkl- 1 sin lklt)ik x B(k, 0) 
t 

+ J ds(- (lkl- 1 sin lkl(t- s))ikp(k, s)- (cos lkl(t- s))l(k, s)) 

0 

= Eini(k, t) + Eret(k, t), 

B(k, t) =(cos lklt)B(k, 0)- (lkl- 1 sin lklt)ik x E(k, 0) 
t 

+ J ds(lkl- 1 sin lkl(t- s))ik x l(k, s) 

0 
~ ~ 

= Bini (k, t) + Bret(k, t). 

(2.12) 

(2.13) 

The first terms are the initial fields propagated up to timet, while the second terms 
are the retarded fields. If one wanted to solve the Maxwell equations run into the 
past, then the retarded fields should be replaced by the advanced fields. 

Next, let us introduce the fundamental propagator, Gt(X), of the wave equation 
which is defined as the Fourier transform of (2rr)-312 1kl-1 sin lklt and satisfies 

a; G- ~G = 8(x)8(t). 

This means Gt(x) = (2rr)- 1 8(1xe- t 2) and in particular fort > 0 

I 
Gt(x) = -8(1xl- t). 

4nt 

(2.14) 

(2.15) 
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2.1 The inhomogeneous Maxwell-Lorentz equations I I 

Then in physical space the solution (2.12), (2.13) of the inhomogeneous Maxwell
Lorentz equations reads as 

t 

E(t) = (JrGt * E(O) + \7 x Gt * B(O)- f ds(Y'Gt-s * p(s) + utGt-s * j(s)) 

0 

t 

B(t) = OtGt * B(O)- \7 x Gt * E(O) + J ds\7 x Gt-s * j(s) 

0 

= Bini(t) + Bret(t). 

Here* denotes convolution, i.e. !1 * h(x) = J dnyf1 (x- y)f2(y). 

(2.16) 

(2.17) 

For later purposes it will be convenient to have a more concise notation. In 
matrix form, the solution of the homogeneous Maxwell-Lorentz equations can be 
written as 

~ (E(t)) = ( 0 V'x) (E(t)) ' ~F(t) = AF(t) 
dt B(t) -V'x 0 B(t) dt 

(2.18) 

with the column vector F = (E, B). They have the solution 

F(t) = U(t)F(O), U(t) =eAt (2.19) 

with U(t) given explicitly by the terms with subscripts 'ini' in (2.17), (2.16). If we 
set g(t) = (j (t), 0) as a column vector, then 

~F(t) = AF(t)- g(t), F(t) = U(t)F(O)- (' dsU(t- s)g(s). (2.20) 
~ k 

The expressions (2.16), (2.17) remain meaningful even in case p, j are gener
ated by the motion of a single point charge. Let us denote by q (t) the position and 
by v(t) = q (t) the velocity ofthe particle carrying charge e. Then 

p(x, t) = eo(x- q(t))' j(x, t) = eo(x- q(t))v(t) 0 (2.21) 

Upon inserting this in (2.16), (2.17) one arrives at the Lie nard-Wiechert fields. 
Since their derivation is presented in most textbooks, we do not repeat the com
putation here and only discuss the result. We take the world line, t r+ q (t), of the 
particle to be given for all times. Since the particle is assumed to have a relativistic 
kinetic energy, lq (t) I < 1. Next we prescribe the initial data for the fields at time 
t = to and take the limit to ---+ -oo in (2.16), (2.17). Then, at a fixed space-time 
point (x, t), the contribution from the initial fields vanishes and the retarded fields 
become the Lienard-Wiechert fields. To describe them we introduce the retarded 
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12 A charge coupled to its electromagnetic field 

time tret. depending on x, t, as the unique solution of 

tret = t- lx- q(tret)l. (2.22) 

tret is then the uniquely defined time point at which the world line crosses the 
backward light cone with apex at (x, t). Furthermore, we introduce the unit vector 

X- q(tret) 
n=----

lx - q (tred I 
(2.23) 

Then the electric field generated by the moving point charge is given by 

e [ (1 - if)(ii- v) ii X [(ii- v) X v] ] I 
E(x, t) = - + (2.24) 

4rr (1- v · ii)31x- ql 2 (1- v · ii)31x- ql t=tret 

and the corresponding magnetic field is 

B(x, t) =nx E(x, t). (2.25) 

Equations (2.24) and (2.25) are less explicit than they appear to be, since tret 
depends through (2.22) on the reference point (x, t) and the particle trajectory. 
The first contribution in (2.24) is proportional to lx- ql-2 and independent of 
the acceleration. This is the near field, which in a certain sense remains attached 
to the particle all through its motion. The second contribution is proportional to 
lx - q 1-1 as well as to the acceleration. This is the far field, which carries the 
information on the radiation field escaping to infinity. Whenever q (t) is smooth 
in t, the Lie nard-Wiechert fields are also smooth functions except at x = q ( t), 

where they diverge as lx- q(t)l-2 . The corresponding potentials have a Coulomb 
singularity at the world line of the particle. 

2.2 Newton's equations of motion 

We take now the point of view that the electromagnetic fields E, B are given. The 
motion of a charged particle, with chargee, position q (t), and velocity v(t), is then 
governed by Newton's equations of motion, 

d 
-(moyv(t)) = e(E(q(t), t) + c- 1v(t) x B(q(t), t)), 
dt 

(2.26) 

y(v) = 1jj1- (vjc) 2, which as an ordinary differential equation has to be sup
plemented with the initial conditions q (0), v(O). The force law is determined 
through the Lorentz force and thus (2.26) is also called the Newton-Lorentz equa
tions. The particle is relativistic with rest mass mo as measured through the re
sponse to external forces. Once the particle is dynamically coupled to the Maxwell 
field, mo will attain a new meaning. 
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2.3 Coupled Maxwell's and Newton's equations 13 

The (E, B) fields in (2.26) are not completely arbitrary. They are subject to the 
Maxwell equations with source (p, j). In other words, we have divided all charges 
into a single charged particle whose motion is determined through (2.26) and the 
rest whose motion is taken to be known. 

The Newton-Lorentz equations (2.26) are of Hamiltonian form. To see this we 
introduce vector potentials ¢, A such that 

E(x, t) = -V¢(x, t)- c- 1arA(x, t), B(x, t) = V x A(x, t). (2.27) 

Then the Lagrangian associated with (2.26) is 

To switch to the Hamiltonian framework, one introduces the canonical momentum 

e 
p = moy(q)i[ + -A(q, t) (2.29) 

c 

and obtains the Hamiltonian function 

H(q, p, t) = ((c p- eA(q, t)) 2 + m6c4) 112 + ecp(q, t). (2.30) 

In particular, whenever the fields are time independent, the energy 

£(q, v) = moy(v) + ecp(q) (2.31) 

is conserved along the solution trajectories of (2.26). 
It should be noted that in general the solutions to Newton's equations of motion 

(2.26) will have a complicated structure even for time-independent fields. This 
has been amply demonstrated for particular cases. Depending on how the external 
fields are chosen, the motion would range from regular to fully chaotic with a 
mixed phase space as a rule. 

2.3 Coupled Maxwell's and Newton's equations 

While for most practical purposes, barring a few exceptional cases, it suffices to 
use either Maxwell's equations with prescribed sources or Newton's equations 
with prescribed forces, from a more fundamental point of view such a procedure is 
unsatisfactory. Physically it would seem more natural to have a coupled system of 
equations for the time evolution of the charged particles together with their elec
tromagnetic field and to regard the two cases discussed above as emerging limit 
situations. If for the moment we restrict ourselves to a single particle, it is obvious 
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14 A charge coupled to its electromagnetic field 

how to proceed. From (2.2), (2.3) we have 

orB(x, t) = -\7 X E(x, t)' 

orE(x, t) = \7 X B(x, t)- e8(x- q(t))v(t) (2.32) 

with the constraints 

\7 · E(x, t) = e8(x- q(t)), \7 · B(x, t) = 0. (2.33) 

Moreover, from (2.26) we have 

d 
dt (moyv(t)) = e(Eex(q(t)) + E(q(t), t) + v(t) x (Bex(q(t)) + B(q(t), t))). 

(2.34) 

We added the external electromagnetic fields Eex, Bex, which will play a promi
nent role later on. They are derived from potentials as 

Eex = -Y'c/Jex, Bex = \7 X Aex · (2.35) 

We assume the potentials to be time independent for simplicity, although a con
siderable part of the theory to be developed will work also for time-dependent 
fields. As before, (2.32)-(2.34) are to be solved as an initial value problem. Thus 
E(x, 0), B(x, 0), q(O), and v(O) are supposed to be given. Note that the continu
ity equation is satisfied by fiat. 

Equations (2.32), (2.34) are the stationary points of a Lagrangian action, which 
strengthens our trust in these equations, since every microscopic classical evolution 
equation seems to be of that form. We continue to use the underlying electromag
netic potentials as in (2.27), (2.35). Then the action for (2.32), (2.34) reads 

A([q, ¢,A])= J dt[- mo(I- q(t)2) 1/ 2 - e(¢ex(q(t)) + cp(q(t), t) 

-q(t) · (Aex(q(t)) + A(q(t), t)))] 

+ ~ J dt J d3x[ (\lcp(x, t) + OtA(x, t)) 2 - (\7 x A(x, t)) 2]. 

(2.36) 

The only difficulty is that (2.32) and (2.33) taken together with (2.34) make no 
proper mathematical sense. As explained, the solution of the Maxwell equations is 
singular at x = q ( t), and in the Lorentz force we are asked to evaluate the fields 
precisely at that point. One might be tempted to put the blame on the mathematics 
which refuses to handle equations as singular as (2.32)-(2.34). However before 
such a drastic conclusion is drawn, the physics should be properly understood. The 
point charge carries along with it a potential which at short distances diverges as 
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2.3 Coupled Maxwell's and Newton's equations 15 

the Coulomb potential, cf. (2.24), and which therefore has the electrostatic energy 

I 

2 

R R I d3xE(x, t) 2 :::::: I drr 2 (r- 2 ) 2 =I drr-2 = oo. 

{lx-q(t)I::OR} 0 0 

(2.37) 

Taken literally, such an object would have an infinite mass and hence would not 
respond to external forces. It would keep its velocity for ever, which is inconsistent 

with what is observed. 
Thus we are forced to regularize at short distances the coupled system consisting 

of the Maxwell equations and Newton's equation of motion with the Lorentzforce. 
In carrying out such a program there are two, in part, complementary points of 

view. The first one, which we will not follow here, starts from the idea that regu
larization is a mathematical device with the sole purpose of making sense of a sin
gular mathematical object through a suitable limiting procedure. To illustrate this 
approach we can think of the following prominent mathematical physics example. 
The free scalar field, ¢(x), in Euclidean quantum field theory in I +I dimensions 

fluctuates so wildly at short distances that an interaction such as J d2 x V ( ¢ (x)) 
with V ( ¢) = ¢ 2 + A¢4 cannot be properly defined. One way, not necessarily op
timal, to regularize the theory is to introduce a spatial lattice with spacing a. 
Such a lattice field theory is well defined in any finite volume. On taking the 
limit a ---+ 0 along with a simultaneous readjustment of the interaction potential, 
V ( ¢) = Va ( ¢), a Euclidean-invariant, interacting quantum field theory is obtained. 
Ideally this limit theory should be independent of the regularization scheme. For 
instance one could start with the free scalar field in the continuum and regularize 

¢(x) as¢* g(x) with a suitable test function g concentrated at 0. Then the reg
ularized interaction is J d2 x V ( ¢ * g (x)) and in the limit g (y) ---+ 8 (y) a quantum 
field theory should be obtained identical to the one from the lattice regularization. 

In the second approach one argues that there is a physical cutoff coming from a 
more refined theory, which is then modeled in a phenomenological way. While this 
is a standard procedure, it is worthwhile to illustrate it again with a concrete exam
ple. Consider a large number (~ I 023 ) of He4 atoms in a container of adjustable 
size and suppose we are interested in computing their free energy according to 

the rules of statistical mechanics. The more refined theory is here nonrelativistic 
quantum mechanics which treats the electrons and nuclei as point particles carry
ing a spin ~, respectively spin 0. As far as we can tell, this model approximately 
covers the temperature range T = 0 K to T = 105 K, i.e. way beyond dissocia

tion, and the density range p = 0 to p = Pep. the density of close packing. Beyond 
these limits relativistic effects must be taken into account. However, there is a 
more limited range where we can get away with a model of classical point par
ticles interacting through an effective potential of Lennard-Janes type. Once this 
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pair potential is specified classical statistical mechanics makes well-defined pre
dictions at any T, p. There is no limitation in principle. Only outside a certain 
range of parameters would the classical model lose the correspondence with the 
real world. Already from the way the physical cutoff is described, there is a con
siderable amount of vagueness. How much error should we allow in the free en
ergy? What about more detailed properties like density correlations? An effective 
potential can be defined quantum mechanically, but it is temperature dependent 
and never strictly a pair potential. Despite all these imprecisions and shortcom
ings, the equilibrium theory of fluids relies heavily on the availability of a classical 
model. 

In the same spirit we modify the coupled Maxwell and Newton equations by 
introducing an extended charge distribution as a phenomenological model for the 
omitted quantum electrodynamics. The charge distribution is stabilized by strong 
interactions which act outside the realm of electromagnetic forces. On the classical 
level, say, an electron appears as an extended charged object with a size roughly of 
the order of its Compton wavelength, i.e. 4 x w-ll em. We impose the obvious 
condition that the extended charge distribution has to be adjusted such that, in 
the range where classical electrodynamics is applicable, the coupled Maxwell and 
Newton equations correctly reproduce the empirical observations. 

Such general clauses seem to leave a lot of freedom in the construction of the 
theory. However, charge conservation and the Lagrangian form of the equations 
of motion severely limit the possibilities. In fact, essentially only two models of 
extended charge distribution have been investigated so far. 

(i) The semirelativistic Abraham model of a rigid charge distribution. The 
chargee is assumed to be smeared out over a ball of radius Rep. This means that in 
(2.32)-(2.34) the 8-function is replaced by a smooth charge distribution ecp. cp(x) 

is taken to be radial, vanishing for lxl >Rep, and normalized as J d3xcp(x) = 1. 
Equivalently, having (2.32)-(2.34) recast in Fourier space, the couplings between 
the field modes with lkl ~ 1 I Rep and the particle become suppressed. This partic
ular choice for the internal structure of the charge is called the Abraham model 
(for a single nonrotating charge). For zero coupling the model is relativistic. How
ever, cp is taken to be rigid, thus velocity independent in a prescribed coordinate 
frame, which breaks Lorentz invariance. The standard examples are that the charge 
is uniformly distributed either over the ball, cp(x) = (4rr R~/3)- 1 for lxl ::::; Rep, 

cp(x) = 0 otherwise, or over the sphere, cp(x) = (4rr R~)- 1 8(1xl- Rep). In the 
quantized version of the Abraham model, cf. chapter 13 below, often a sharp cutoff 
in Fourier space is adopted, i.e. cp(k) = (2rr)-312 for lkl ::::; A = R; 1, cp(k) = 0 
otherwise; this has the slight disadvantage of being oscillating and having slow 
decay in position space. 
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Once the charge distribution is extended, besides its center of charge, also ro
tational degrees of freedom must be taken into account. The Abraham model al
lowing for a spinning charge will be discussed in chapter 10. Since the dynamical 
behavior then becomes more complex, it is advisable to omit spin in the first round. 

The Abraham model will be studied in considerable detail. While defined for 
all velocities lv(t) I < c, it becomes empirically inaccurate at velocities close to c. 
Despite this drawback we hope that the Abraham model will serve as a blueprint 
towards a more realistic description of matter. 

(ii) The Lorentz model of a relativistically rigid charge distribution. More in 
accord with special relativity is to require that ecp is the charge distribution in the 
momentary rest frame of the particle. While such a principle was already stated by 
Lorentz and Poincare, a satisfactory dynamical theory has been arrived at only very 
recently. As we will explain in section 2.5, in a relativistic theory translational and 
rotational degrees of freedom are intrinsically coupled. To gain an understanding 
of how relativistic invariance would modify the theory, we insert some features of 
the Lorentz model, although our understanding of its dynamical properties is far 
less developed than that of the Abraham model. 

We emphasize that for extended charge models the diameter Rep of the charge 
distribution defines a length (and upon dividing by c also a time) scale, relative to 
which the approximate validity of effective theories, like the Lorentz-Dirac equa
tion, can be addressed quantitatively. In fact, apart from the external forces, Rep is 
the only natural length scale available. 

2.4 The Abraham model 

Following Abraham, we model the charged particle as a spherically symmetric, 
rigid body to which the charge elements are permanently attached. The charge dis
tribution is prescribed and independent of the particle's velocity, which singles out 
the laboratory frame. In a relativistic theory the charge distribution would appear 
to be Lorentz contracted. To be specific the charge distribution ecp is assumed to 
be smooth, radial, and supported in a ball of radius Rep, and normalized toe, i.e. 

Condition (C): 

cp E C 00 (IR3), cp(x) = CfJr(lxl), cp(x) = 0 for lxl ::0: Rep, f d3xcp(x) = 1. 

(2.38) 

<) ecp(x) is the charge distribution and cp(k) is the form factor, since in Fourier 
space it multiplies the current as (2n) 312cp(k)J(k, t). <) 
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18 A charge coupled to its electromagnetic field 

Our goal is to set up the Abraham model as a well-defined dynamical system. 
Usually this point is taken for granted. Since the occurrence of ill-defined equa
tions of motion was one of our main objections to the 8-charge, it is worthwhile to 
understand why this objection is no longer valid for a smeared out 8. 

The equations of motion for the Abraham model are 

atB(x, t) = -V' X E(x, t)' 

atE(x, t) = V' X B(x, t)- ecp(x- q(t))v(t)' (2.39) 

V' · E(x, t) = ecp(x- q(t)), V' · B(x, t) = 0, (2.40) 
d 
dt (mbyv(t)) = e(Eex(q(t)) + Erp(q(t), t) + v(t) X (Bex(q(t)) + Brp(q(t), t))), 

(2.41) 

where we have set c = 1. In (2.41) we use the shorthand Erp(x) = E * cp(x) and 
Brp(x) = B * cp(x) so as to resemble (2.34). Strictly speaking also Eex, Bex should 
be smeared over cp; however, this would only amount to a redefinition of the exter
nal potentials. In contrast to Newton's equations of motion (2.26), for the Abraham 
model we denote the mechanical mass of the particle by mb to emphasize that this 
bare mass will differ from the observed mass of the compound object "particle 
plus surrounding Coulomb field". The external potentials ¢ex, Aex can be fairly 
arbitrary. We only require them and their derivatives to be smooth and locally 
bounded, to avoid too strong local oscillations. No condition on the increase at in
finity is needed, since lv(t) I ::S 1. However, it is convenient to have the energy, as 
defined in (2.44), uniformly bounded from below. To keep things simple we make 
the (unnecessarily strong) assumptions 

Condition (P): 

o/ex E C00 (ffi3 ) , Aex E C 00 (IR3 , lR3), o/ex :=:: cp > -00 . (2.42) 

Moreover, there exists a constant C such that IY'¢exl ::S C, IV' Aexl ::S C. 

The Abraham model is derived from the Lagrangian 

L = - mb(l - q2) l/2 - e(c/Jex(q) + c/Jrp(q) - q · Aex(q) - q · Arp(q)) 

+ ~ J d3 x ( cv ¢ + atA)2 - cv x A)2) . (2.43) 

Correspondingly, the energy 

(2.44) 

is conserved. 
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As for any dynamical system, the first step m dealing with (2.39)
(2.41) is to construct a suitable phase space. The dynamical variables are 
(E(x), B(x), q, v) = Y which is called a state ofthe system. We have q E IPi.3, v E 

V = { v I I vi < I}. In addition, the energy (2.44) should be bounded. Thus it is nat
ural to introduce the (real) Hilbert space 

(2.45) 

with norm liE II = (j d3 x IE(x) 1
2)112 and to define£ as the set of states satisfying 

IIYII£ = IIEII + IIBII + lql + ly(v)vl < oo. (2.46) 

In particular for the field energy, ! (II E 11 2 + II B 11 2) < oo. The norm II · II£ gives 
rise to the metric 

d(Y1, Y2) = IIE1- E2ll + IIB1- B2ll + lq1 -q2l + ly(v1)v1- y(v2)v2l· 
(2.47) 

In addition, the constraints (2.40) have to be satisfied. Thus the phase space, M, 
for the Abraham model is the nonlinear submanifold of£ defined through 

V' · E(x) = ecp(x- q), V' · B(x) = 0. (2.48) 

M inherits its metric from £. 
On various occasions below we will need the property that the system forgets 

its initial field data. For this purpose it is helpful to have a little bit of smoothness 
and some decay at infinity. Formally we introduce the "good" subset Mer c M, 
0 :::; CJ :::; 1, consisting of fields such that componentwise and outside a ball of 
radius Ro, lxl :::: Ro, we have 

IE(x)l + IB(x)l + lxi(IY'E(x)l + IY'B(x)l):::: C lxi-I-cr. (2.49) 

The Lienard-Wiechert fields (2.24), (2.25) are included in M 0 ; moreover, M 0 is 
dense in M. However Mer = 0 for CJ > 1, by Gauss's law (2.40) withe#- 0. 

The evolution equations (2.39)-(2.41) are of the general form 

d 
- Y(t) = F(Y(t)) 
dt 

(2.50) 

with Y (0) = Y0 E M. We tum to the question of the existence and uniqueness of 
solutions of the Abraham model (2.50). 

Theorem 2.1 (Existence of the dynamics for the Abraham model). Let the con
ditions (C) and (P) hold and let Y0 = (E0 (x), B0 (x), q 0 , v0) EM. Then the 
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integral equation associated with (2.50 ), 

t 

Y(t) = Y0 + J ds F(Y(s)), 

0 

(2.51) 

has a unique solution Y(t) = (E(x, t), B(x, t), q(t), v(t)) EM, which is contin

uous in t and satisfies Y (0) = Y0 . Along the solution trajectory 

(2.52) 

for all t, i.e. the energy is conserved. 

For short times existence and uniqueness follow through the contraction mapping 
principle with constants depending only on the initial energy. For smooth initial 
data, energy conservation is verified directly and by continuity it extends to all 
finite-energy data. Thus we can construct iteratively the solution for all times. 

We first summarize some properties of the Maxwell equations. They follow di
rectly from the Fourier and convolution representations (2.12), (2.13), respectively 
(2.16), (2.17). 

Lemma 2.2 In the Maxwell equations (2.2), (2.3), let ecp(x, t) = ecp(x
q(t)), j(x, t) = ecp(x- q(t))v(t), with prescribed t r+ (q(t), v(t)) continuous. 
Then (2.2), (2.3) has a unique solution in C(lR, L 2 EB L 2). The solution map 
(E0 , B 0) r+ (E(t), B(t)) depends continuously on (q(t), v(t)). 

Proof of Theorem 2.1: Let b > 0 be fixed and choose initial data such that 
£(Y0) ::: b. 
(i) There exists a unique solution Y(t) E C([O, 8], M) for 8 = 8(b) sufficiently 
small. 

We write (2.41) in the form 

d 
-(mby v(t)) = Fex(t) + Fini(t) + Fself(t) 
dt 

(2.53) 

by inserting E(x, t), B(x, t) from the Maxwell equations according to (2.16), 
(2.17). Let 
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Fex(t) = e-(Eex(q(t)) + v(t) X Bex(q(t)))' (2.55) 

Fini(t) = J d3x ecp(x- q(t))[otGt * E 0 (x) + V x Gt * B 0 (x) 

+ v(t) x orGt * B 0 (x) - v(t) x (V x Gr * E 0 (x)) J, (2.56) 
t 

Fseif(t) = J ds[- Y'Wt-s(q(t)- q(s))- v(s)or Wr-s(q(t)- q(s)) 

0 

+ v(t) x (V x v(s) Wt-s(q(t)- q(s))) J. (2.57) 

We now integrate both sides of (2.53) over the time interval [0, t]. The resulting 
expression is regarded as a map from the trajectory t c--+ (q(t), v(t)), 0 :S t :S 8, 
to the trajectory t c--+ (ij(t), v(t)) and is defined by 

t 

ij(t) = q 0 + J ds v(s), 

0 
t 

mby(v(t))v(t) = mby(v0)v0 + J ds(Fex(s) + Fini(s) + Fseif(s)), 

0 

(2.58) 

where Fex(s), Fini(s), and Fself(S) are functionals of q(·), v(-) according to 
(2.55)-(2.57). Since cp, W, <Pex, and Aex are smooth, this map is a contraction in 
C([O, t], JR3 x V), i.e. 

sup (liJ 2(s)- ij 1 (s)l + lvz(s)- v1 (s)l) 
O<::s<::t 

:S c(t, b) sup (lq 1 (s)- q 2 (s)l +I vi (s)- vz(s)l), (2.59) 
O<::s<::t 

with a constant c(t, b) depending on band c(t, b) < 1 for sufficiently small t. Such 
a map has a unique fixed point which is the desired solution (q(t), v(t)). By the 
Maxwell equations also B(x, t), E(x, t) are uniquely determined. 
(ii) The solution map Y0 c--+ Y(t) is continuous in M. 

This follows from Lemma 2.2 and the continuous dependence of (q(t), v(t)) on 
the initial data. 
(iii) The energy is conserved. 

We choose smooth initial fields such that E, B E C 00 (JR3) and 

(2.60) 
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Here a= (a1, a2, a3) is a multi-index with ai = 0, 1, 2, .... This subset is dense 
in M. By the convolution representation (2.16), (2.17) of the solution to the 
Maxwell equations we have E(x, t), B(x, t) E C 1([0, 8] x IR3) and IE(x, t)l + 
IB(x, t)l _:::: C(l + lxl)-2. Also v(t) E C 1([0, 8]). Thus we are allowed to differ
entiate, 

~ E(Y(t)) = y 3v · V + V · V¢ex(q) +I d3x(E · OtE + B · OtB) 
dt 

=I d3x(E · (\/ x B)- B · (\/ x E))= 0, (2.61) 

since the fields decay and hence the surface terms vanish. Thus E(Y(t)) = E(Y0 ) 

for 0 _:::: t _:::: 8. By continuity this equality extends to all of M. 
(iv) The global solution exists. 

From (iii) we know thatE(Y(8)) = E(Y0 ) _::::b. Thus we can repeat the previous 
argument for 8 _:::: t _:::: 28, etc. Backwards in time we still have the solution (2.16), 
(2.17) of the Maxwell equations, only the retarded fields have to be replaced by 
the advanced fields. Thereby we obtain the solution for all times. D 

Theorem 2.1 ensures the existence and uniqueness of solutions for the Abraham 
model. For initial data Y0 E M the solution trajectory t --+ Y (t) lies in the phase 
space M, is continuous in t, and its energy is conserved. We have thus established 
the basis for further investigations on the dynamics of the Abraham model. 

2.5 The relativistically covariant Lorentz model 

To improve on the semirelativistic Abraham model, following Lorentz, it is nat
ural to assume that when viewed in a momentary inertial rest frame the charge 
and mass distribution of the particle remain unchanged. This is what one would 
call a relativistically rigid extended charge. Our requirement fixes uniquely the 
four-current density. The equations of motion then follow from a relativistically 
covariant action. 

For obvious reasons we will switch to relativistic notation, where we follow the 
conventions of Misner, Thorne, and Wheeler. Our arena is the Minkowski space
time M4. A Lorentz frame, Ji, in M4 is specified through the tetrad {eo, e1, e2, e3} 

of fixed unit vectors. They have the inner product 

(2.62) 

where g 11 v is the metric tensor with goo = -1, g1111 = 1, fL = 1, 2, 3, and g11 v = 0 
otherwise. Therefore M4 can be identified with lR 1,3. In the given basis, a vector 
x E M4 is expanded as 

(2.63) 
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using the Einstein summation convention over repeated indices. We group x = 
(t, x) with t E lR the time and x E JR3 the space coordinate. The scalar product is 
x · y = g1lvx 11 yv and lxl2 = x · x. 

The motion of a particle is specified through its world line r c--+ q(r) 
parametrized in terms of the eigentime r, dr 2 = -dx · dx. Denoting by q differ
entiation of q( r) with respect tor, the four-velocity is u( r) = q( r). u is time-like, 
u · u = -1, and uo > 0 for a particle moving forward in time. In the given Lorentz 
frame we have 

( ) Y =(I - lvl2)-l/2 u = y, yv , (2.64) 

with v the usual three-velocity. 
If the charged particle is at rest, then, as before, its charge is smeared according 

to the charge distribution ecp. In addition we assume that now the bare mass, mb, 
is smeared also according to cp. In principle, one should distinguish between the 
charge and mass form factor. We suppress such a distinction, since it can be un
ambiguously recovered from the prefactors e and mb. By the definition of a rigid 
charge, we require that in any momentary rest frame the mass, respectively charge, 
distribution are given by mbcp, respectively ecp. 

Since our charged body is extended, in its kinematical description, besides q ( r) 
and the velocity u(r) = q(r), we have to specify its state of rotation. Let us in
troduce the (noninertial) body frame fbody through the tetrad {e;J11=0, ... ,3 of unit 
vectors. fbody is fixed in the charged body and thus comoving and corotating. We 
set e~ = u( r). {e;, e;, e~} gives then the spatial orientation of fbody in the momen
tary rest frame. In the course oftime Fbody evolves according to 

d I I 
-e11 = -n · e1l, 11 = 0, ... ,3, 
dr 

(2.65) 

where n is the antisymmetric tensor of the instantaneous rate of four-gyration of 
fbody as seen in the Lorentz frame FL. 

Even if there is no external torque acting on the rigid charged body, the frame 
fbody rotates. This is the famous Thomas precession, determined by the Fermi
Walker transport equation 

where 

d -e11 = -nFw · e11, 11 = o, ... ,3, 
dr 

f!pw = ti !\ u. 

(2.66) 

(2.67) 

Here the exterior product of two vectors is defined by a !\ b = a ® b - b ® a or, 
as acting on a vector c, (a!\ b) · c = a(b ·c) - b(a ·c). Together with the initial 
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conditions eo(O) = u(O), e11 (0) = e11 , fL = 1, 2, 3, (2.66) defines the noninertial 
frame :Fpw. 

If there is an external torque acting, then Fbody #- :Fpw and it is natural to intro
duce the intrinsic (Eulerian) four-gyration by 

(2.68) 

As n, nFw' also nE is anti symmetric and satisfies 

nE. u = o. (2.69) 

Therefore nE has only three independent components and is dual to a space-like 
four-vector WE which satisfies 

OE · WE = 0 , WE · U = 0 . (2.70) 

In :Fpw, WE is of the form (0, WE), where WE is the usual angular velocity vector 
which points along the instantaneous axis of body gyration in the space-like three
slice of FFW. For zero torque WE = 0. 

We conclude that relative to FFW the rotational state is either given by nE ( r) 
or by WE(r). WE(r) is space-like, lwE(r)l 2 :=:: 0. 

2.5.1 The four-current density 

Our task is to construct a relativistically covariant current density, which will serve 
both as the source term in Maxwell's equations and as the force, respectively 
torque, term in Newton's equations of motion. 

For a given world line let :F£ be the momentary rest frame at time r centered at 
q ( r) with spatial axes oriented as in FL. In the coordinates of :F£, by definition, 
the four-current density is given by 

j'(t', x') = e<;?r(lx'l)8(t')(l, 0). (2.71) 

Transformed to our laboratory frame FL the current density becomes 

j(x) = e<;?r(lx- q(ro)l)u(ro)lrr(ro). (2.72) 

Here rr(r) is the hyperplane defined by rr(r) = {ylu(r) · (y- q(r)) = 0} and 
the subscript in (2.72) means that for given x we have to choose ro such that 
x E rr ( ro), see figure 2.1. In general, there will be several such planes, see figure 
2.2. Of course, they contribute to the current only if x- q(ro) is space-like and 
the distance lx- q(ro)l satisfies lx- q(ro)l _::::Rep. Let us assume for the moment 
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Xo 

Figure 2.1: World line of an extended charge and the associated current density. 

Xo 

left center right 

Figure 2.2: World line of an extended charge with large acceleration and back
ward currents. 

25 
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26 A charge coupled to its electromagnetic field 

that with this restriction there is only a single hyperplane intersecting x. Then 

j(x) =I dre<pr(lx- q(r)l)u(r)8(r- ro)la(ro) 

=I dre<pr(lx- q(r)l)u(r)(l + ti(r) · (x- q(r)) )o(u(r) · (x- q(r))). 

(2.73) 

The additional term comes from the change in the volume element, since 

d 
-u · (x - q) = ti · (x - q) - u · u = 1 + ti · (x - q) . 
dr 

(2.74) 

Note that, because of 8(u · (x- q)), the factor u(1 + ti · (x- q)) in (2.73) may 
be replaced by u- f!pw · (x- q). The Thomas precession generates a current in 
addition to that due to translations. 

In general, the body-fixed frame will be rotated by n and we arrive at the final 
form of the four-current density as 

j(x) = 1 dre<pr(lx- ql)8(u. (x- q))(u _ n. ex_ q)). (2.75) 

One readily verifies the charge conservation 

Y'g ·j(x) = 0, (2.76) 

where Y'gf = (-ox0 f, Y' f)· 
Before proceeding to the action for the dynamics, we should understand whether 

the current (2.75) conforms with naive physical intuition. An instructive example 
is a uniformly accelerated charge, the so-called hyperbolic motion. We assume that 
the particle is accelerated along the positive 1-axis starting from rest at the origin. 
In the orthogonal direction the current traces out a tube of diameter 2R'P and it 
suffices to treat the two-dimensional space-time problem. The center, C, of the 
charge moves along the orbit 

(2.77) 

where g > 0 is the acceleration. The curves traced by the right and left ends, C+ 
and C_, are determined from (2.73) and are given in parameter form as 

C± = (0 ± R'Pg)t, g-1((1 + R'Pg)JI + g2t 2 -t)), t::: 0. (2.78) 

The equal-time distance between the center and C+ is t- 1 ((R'Pg) 2 + 2R'Pg)j(2g2 

(1 + R'Pg)) for large t and is thus well bounded. However the left end motion 
depends crucially on the magnitude of R'Pg. If R'Pg < I, then the distance to the 
center is t- 1((R'Pg) 2 - 2R'Pg)j(2g2 (1 - R'Pg)) for large t. On the other hand, for 
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Rrpg > 1, the left end moves into the past and the current density looks strangely 
distorted. To gain a feeling for the order of magnitudes involved we insert the 
classical electron radius. Then 

(2.79) 

which is far beyond the domain of the validity of the theory. Of course, one would 
hope that for reasonable initial data such accelerations can never be reached. But 
the mere fact that charge elements may move backwards in time is an extra diffi
culty. 

2.5.2 Relativistic action, equations of motion 

For given current density, j, the Maxwell equations read 

(2.80) 

where F is the antisymmetric electromagnetic field tensor of rank 2 and *F its 
star dual. Equations (2.80) can be regarded as the Euler-Lagrange equations of an 
action functional Af, which most conveniently is written in terms of a Lagrange 
density Lf(X) + Linr(x). The field part of the Lagrangian is given by 

1 
Lf(x) = --tr[F(x) · F(x)]. 

4 
(2.81) 

The interaction Lagrangian, Linr(x), is defined through minimal coupling. Were
call that (2.80) implies that F is the exterior derivative of a vector potential A, 
F = \7 g 1\ A. If we adopt the Lorentz gauge \7 g · A = 0, then 

Lint(X) = A(x) · j(x). (2.82) 

The variation of 

(2.83) 

with respect to A yields indeed (2.80). 
Thus we are left with writing down the particle Lagrangian. One might be 

tempted to simply take -mb J dr from the relativistic mechanics of a single 
particle. This cannot be correct, unless all mass is concentrated at the center, 
i.e. <p(x) = 8(x), since -mb J dr ignores the energy stored in the inner rotation. 
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Including rotation the Lagrangian density for the particle becomes 

T2 

Lp(x) =-J (1- 1!1E · (x- q)l 2) 112mbcpr(lx- ql)o(u · (x- q))dr, (2.84) 

TJ 

where q = q(r), U = u(r), and !1E = !1E(r) along the world line ofthe particle. 
Let us check that (2.84) yields the physically correct equations of motion when 

A(x) is taken to be given. We have 

Ap = J (£p(x) + £int(x))d4 x (2.85) 

and must work out the variation of the world line r c--+ q ( r) at fixed end points, 
oq(rJ) = 0 = 8q(r2), which induces also a change in the Fermi-Walker frame. 

The second independent variation is the body-fixed frame Fbody relative to FFW. 
Thereby we obtain two equations of motion, which we write as 

d 
-p(r) = f(r), 
dr 

d 
-s(r) + !1pw · s(r) = t(r). 
dr 

(2.86) 

(2.87) 

Let us discuss each equation separately. p is the momentum of the particle, 
related to the velocity by 

p = mgu. 

mg depends on lwEI and is defined by 

mg = [ (1- 1!1E · xl 2)- 112mbcpr(lxl)8(u · x)d4x. 
}jJI{l.3 

(2.88) 

(2.89) 

mg is the bare gyrational mass, a Lorentz scalar. For small gyration frequency it 
can be expanded as 

(2.90) 

with 

2 f 3 2 Inr = mb3 d xcp(x)x , (2.91) 

the moment of inertia in the nonrelativistic limit. f( r) in (2.86) is the Minkowski 
force 

f(r) = 11,3 F(x) · (u- n · (x- q))ecpr(lx- ql)o(u · (x- q))d4 x. (2.92) 
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It reduces to the Lorentz force, eF · u, in the case where F(x) is slowly varying on 
the scale of R'P. 

In the rotational equation (2.87), s is the four-vector of spin angular momentum 
and is related to the four-gyration by 

(2.93) 

with Ib the relativistic moment of inertia relative to q, 

h(lwEI)g = 11,3 (lxl 2g- x Q9 x)(l - IOE · xl 2)- 112mbcpr(lxl)8(u · x)d4x. 

(2.94) 

In (2.87) s is kinematically Fermi-Walker transported by Opw and changed 
through the external Minkowski torque t( r ). From the variation of (2.85) we obtain 

t(r) = { (x- q) 1\ (F(x) · (u- n · (x- q)))_lecpr(lx- ql)8(u · (x- q))d4x, 
}Tit 1,3 

(2.95) 

where by definition a 1_ = (g + u Q9 u) · a. In the case of slow variation ofF, (2. 95) 
becomes the BMT equation, cf. section 10.1. 

We remark that through (2.86), (2.87) the translational and rotational motion are 
coupled in a rather complicated way with some simplification for a slowly varying 
external potential Aex. 

Having discussed the action (2.83) for the field at prescribed currents and the 
action (2.85) for the particle at prescribed fields, the action for the Lorentz model 
of an extended charge is inevitable. The Lagrangian density reads 

(2.96) 

with the corresponding action 

A= l £(x)d4 x. (2.97) 

To include an external potential, Lint from (2.82) has to be merely modified to 

Lint(X) = A(x) · j(x) + Aex (x) · j(x). 
One has to be careful with the domain of integration, S. It is a region of M4 , 

which is bordered by two space-like surfaces, asi, i = 1, 2. One first fixes an 
interval [ T]' T2] of eigentimes. Restricted to a ball of radius Ri(J, a si = {yl u( Ti) 0 

(y - q( Ti)) = 0}, i = I, 2. aS 1, a 82 are then smoothly extended to hypersurfaces 
such that they do not intersect each other, see figure 2.3. The variation is carried 
out at fixed end points, which means that q(rJ), q(r2), nE(rJ), OE(r2), and A on 
the hypersurfaces a Si, i = I, 2, are prescribed. In addition we require a properly 
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Xo 

········· ····· ..... [)32 

Figure 2.3: Space-like boundary surfaces in the variation of the action. 

time-ordered history of momentary charge slices. Then the Euler-Lagrange equa
tions for (2.97) are given by Maxwell's equations (2.80), by Newton's equations 
(2.86) for the translational degrees of freedom together with (2.88), (2.89), (2.92), 
and by Newton's equations (2.87) for the rotational degrees of freedom together 
with (2.93), (2.94), (2.95), as a coupled set of equations for the extended charge 
and the Maxwell field. 

As for the Abraham model we should discuss the existence and uniqueness of 
solutions. This project is hampered by the fact that we have two constraints. The 
equator must have a subluminal speed of gyration, which is ensured by lwEIR'P < 

1. In addition, the charge slices have to move forward in time, which is ensured 
by I q I R'P < 1. The difficulty is that, even if these conditions are met initially, there 
seems to be no mechanism which ensures their validity later on. At present, the 
general Cauchy problem is known to have a solution only for a finite interval of 
time, whose duration depends on the initial data. 

Notes and references 

Sections 2.1 and 2.2 

The material discussed can be found in most textbooks. I find Landau and Lifshitz 
(1959), Panofsky and Phillips (1962), Jackson (1999), and Scharf (1994) particu
larly useful. 

Section 2.3 

In our history chapter, chapter 3, we discuss the Wheeler-Feynman approach 
which cannot be subsumed under short distance regularization. In the literature 
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the size of a classical electron, Tc], is usually determined through equating the rest 
mass with the Coulomb energy, mec2 = e2 / r cl, which gives r cl = 3 x 10- 13 em. 
This is really a lower bound in the sense that an even smaller radius would be 
in contradiction to the experimentally observed mass of the electron (assuming a 
positive bare mass, cf. the discussion in section 6.3). Milonni (1994) argues that 
due to quantum fluctuations the electron appears to have a classical spread, which 
is given by its Compton wavelength Ac =rei/a, with a the fine structure constant. 
Renormalization in Euclidean quantum field theory is covered by Glimm and Jaffe 
(1987) and Huang (1998). Effective potentials for classical fluids are discussed, 
e.g., in Huang (1987). 

Section 2.4 

The Abraham model was very popular in the early 1900s as studied by Abraham 
(1903, 1905), Lorentz (1892, 1915), Sommerfeld (1904a, 1904b, 1904c, 1905), 
and Schott (1912), among others. The extension to a rigid charge with rotation was 
already introduced in Abraham (1903) and further investigated by Herglotz (1903) 
and Schwarzschild (1903); compare with chapter I 0. The dynamical systems point 
of view is stressed in Galgani et al. ( 1989). The proof of existence and uniqueness 
of the dynamics is taken from Komech and Spohn (2000), where a much wider 
class of external potentials is allowed. A somewhat different technique is used 
by Bauer and Durr (2001). They also cover the case of a negative bare mass and 
discuss the smoothness of solutions in terms of the smoothness of initial data. 

Section 2.5 

This section is based on Appel and Kiessling (2001). Amongst many other results 
they explain the somewhat tricky variation of the action (2.97). Global existence 
of solutions is available in the case where the charge moves with constant velocity 
(Appel and Kiessling 2002). Appel and Kiessling (2001) rely on the monumental 
work of Nodvik (1964 ), but differ in one crucial aspect. Nodvik assumes that the 
mass of the extended body is concentrated in its center, which implies h = 0. 
Newton's equations for the torque degenerate then into a constraint, which makes 
the Cauchy problem singular. A discussion of the Nodvik model can be found in 
Rohrlich (1990), chapter 7-4. The relativistic Thomas precession is discussed in 
Thomas (1926, 1927), Moller (1952), and in Misner, Thorne and Wheeler (1973), 
which is an excellent source on relativistic electrodynamics. Another informative 
source is Thirring (1997). 

Of course, relativistic theories were studied much earlier, e.g. Born (1909). I 
refer to Yaghjian (1992) for an exhaustive discussion. The early models use a 
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continuum description of the extended charge where each charge element has a 
velocity. They are not dynamical models in our sense, simply because there are 
more unknowns than equations. Also inner rotation is neglected, which, as we dis
cussed, is not admissible in a relativistic theory. 

The current generated by a point charge can be written as 

00 

j(x) = e I dru(r)8(x- q(r)). (2.98) 

-oo 

McManus (1948) proposes to smear out the 8-function as 

00 

j(x) = e I dru(r)<pMM((x- q(r))2), (2.99) 

-00 

which is to be inserted in the Lagrange density (2.82). He does not identify 
the conserved four-momentum, see also Peierls (1991) for illuminating explana
tions. Schwinger (1983) discusses the structure of the electromagnetic energy
momentum tensor in the case of rectilinear motion of the charge. 

A more radical approach to a fully relativistic theory is to give up the no
tion of a material charged object and to regard electrons as point singularities 
of the Maxwell-Lorentz field. The guiding example are point vortices in a two
dimensional ideal Euler fluid, whose motion is governed by a closed set of differ
ential equations which are of Hamiltonian form with the 1- and 2-component of the 
position as a canonically conjugate pair. In electrodynamics such a program was 
launched by Born (1933) and Born and Infeld (1933) and has not lost in attraction 
even now, mostly through activities in high-energy physics and string theory. Still, 
to have meaningful Newtonian equations of motion for the singularities is not so 
readily achieved. A recent proposal, based on the Hamilton-Jacobi equation, has 
been made by Kiessling (2003). He also provides a coherent overview of earlier 
attempts. 
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