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EXISTENCE CONDITIONS FOR A CLASS OF MODULAR
SUBGROUPS OF GENUS ZERO

JOACHIM A . H E M P E L

Every subgroup of finite index of the modular group PSL(2, Z) has a
signature consisting of conjugacy-invariant integer parameters satisfying certain
conditions. In the case of genus zero, these parameters also constitute a prescrip-
tion for the degree and the orders of the poles of a rational function F with the
property:

F'(z) = 0 ==> either F(z) = F"(z) = 0, F'"(z) # 0, or F(z) = 1, F"(z) ± 0.

Functions correspond to subgroups, and we use this to establish necessary and suffi-
cient conditions for existence of subgroups with a certain subclass of allowable signa-
tures.

1. PRELIMINARIES

We identify the classical modular group PSL2(Z) with the group of self-mappings
of the upper half plane %, of the form r —> (ar + b)/(cr + d) where a, b, c, d are integers
such that ad — be = 1. It is well known that the field of functions automorphic with
respect to PSL2(Z) is the field of rational functions of just one such function J, analytic
in H, having multiplicity two at all points equivalent to i, multiplicity three at all points
equivalent to p, and normalised by J(i) = 0, J(p) = 1, where p = (1 + i\/3)/2.

Suppose now that F is a subgroup of finite index of PSL2(%>), and of genus zero.
Then again there exists a main function A, referred to in German as the "Hauptmodul",
such that the field of functions automorphic with respect to F coincides with the rational
functions of A. Since J is such a function, it follows that J = FoX, where F is a rational
function. Since we are free to replace A by M~xoA, where M is a Mobius transformation,
we are also free to replace F by F o M. In the sequel we shall call such a rational
function, determined up to composition with M, the J-defining function for the genus
zero subgroup.

In [3], the author described functions A in the case of no torsion, but in the general
setting of Fuchsian groups. The present paper may be read for its results on rational
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functions with certain prescribed multiplicities, without any reference to modular sub-

groups.

We consider rational functions F with the following properties

1. All points of multiplicity three are either zeros or poles of F,

2. All points of multiplicity two are either zeros of F — 1 or poles of F,

3. All other multiple points of F are poles of F.

These conditions can be stated in terms of the successive derivatives of F, for the case
20 ^ oo: If F'(zo) = 0, then either F(z0) = F"(z0) = 0 and F'"(z0) ^ 0, or F{z0) = 1
and F"(z0) ^ 0.

The conditions in the case z0 — oo are most easily stated in terms of the Laurent
series at infinity. Suppose F is finite at infinity and the Laurent series there is

F(z) = £ akz
k.

k=-oo

Then if a_i = 0 we have either a0 — a_2 = 0 and a_3 ^ 0, or a0 — 1 and a_2 ^ 0.

Taking advantage of the invariance of these conditions under Mobius transformations
of the z—sphere, we can place a pole at infinity, and we do so throughout this paper.
There is then a positive integer fiN such that the Laurent series at infinity is

n*) =
fc=-oo

and interest attaches to the orders of the other poles. From the above conditions it is
apparent that there exist polynomials E2, E3,P, Q and R, which we assume to be monk,
and a constant c such that

(1.1) F(Z) = cQ7T '

and

( L 2 ) F{Z) ~1 ~ cQ(z) '

where the product polynomial E2E3PR has no zero of multiplicity greater than one, and

shares no zero with Q.

There are many such sets of polynomials. A well known example is that correspond-

ing to the expression for J in terms of the standard Hauptmodul for the subgroup F(2):

P(z) = 2 2 - 2 + l ,
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E3(z) = E2(z) = 1

_ 2 7

Suppose that the degrees of the various polynomials are denoted by the correspond-
ing lower case letters. For j = 1 . . . N, we denote by Hj the orders of the poles of F,
which, for 1 ^ j < TV — 1, are the multiplicities of the distinct zeros pj of Q. We thus
have

N-l

and from (1.1) and (1.2) it is clear that

/j,N = 3p + e3 - q — 2r + e2 - q.

N

We denote the degree of F by \x = Y^ ^j- Then

(1.4) fj, = 3p + e3 = 2r + e2.

For the reader's guidance, we note that capital letters other than F and TV will
denote polynomials. In writing the various equalities involving polynomials and their
derivatives we shall usually omit explicit reference to the argument z, thus making sums
and products those of functions rather than numbers.

We introduce the polynomial 5 by

S(z)=f[(z-Pj).
3=1

The greatest common divisor of Q and its derivative Q' is the polynomial Q/S. We also
introduce the polynomial V by setting

From (1.1) and (1.2) we have the following two formulae for the derivative of F

F' = -^(ZE3P'S + E'3PS - E3PV),
cQo

and

F' = -^-(2E2R!S + E'2RS - E2RV).
cQb

https://doi.org/10.1017/S0004972700040351 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040351


520 J.A. Hempel [4]

Since P and R have no common factor and between them account for all the zeros of F',

there exists a constant k such that

kP2 = 2E2R'S + E'2RS - E2RV:

kR = 3E3P'S + E'3PS - E3PV.

The following lemma is simply the Riemann-Hurwitz relation stated for the function
F, and we give the short direct proof.

LEMMA 1 . The number N of distinct poles ofF, the degrees e2, e3 of the polyno-
mials E2, E3, and the degree n of F are related by

P R O O F : From the equalities just displayed it follows that

p
cQS'

From this we see that, at infinity

F'(z) = -Z^+^-
c

On the other hand from (1.1) we have

F(z) = -z
c

and so

() +
c

Comparing these expressions we see that k = fin and that

From (1.4) it follows that

2 1
g(M - e3) + ^ - e2) - \i

and so
fi = N-2 + -e3 +

 1-e2,

which was to be proved. D

We note that the numbers /z, e3, e2 and V̂ are Mobius invariant and the lemma holds
regardless of whether or not there is a pole at infinity. As a bonus in the case of our
normalisation we obtain that k = fj.^, and we note for future reference the formulae

(1.6) UNP2 = 2E2R'S + E'2RS - E2RV,
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(1.7) nNR = 3E3P'S + E'3PS - E3PV,

'

The significance for the subgroup F of the various parameters is as follows. Referring
to a connected fundamental domain for F, the numbers ej for j = 2,3 are the numbers
of inequivalent fixed point vertices of order j , N is the number of inequivalent cusps,
and n is the index of F in the modular group. The orders Hk of the poles of F are the
cusp widths, or fan widths, of the inequivalent cusps. For further information we refer
the reader to Gunning [2].

In Section 2 we state and prove our main result, leaving till Section 3 the proof of a
key lemma.

2. T H E M A I N R E S U L T

We now adopt a different convention regarding the labelling of the cusp widths, or
equivalently, the orders of the poles of F. Let Hi... HK be the distinct cusp widths that
occur in F and let vk be the frequency of [ik, that is, the number of inequivalent cusps

K K
with width /i*. Then clearly Y2 vk = N, and ^2 Vk^k = A4-

fc=l k=\

An array of integers (n; N, e2, e3, K, //&, Uk), with e2, e3 ^ 0, and /i, iV, K, fik, v^ ^ 1
and satisfying the Riemann-Hurwitz relation

K

(2.1) ] T vkiik = fi = 6(7V - 2) + 3e2 + 4e3,
jt=i

will be referred to as an allowable signature. Not every allowable signature occurs as the
signature of some modular subgroup. We shall say that such signatures are not realised.

DEFINITION 2: We say that F is of low torsion and high frequency, if for some k,

Hk ^ 2, and fjt ^ TV - 2 + e2 + e3.

It is clear that, for a low torsion and high frequency subgroup, 1 ^ k ^ K ^ 3, and

e2 + e3 ^ 2.

To state our main Theorem we first define the rational functions F2, F3, F4 , F5, by

4{z2-z + l)3

27z2(z - I ) 2 '

(z4 + 4z3 + 6z2 + Viz + 9)3

F2(z) =

F3(z) =

F<(z)=(z2 + UZ + V3

108z(z-l)4 '
{z4 + 228z3 + 494z2 - 228z + I)3

1728z(a:2 - l lz - I)5
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THEOREM 3 . The only low torsion and high frequency subgroups of genus zero

that exist are those with the following signatures and J-defining functions F:

(i) (ft; TV, e2, e3, K, fik, vk) = (3 ; 2,1,0,2, m = 2, H2 = 1, vi = 1, »i = 1),

(ii) (n;N,e2,e3,K,nk,uk) = (4;2,0,1,2, /zi = 3, ̂ 2 = l ,^i = 1 , ^ = 1),

(iii) For p i - 2 , 3 , 4 , 5 ,

(fj.-N,e2,e3,K,nk,uk) = I - — ; - , 0 , 0 , 1 , / i i , ^ = 7 ) 1

for ^ = 3 , 5 .

(iv) For ^ = 2,3,4,5, TV > 3, ^N even, ^N ^ 6(TV - 2),

(/i; TV, e2, e3, /if, M*, V*) = [e{N -2);N, 0,0,2, /z1:^2 = ^ ( 6 - m), vx = N - 2, v2 = 2) ,

F( 2 ) = F m (z N"2) for /xj = 2,4, and F(z) = F w (z<N~2)/2) for ^ = 3,5.

Note that case (iii) can be subsumed in case (iv) by allowing /zi = fi2.

It follows that there are allowable signatures with arbitrarily large values of/i, which
are not realised. This answers in the negative a question posed by Millington [5, p. 356].

When TV = 4 and e2 = e3 = 0 there are fifteen allowable signatures, six of which are
realised. Of these six, three are low torsion and high frequency. Of the nine non-realised
signatures six correspond to low torsion and high frequency cases excluded by the above
Theorem. When TV = 5 and e2 = e3 = 0 there are fifty eight allowable signatures, twenty
six of which are realised. Of these twenty six, two are low torsion and high frequency. Of
the thirty two non-realised signatures twelve correspond to low torsion and high frequency
cases excluded by the above Theorem. A broader aim motivating the present work is to
account for non-realisation in all cases.

Much recent work has been devoted to the identification of congruence subgroups,
see Hsu [4] and the references quoted therein. The present work makes no distinction
between congruence and noncongruence subgroups. We remark that, in the torsion-
free genus zero case, all subgroups are congruence when TV = 4, and no subgroups are
congruence when TV = 5. For details see Sebbar [6].

We defer to Section 3 the proof of the following key lemma.

LEMMA 4 . Suppose that T is a low torsion and high frequency subgroup, and

that /ii is the frequent cusp width of the definition. If there exists fik ^ n\ then

Otherwise 12/ii = /i(6 — Hi).
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P R O O F O F T H E O R E M 3: Suppose first that MI is the only cusp width that occurs.

Then /x = /V/zi, by the first equality in (2.1), and then Lemma 4 implies that

12 = JV(6 - MI)-

The only solutions in positive integers of this equation are Mi = 2,3 ,4 ,5 , with TV
= 3,4,6,12 respectively. Comparing the same equality with the right hand equality
in (2.1), we see that e2 = e3 = 0. This gives us case (iii) of the Theorem.

Suppose now that vx = N - 1, i/2 = 1. It follows that e2 + e3 ^ 1, and so either
e2 = 1| 63 = 0, or e2 = 0,e3 = 1. In either case (2.1) can be written in the form

Mi + M2 = (6 - Hi)(N - 2) + 3e2 + 4e3.

On the other hand Lemma 4 gives

12M2 = 6(6 - m){N - 2) + (6 - Mi)(3e2 + 4e3).

From these we obtain

4e3),

and we deduce cases (i) and (ii) of Theorem 3 if e2 + e3 = 1. (If e2 = e3 = 0 we have

Mi = M2> which gives case (iii) again).

Finally we suppose that V\ — N — 2, and u2 = 2. Then e2 = e3 = 0, and (2.1)

reduces to

which is equivalent to the conclusion of Lemma 4. The significance of Lemma 4 in this
case lies in the exclusion of a distinct /X3- Thus we deduce case (iv) of Theorem 3.

The existence of J-defining functions F in all cases of Theorem 3 is a matter of
calculation of their respective formulae, which we leave as exercises for the interested
reader. Alternatively the reader can simply verify that the given formulae satisfy the
description of Section 1. This completes the proof of Theorem 3. D

3. P R O O F OF LEMMA 4

This Section is a continuation of Section 1, where we established the formulae (1.6-
8). In [1] Atkin and Swinnerton-Dyer had suggested taking derivatives in simplifying the
task of finding the J-defining function by equating coefficients in the identity

P(z)3E3(z) - R(z)2E2(z) - cQ(z) = 0.

The basic idea is expressed in (1.8), namely, the zeros of F' are double zeros where P = 0,
and simple zeros where R — 0. We develop this idea further.

https://doi.org/10.1017/S0004972700040351 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040351


524 J.A. Hempel [8]

We do not apply the conditions of Lemma 4 till the very end, so the reader may
regard this Section as presenting the groundwork for algorithms for finding ./-defining
functions in the general case of genus zero. In fact such algorithms were used for both
finding the functions Fj appearing in the Theorem 3, and enumerating the genus zero
cases with N = 4,5 and 6.

We anticipate the situation of Lemma 4 by setting the ^ of that Lemma equal to
/i^. Instead of (1.3), we now write,

K K

(3.1) Q = Y[S? and S =
i=i

where the Sj are monic polynomials whose distinct zeros are those zeros of Q which are
of order fij. The sum of the degrees of the 5,is N — 1, and we note that deg Sj = fj for
j < K and deg SK = f/r — 1 • Recalling that the last pole order /J,K is the order of the
pole of F at infinity, we rewrite (1.6) and (1.7) as

(3.2) HKP2 = 2E2R'S + E'2RS - E2RV,

(3.3) nKR = 3E3P'S + E'3PS - E3PV.

On formally eliminating R between these identities we find that

P{&P-E3E2V
2) = S{2iiKE2R'-3E3E2VPl+3E3E2SP'-E'3E2VP-E3E'2VP+E3E'2SP).

Since P and S are coprime we have a polynomial U such that

(3.4) ii\P = E3E2V
2 + SU,

and

(3.5) 2nKE2R' = 3E3E2VP' + UP- 3E3E'2SP' + E'3E2VP + E3E'2VP - E'3E'2SP.

By examining the leading terms in (3.4) we see that U has leading term

K — fi)zN~3+e3+e2 when this is non-zero, and thus has degree at most N — 3 + e3 + e2.

From (3.3) we obtain

' = 3E3SP" + (3(E3S)' + E'3S - E3V)P' + ({E'3S)' - (E3V)')P.

Substituting this in (3.5) we have, after some tidying,

6E3E2SP" + (6E3E2S' - 5E3E2V + 8E'3E2S + 3E3E'2S)P'

(3.6) + {-U - 2E3E2V + 2E'3'E2S + 2E'3E2S' - 3E'3E2V + E'3E'2S - E3E'2V)P = 0.

From (3.4) we see that

(3.7) ii\P' - E'3E2V
2 + E3E'2V

2 + 2E3E2W + S'U + SU'.

https://doi.org/10.1017/S0004972700040351 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040351


[9] Modular Subgroups 525

We could differentiate again and substitute in the previous expression to eliminate
P and its derivatives, but refrain from doing so. Instead we examine what happens at
points where 5 = 0. On setting 5 = 0 in (3.4) and (3.7), and substituting the resulting
expressions for P and P' in (3.6), we see that when 5 = 0,

E3E2{6S' - 5V)(E'3E2V
2 + E3E'2V

2 + 2E3E2VV + S'U)

+ (-U - 2E3E2V + 2E'3E2S' - 3E'3E2V - E3E'2V)E3E2V
2 = 0.

Since E3E2 ^ 0 at points where 5 = 0 we can divide by E3E2 and obtain, after a
factorisation,

(3.8) (5 ' - V){\2E3E2VV + 6E3E'2V
2 + 8E'3E2V

2 + UV + 6S'U) = 0,

at points at which 5 = 0.

We now observe from the expressions (1.3) and (1.5) for Q and V, that, if the order
of pj is fij, then

For Hj — 1, we have 5 ' — V — 0 at such points, so (3.8) gives no information; but for
Hj > 1 it implies that 5, divides (12E3E2V + 6E3E2V + 8E'3E2V + U)/J.J + W.

The leading term in this expression is ii{\2p,K — /i(6 - Hj))zN~3+e3+e2. It follows
that if 12/Ufi- ^ n(6 - Hj), and fij ^ 2 then the degree of Sj, namely Uj, can not be larger
than N — 3 + e3 + e2. Conversely, if u3 ^ N — 2 + e3 + e2, we have 12/x*- = (6 — Hj)n-

With j = 1, this is Lemma 4. D
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