
THE DISTRIBUTION OF SEQUENCES MODULO 1 

ALAN ZAME 

Introduction. In a recent paper (2), Helson and Kahane consider the 
problem of the existence of real numbers x such that the sequence (\n x) 
(when reduced modulo 1) is not summable by a given regular Toeplitz method, 
where (\n) is a lacunary sequence of positive real numbers. Thus, as an example, 
they show the existence of uncountably many x such that the sequence (6n x) 
does not have a distribution function modulo 1, where 6 is some fixed num
ber > 1 . 

The purpose of this paper is twofold. The first is to exhibit a large class of 
sequences of functions, characterized by certain growth properties, which can 
easily be shown to have the above non-summability property for uncountably 
many values of the argument. This class of sequences includes, in particular, 
the two classes most commonly studied, namely, lacunary and exponential 
sequences. The second question is to determine the distribution functions that 
can arise as the distribution functions modulo 1 of sequences generated in a 
natural way by sequences of functions. Under the assumption of a stronger 
growth property, we shall show that all possible distribution functions do in 
fact arise. 

We might mention briefly some reasons for considering growth properties. 
Slowly increasing sequences such as (log n) cannot have distribution func
tions modulo 1 because their values "bunch up." On the other hand, func
tions such as polynomials are too well behaved to exhibit many anomalies. 
Thus, if p is a polynomial with at least one irrational coefficient (other than 
the constant term), then the sequence (p(n)) is uniformly distributed (mod 1). 
If all the coefficients are rational, then the sequence (p(n)) takes on only a 
finite number of values modulo 1. Thus the most natural sequences from our 
point of view are the ones generated by rapidly increasing sequences of 
functions. For a discussion of the above-mentioned results, the reader is 
referred to the expository paper by Cigler and Helmberg (1), which contains 
a thorough bibliography through about 1960. 

1. Definitions. We shall be concerned entirely with sequences modulo 1 ; 
i.e., when we write a sequence (xn) we shall only be concerned with the 
corresponding sequence of fractional parts. A distribution function will be 
any non-decreasing function mapping the unit interval I into itself and the 
end points onto the end points. If (xn) is a sequence and d is a distribution 
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function, then we say that (xn) has d as its distribution function, if, for 
every number a Ç I, 

1 n 
l im~ Z) xfe) = d(a), 
w-̂ oo ™ k=l 

where x is the characteristic function of the interval [0, a]. If the indicated 
limit fails to exist for some a, then the sequence (xn) does not have a dis
tribution function. If the sequence (xn) has the function d(x) = x as its 
distribution function, then it is said to be uniformly distributed. 

Property A. Let (nk) be an increasing sequence of positive numbers tending 
to infinity, and let / b e a continuous function. Then we say that / has Pro
perty A (relative to (nk)) if the following condition holds: Given any <5 > 0 
there exists a p > 1 such that if k is any positive integer and a and p are any 
two real numbers satisfying 

(i) & > a > pn\ 
(ii) f([a, j8]) contains an interval of length 1, 

then 

m f ([ctnk+l/nk, / 3 W * + I / W A ] ) 

contains an interval of length 8/2. 

Property B. Let g be any continuous function and let (fn) be a sequence 
of strictly increasing continuous functions each tending to infinity. Suppose 
further that, given any 8 > 0, there exists a number p, with \imk^œ fk(p) = oo y 

such that if n is any positive integer and a and fi are any two numbers satis
fying 

(i) 0 >a>fk(p), 
(ii) g ([a, /3]) contains an interval of length 5/2, 

then 

(2) g(fn+i(fn~1([o^1 &]))) contains an interval of length 1. 

Then we say that the pair {g, (fn)} has Property B. 

Of course, Property B is a generalization of Property A. In the next section 
we shall see that it is very easy to prove that sequences satisfying the above 
conditions—and one additional trivial condition—will fail to have distribu
tion functions for certain values of their arguments. 

2. THEOREM 2.1. Suppose (nk) is an increasing sequence of positive numbers 
tending to infinity and that f is a continuous function having Property A (rela
tive to (nk))j and suppose that for every positive integer n there exists a number 
Nn such that 

(3) fib^i Nn]) contains an interval of length I. 

Then, given any sequence (In) of closed subintervals of 1", each of whose lengths 
is at least 8 > 0 (where 8 is an arbitrary positive number), there exist uncount-
ably many x such that, for every integer k > 1, f(xnk) G IkJ of course (mod 1). 
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Proof. It is trivial to see that if for each sequence (In) as described above 
we may find an appropriate x, then we may in fact find uncountably many 
such x for each (In) ; cf. (6). Hence we need only demonstrate the existence 
of one such x. 

Now, let (In) be any sequence of closed intervals with infn (length of 
In) = à > 0. We may assume that 5 is small and that in fact the length of 
each interval In is equal to 5. We may also assume that 1 = ri\ ( < n2 < . . . , 
of course). Finally, note that if f([a, b]) contains an interval of length 1, then 
we may find [c, d] C [a, b] such that f([c, d]) C In (mod 1) and f([c, d]) 
contains an interval of length 5/2 (mod 1). 

Given the 8, we can find p corresponding to it as in Property A. By (3), 
we can find an interval [«i, /3i], with «i > p, such that/([«i, /3i]) C I\ (mod 1) 
and/([ai , jSi]) contains an interval of length 8/2. By (1), it now follows that 
f([ain2

y fix12) contains an interval of length 1; so we may find [a2, j32] such that 
/([«2, £2]) C I2 (mod 1), f{[a2, P2]) contains an interval of length 5/2, and 

[«2, &] C [*in\ 0iw«]. 

Then a2 > «f2 > pn\ By (1), it again follows that/([a:2
n3/W2, /32

W3/W2]) contains 
an interval of length 5/2; so we may find [a3, Pz] C [a2

ns/n2, /32
n*/n2] such that 

/([«3, ^3)] C ^3 (mod 1) and /([c^, ft]) contains an interval of length 8/2. 
Again, a3 > a2

nzlni > £W3. We repeat this process inductively. Having found 
[ai, ft], . . . , K_i , ft-i] such that 

(i) f([au ft]) C J, (mod 1) (i = 1, 2, . . . , £ - 1), 
(ii) /[(a^, ft]) contains an interval of length 5/2, 

(iii) a, > 0% 
we can find \ak, ft] C fot_in*/n*-1, ftfc-iw*/n*_1] such that conditions (i)-(iii) hold 
for i = k. We thus obtain a nested sequence of non-empty closed intervals 

K ft] D . . . D W<"*, &1**] D . . . 

and, by compactness, we can find a number 6 in their intersection. But then 
0nk e [ak, ft] and hence /(0**) G /* (mod 1). 

THEOREM 2.2. Suppose that {g, (fn)} has Property B and further that for 
each integer m there exists an integer Nm > m such that 

(4) g([m, Nm\) contains an interval of length 1. 

Then, given any sequence of closed intervals {In), with the infimum of their lengths 
positive, there exist uncountably many numbers 6 such that 

g(f*(fi)) 6 h (mod 1) (* = 1, 2, 3, . . .)• 

The proof of this theorem parallels that of 2.1 and will be omitted. 

COROLLARY 2.3. Suppose (nk) is any sequence of positive numbers with 
inffc (nk+\ — nk) = e > 0. Then the conclusions of Theorem 2.1 are valid with 
f being any one of the following: 
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(i) / a function whose derivative f is positive and non-decreasing for x suffi-
ciently large, say x > M; 

(ii) / any non-constant polynomial; 
(iii) f(x) = x (6); 
(iv) f(x) = Ax", where A ^ 0 and a is positive) 
(v) f(x) = (p(x))a, where a is any positive number and p is any non-constant 

polynomial which is eventually non-negative; 
(vi) / any periodic, continuous function with range containing an interval 

of length 1. 

Proof. In all cases condition (4) is satisfied. We thus only need to show 
that the indicated functions have Property A, or deduce the conclusion from 
another part of the corollary. 

(i) Given any ô > 0 (we may assume <5 is small) let 

p = max((2/5)1 / e ,M). 

Suppose k is any positive integer and a and /3 are as in Property A. Then 

f(fink+i/nk} _ f^ank+1/nk^ _ (Qnk+l/nk _ ^Jfc+i /»*)/ 7 (£ ) 

for some £ G [an*+i/n*, /3n*+i/n*]. Hence this is 

> (fi - a)a<n*+1-n*)/n*//(ê) > (fi - a)a*/n*f(Ç) 

>{fi- a)pf(ï) > 03 - «)(2/ô)/ ,(f) 

> 0 8 - a ) / M (2/5) > (f08) - / ( a ) ) (2/8) > 1 

where /(/3) - / ( a ) = jf'0?)(j8 - a) , 77 6 [a, 0]. We used the fact that / ' was 
non-decreasing. 

(ii) and (iii) are trivial, (iv) follows from (i) by noting that if A6nk £ h 
(mod 1) and we set <j> = 6l/a, then/($Wfc) is in Ik (mod 1), where / is the func
tion of part (iv). 

(v) If p(x) = pn xn + • . . + po (where pn ^ 0), then if na > 1, the 
result follows from (i). If 0 < an < 1, then we observe that 

l i m ^ (/>(*)« - (pnx
nY) = 0 

and the result follows easily from (iv). 
(vi) We show that / has Property A. Let 5 > 0 be arbitrary. Then there 

exists, by uniform continuity, a number r > 0 such that if f(\a, /3]) contains 
an interval of length <5, then /3 — a > r. Let P be the period of / , and let 

p = max (1, (P/r) 1 / e ) . 

Suppose that fe is any positive integer and ft > a > pnk and /([a, 13]) contains 
an interval of length 5/2. Then (3 — a > r, so that 

pnk+i/nk - ank+i/nk ^ ( £ _ a | ^/n* ^ f ^ € ^ p^ 

The result follows. 
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COROLLARY 2.4. Let fn(x) = h(n)xln, where (ln) is a strictly increasing 
sequence of positive numbers, 

(h{n + l ) ) z- > (h(n))1-^ > 0 for all n 
and 

Umn_,œ(h(n + l)/h(n)ln+l/ln) = oo. 

Then, given any sequence (In) of closed intervals the infimum of whose lengths 
is positive, there exist uncountably many 6 such that 

fn(0) e L (mod 1) (n = 1, 2, 3, . . .). 

Proof. Let g(x) = x. Then condition (4) is certainly satisfied. Hence we 
need only show that the pair {g, (fn)} has Property B. To do this, let ô > 0. 
Let N be an integer such that for n > N 

h(n + l)/h(n)l*+i/l" > 2/5. 

Let p be a number such that x > £> implies that 

a*n+i-*« > 2/Ô for w = 1, 2, . . . , N. 

Now let m be any positive integer and a and 0 any two numbers such that 
0 - ô/2 > a > £w. Then we have 

4+ i ( / .T103)) -Uiifm-'ict)) = fm+i((P/h(m))1/ln) -fm+l«a/h(m))1,ln) 

= him + 1) SQlm+l/lm __ alm+l/lms > HtK + l) 

(h(m))lm+l/lm Œ ' (h(m))lm+1/lm 

X (0 - a)a^^-^i^ > {him + l)/h(m)lm+l/lm)(d/2)pam+l-lm\ 

If m > iV, then fe(w + l)/h(m)lm+l/lm > 2/5, while if w < N, then 

p(lm + l-lm) ^ 2 / 5 . 

In either case, both numbers are > 1 and hence 

fm+lifm-'iP) ~ fm+l(fm-lia)) > 1 

and the result follows. 

An example of such a sequence of functions (fn) is given by 

fn{x) = n\xl~^'n\ 

The sequence (ln) is needed only to provide for the required approximations 
when n is small. An examination of the previous proof yields the following 
result: 

COROLLARY 2.5. Suppose limw_>00/^(n+ l)/h(n) = oo. Then, with (In) as 
usual, we may find x such that for all n sufficiently large 

h{n)x 6 In (mod 1). 

https://doi.org/10.4153/CJM-1967-064-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-064-0


702 ALAN ZAME 

THEOREM 2.6. Let (hn) be a lacunary sequence of numbers, i.e., there exists 
a number r > 1 such that hn+i/hn > r for all n. Suppose (In) is a sequence of 
closed intervals with the corresponding lengths at least 2/r, r as indicated. Then 
there exist uncountable many x such that hn x 6 In (mod 1), n = 1 , 2 , 3 , . . . . 

Proof. The proof follows the lines already indicated. At the nth step we 
obtain an interval Un of length at least 1/r which is a subinterval of In (mod 1). 
Its image under the map x —» (hn+i/hn)x is of length at least 1 and the argu
ment can be repeated. 

The following result is now trivial. 

THEOREM 2.7. Let (sn) be a sequence of functions satisfying any of the con
ditions listed in 2.1-2.5. Then there exist uncountably many x such that the 
sequence (sn(x)) does not have a distribution function (mod 1). 

Proof. Let (an) be any sequence of 0's and l's for which 

lim sup - 23 1 = lim sup - ^ 1 = 1. 
ak=l ak=0 

Let In = [0, 1/4] if an = 1 and In = [1/2, 3/4] if an = 0. Then we may find 
uncountably many x such that, for n sufficiently large, sn(x) £ In (mod 1), 
and this sequence (sn(x)) obviously cannot have a distribution function. 

Note that this theorem does not include lacunary sequences. However, in 
this case we can make an even stronger statement. 

THEOREM 2.8. Let (fn) be a sequence of continuous functions satisfying either 
the conditions of Corollary 2.3 or the following: fn(x) = \nx, where Xi < X2 < 
. . . < Xn < . . . is an increasing sequence of positive members such that there 
exists a b > 0 and a subsequence XW1 < XW2 < . . . < \nk < . . . such that 

(0 >»*+1 > (1 + ô)Xn* (* = 1 , 2 , 3 , . . . ) , 
(ii) lim inf^œ k/nk > 0. 

Then, in either case, the set of x for which the sequence (fn(x)) does not have a 
distribution function (mod 1) is dense and uncountable (in the first case we 
restrict ourselves to the interval [M, <»), M as in the corollary). 

Proof. We shall just prove the density result; uncountability follows in the 
usual manner. For simplicity, assume that M = 0. Let (a, b) be any sub-
interval of (0, oo ). We wish to find x Ç (a, b) for which (sn(x)) does not 
have a distribution function. 

If we refer to the proof of Corollary 2.3 (i), or to Theorem 2.6 applied to 
the sequence (X^), using the exponential rate of growth of these sequences, 
we arrive at the following fact: if TV is a sufficiently large integer, and (In) is 
any sequence of closed intervals of lengths at least 1/(27V), then it is possible 
to find a sequence of integers (nk) of density at least 1/N, i.e., 

liminf-.X) 1 > 1/N, 
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such that there exists an x in (a, b) such that 

(5) snh(pc) G h (mod 1) for k = 1, 2, 3, . . . . 

We can now prove our theorem in the usual manner: let (aI) be any se
quence of integers, 0 < at < 2N — 1, such that, for each integer k, 

0 < k < 2N - 1, 

lim sup~ ^ 1 = 1. 

We now choose 

/*[a*/(2i\0, (a, + 1)/(2N)], k = 1, 2, 3, . . . . 

If now x G (a, 6) such that (5) holds, then the sequence (sn(x)) cannot have 
a distribution function. 

The class of functions included in Theorem 2.8 contains all lacunary 
sequences as well as polynomials in xn. We thus obtain as particular corollaries 
the result of Helson and Kahane as well as a generalization of Vijayaraghavan's 
result on the sequence {xn)\ see (6). Under certain circumstances it is possible 
to make even stronger statements about the exceptional sets, but we shall 
not go into that now. The reader should also bear in mind tl|ie facts that 
under the conditions of Corollary 2.3(i) a well-known result of Koksma (3) 
will give the result that the sequence (jn{%)) is uniformly distributed (mod 1) 
for almost all x > 1 (in the sense of Lebesgue measure), and a result of Weyl 
yields the same information about lacunary sequences, see (7)j 

In addition to giving us information about the distribution functions of 
certain sequences, the above theorems are translatable into th0 language of 
diophantine approximation where many of them state that given any sequence 
(an) and any e > 0 we may find a number x such that, for every n, 

\sn(x) — an\ < e (mod 1). 

We shall not discuss this matter further, but turn our attention instead to 
another distribution question in the next section. 

3. Our principal objective in this section will be to prove the following 
theorem : 

THEOREM 3.1. Let d be an arbitrary distribution function and Ut (nk) be any 
sequence of real numbers satisfying 

l i m ^ œ ( ^ + i - nk) =oo. 

Then there exists a number 6 such that the sequence (6nk) has d as its distribution 
function. 
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I should mention that the conditions of this theorem are more stringent 
than earlier growth restrictions. Whether these conditions could be weakened 
I do not know. We should also remark that if the given distribution function 
d is continuous, then the theorem is easy to prove. The difficulties arise only 
when d is not continuous, because in this latter case if a sequence (xn) has d 
as its distribution function and a sequence (yn) is given, with 

limw_>00(^ - xn) = 0 (mod 1), 

then it does not follow that (yn) has d (or even any function) as its distribu
tion function. 

LEMMA 3.2. Let (yn), 0 < yn < 1, be any sequence that is uniformly distri
buted (mod 1 ). Let d be any distribution function and let 

df{w) = d(w + 0) = limt^w+0d(t). 
Let 

g(x) = ini{w | d'(w) > x}. 

Finally, let zn = g{yn), n = 1, 2, 3, . . . . Then the sequence (zn) has d' as its 
distribution function. 

Proof. Since 

d'(a + 0) = lim d\i) = lim lim d{w) = d{a + 0) = d'(a), 

d' is continuous from the right. Now, if g{x) < a, then 

mi{w | d'(w) > x] < a 

so that d'(w) > x for w > a. Hence 

-t N ] N 

lim sup— X x(zn) = lim sup— X) xfeGO) 
N^oo i V ra=l N^co i V w = l 

1 N 

< lim sup— X) ^Cy») = d'(w) 

(where x is the characteristic function of [0, a] and \p is the characteristic 
function of [0, df (w)]) for every w > a. On the other hand, if g(x) > a, then 
df (a) < x} so 

lim sup — ( X) *(*») ) < lim sup — ( X) $ 6 0 ) 

= 1 -d'(a) = 1 - d'(a + 0) 

where <j> and $ are the characteristic functions of (a, 1] and (d'(a), 1], re
spectively. Thus izn) does indeed have d' as its distribution function. 

For future reference we also note some further properties of d'. In the first 
place, d'(w) = d(w) at those w at which d is right continuous. Furthermore, 
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if df is discontinuous at a, then g has a period of constancy at d'(a)} namely, 
g is constant on the interval (d! (a — 0), d'(a + 0)]. To see this, we note 
that on the one hand 

mi{w\d'(w) > d'(a + 0)} = a 

so that g(d'{a + 0)) = a. On the other hand, if / > d'(a — 0), then 

inf{w | d'(w) > t\ > a 

so that g (J) > a, proving the last assertion. Finally, 

d'ia - 0) = lim d'(w) = lim lim d(t) = lim d(*). 
w-^a—Q w-^a—0 t->w+0 *-»a—0 

Hence, d'(a - 0) = d(a - 0). 
Now, let (en) be any sequence of positive numbers tending to 0, and let 

(zn) be as above. We now define a new sequence (xn) as follows: 
(i) If d is right continuous at zn, let xn = zn — en (or let xn = en if 

%n — *n < 0 ) . 

(ii) If d is left continuous at zn, but not right continuous, let xn = zn + ew 

(or xre = 1 — e* if zn + en > 1). 
(iii) Suppose that <i(̂ n — 0) = a < d(zn) = (3 < d(zn + 0) = y. 

Let ni < n2 < . . . < nk be the sequence of all of those indices for which znk = zni 

and let mi <...< trijc < ... be any subsequence of (nk) for which 

hm - 2-f ! = _ • 
&->oo ™ mi^nk T ^ 

Now, let x„ = 2n - eM if w = ^ i for some i (or #w. = ew if zn — en < 0), and 
let x„ = 2W + en (or 1 — ew if zn + ew > 1) if n = nk for some k, but n ^ mt 

for any i. 

LEMMA 3.3. The sequence (xn) constructed above has d as its distribution 
function. 

Proof. We should first note that we have not really altered the distribution 
function by our redefinition when zn ± en is either > 1 or <0 , because in 
both cases we have sequences tending to 0 or 1. 

By an earlier remark, 

lim ± £ 4>{zn) = d(a + 0) - d(a - 0) 

where </> is the characteristic function of the point set {a}. Furthermore, 
suppose that b < a < c. Then, for n large, zn £ [0, b] implies that xn £ [0, a], 
and xn G [0, a] implies that zn £ [0, c\. Hence, 

-t N -i N 

d'(b) < lim inf — X x W < 1™ sup — X x(pcn) < d'(c) 
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where x is the characteristic function of [0, a]. Hence 

1 N 

d(a - 0) < lim inf — E xOO 

iV->oo ^ w = l 

1 JY 

< lim sup — ]T X&n) < d(a + 0). 
iV->oo ^ V W = l 

If d is continuous at a, then the limit in question does exist and is equal to 
dia). Suppose then that d is not continuous at a. We must then consider 
three cases: 

(i) Suppose d(a + 0) = d(a). Then, if zn = a, xn > b for n large. Thus 

lim inf ~ f ) x W > d'(b) + (d'(a) - d'(a - 0)). 

This means that 
1 N 

lim inf-^ £ x(pcn) > d'{a - 0) + <Z'(a) - d'(a - 0) = d(a). 

(ii) Suppose that d(a — 0) = d(a). If sw = a, then xw < c for w large. 
Hence 

lim sup-jj: £ x(xn) < d'(c) - (d'(a + 0) - d'(a - 0)) 
JV"-*x> I V w = i 

so that 

lim sup ^ £ x W < <*'(<* + 0)) - d'(a + 0) 
N-^œ iy n=l 

+ d'{a - 0) = d'(a - 0) = d(a - 0) = d(a). 

(hi) Suppose that d(a — 0) < d{a) < d(a + 0). Then, if sw = a, either 
xB < a or xH > a, the former occurring with frequency 

d(a) - d(a - 0) 
d(a + 0) - d(a - 0) * 

Then 

lim inf - E x W > d'(a - 0) + -77—77^—777 ^ lim X) «CO 

. , « . _ » , + < , « . + 0 , - ,«. - o))Gff--;(:gô)) 
= d(a). 

Similarly we can show that 

lim sup- - £ x W <d(a). 
N-ÏOD i V 

Thus, in any one of the possible cases the appropriate limit relations hold 
and it follows that (xn) has d as its distribution function. 
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We are now in a position to prove our Theorem 3.1. 

Proof of Theorem 3.1. We may assume, wi thout loss of generality, t ha t 
ôjc = nk+1 — nk > 0 for all k. Let ô = min* 5kf and let hk = minn>Â; 8n. Finally, 
let ei = l and ek = 2e~h^~^ for k > 1. Note t ha t ek > 0 and tha t l i m * ^ ek = 0. 
Define the interval Inj for each integer n, as follows: 

(i) If d is r ight continuous a t zni let In = [zn — en, zn — en/2] (or [0, en/2] 
if zn - en < 0) . 

(ii) If d is left continuous, bu t not right continuous, a t zn, let 

In = [Zn + €w /2 , Zn + €n] (o r [1 - €n/2, 1] if ^ + €n > 1 ) . 

(iii) If d is neither left nor right continuous a t zn, we follow the construc
tion prior to Lemma 3.3 and let 

h = [Zn - en, zn - en/2] (or [0, €n/2] if zn - en < 0) , 

or 

i» = [zn + €n/2, 2„ + cn] (or [1 - ew/2, 1] if zn + en > 1). 

In each case, the length of In is \en. By Lemma 3.3, we need only demon
s t ra te the existence of a 6 with 

0»* G J* ( m o d i ) , fe = 1 , 2 , 3 , . . . , 

to complete the proof of the theorem. 
Let A be any number such t ha t 
(i) Ahk - hk-x > log 2 for all & > 1, 

(ii) Ahx/ni > log 2. 
Such a choice of A is possible since the sequence (hk) is non-decreasing. Let 
[71, Mil = J i ( m o d 1), with 71 > eA, and let on = 7 i l M l , ft = /*i1 /n i . Then 
0 £ [a, 0] implies t h a t 0"1 £ /1 (mod 1). Let [uu Vi] = [ai*2, Pi12]. Then 

»i - «1 > (ft - « i )a i 5 1 > 7 i 5 l M l > 2. 

Hence we may find [72, ju2] = ^2 (mod 1), [72, M2] C W\, V\]. Let a2 = 721/W2, 
/32 = M21/W2. Then a2 > Mi1/W2 = «i, 02 < fli1/W2 = ft, so [a2, ft] C [alt ft] and 
0 G [«2,1^2] implies t h a t 0^2 G 72 (mod 1). We continue this process inductively. 
Having chosen [ak, ft] C [ak-i, ft-i] so t h a t 0 G K , ft] impl ies^* G lk (mod 1), 
we let [uk, vk] = [«*»*+!, ftw*+i]. Then 

vk-uk = Mjt»*+i** - 7^*+i/«* > Gu, - 7*)7*5*/w* > ic* 7iôfc 

= e—hk-i e
A8k \ eAhk—hk-i > 2 

so we may find [7^+1, A^+I] = Ik+1 (mod 1), [7^+1, /^+i] C [uk, vk]. Let 

https://doi.org/10.4153/CJM-1967-064-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-064-0


708 ALAN ZAME 

Then ak+1 > M/c1/w*+1 = ak and ft+i < ft, so [ak+u ft+i] C [a*, ft] and if 
0 G [a*+i> ft+iL then 0n*+1 Ç 7fc+i (mod 1). We thereby obtain a nested se
quence of closed intervals 

Wu ft] D [a2j ft] D • • • D K ft] D . . . 

and the point 0 in their intersection has the property that 

dn* e h (mod 1), k = 1,2, 3, 

We can generalize this result in a fairly obvious manner. 

Property C. Let h be a continuous function and let (/re) be a sequence of 
continuous, increasing functions with Y\mx^œfn{x) = oo for every n. Suppose 
further that there exists a number p with \\mn_^œfn(p) = oo and a sequence 
(ew) of positive numbers tending to 0, such that if m is any positive integer 
and a and fi are any two numbers for which 

(i) 0 > a > / „ ( £ ) , 
(ii) A ([a, j(3]) contains an interval of length em/2, then it follows that 

h(Jm+i{fm~l ([a,/3]))) contains an interval of length 1. 
Then we say that the pair {h, (fn)} has Property C. 

THEOREM 3.4. Suppose {h, (fn)} has Property C and that for each positive 
integer m there exists an integer Nm such that h([m, Nm}) contains an interval 
of length 1. Then, if d is any distribution function, there exists a real number 6 
such that the sequence (h(fn(6))) has d as its distribution function. 

COROLLARY 3.5. Let h be a function with a positive, non-decreasing derivative 
for x > M. Let (nk) be an increasing sequence of numbers with 

lim^fafc+i — nk) = 0 ° . 

Then, if d is any distribution function, there exists a 6 such that the sequence 
(h(dnjc)) has d as its distribution function. 

COROLLARY 3.6. Let (Xk) be any sequence of positive numbers with 

l i m ^ (Xft+i/Xfc) = oo. 

Let d be an arbitrary distribution function. Then there exists a 6 such that the 
sequence (\k 6) has d as its distribution function. 

An example of a sequence of this latter type is (n\). 
For some conditions which could be used instead of Property C, cf. (4). For 

the question of the distribution functions of the sequence (xan), when a is an 
integer greater than 1, see (5). It would be interesting to investigate sequences 
of this type when a is not an integer, but in this case we have neither the 
approximation technique used in the second half of this paper nor the ergodic 
properties of the transformation x —* ax at our disposal. 
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