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A. Weil proposed in his book "Foundations of algebraic geometry" several

problems concerning differential forms on algebraic varieties, S8 KoizumiJ)

has proved that if ω is a differential form on a complete variety U without

multiple point, which is finite at every point of IT, then ω is the differential

form of the first kind. The following example shows that on everywhere nor-

mal varieties with multiple points this statement holds no more that is: A

differential form on a everywhere normal variety which is finite on every simple

point of its variety is not always the differentia! form of the first kind.

In the projective space of dimension 3 with the field of characteristic 0 as

universal domain, we consider the variety V2 with homogeneous equation X*4

= Xι4 + X2

4. Let k be a defining field of Y and (xθ9 xi9xuxύ a set of homo-

geneous coordinates of a generic point P of ¥ over k.

1) Put ~j = x9 ~~ =zy, --- = z --- - u9 •--» = v, ~^w.
Λ o XQ XQ X\ %\ X\

Since * [ 1 , x9 y, z]9 h[u9 1, v9 w\ fc[#o/*2, X\lxi9 1, Xτ/xil, k[xo/Xz, X\/x%9 x«lx*9 I ]

are integrally closed, Y is everywhere normal And it is easily seen that

(1, 0, 0, 0) is the only singular point of V.

2) Consider .the differential form ω = I/23 dxdy on V defined over k\ ω is

finite on every point of Y except (1, 0, 0, 0).

= x%dx -f y%dy.

^ = + ~ dzdx = ~^dxdz - - ^ dudv - ^ dudw etc.

to* = 1 + v4.

This shows the assertion.

3) ω is not the differential form of the first kind.

Put x = r, y/x = 5, z/x = ί.
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On the locus ϋ of (r, s. t) over k the point (0, 0? 1) is the simple point of

IT with uniformizing parameters r, s.

~ dxdy = -— drds .

-^rpf is n o t in t h e s p e c i a l i z a t i o n r i n g of (0, 0 ? 1) in k(r, s , t ) .
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