A NOTE ON THE DIFFERENTIAL FORMS ON EVERYWHERE NORMAL VARIETIES

YÛSAKU KAWAHARA

A. Weil proposed in his book "Foundations of algebraic geometry" several problems concerning differential forms on algebraic varieties. S. Koizumi" has proved that if ω is a differential form on a complete variety U without multiple point, which is finite at every point of U, then ω is the differential form of the first kind. The following example shows that on everywhere normal varieties with multiple points this statement holds no more; that is: A differential form on a everywhere normal variety which is finite on every simple point of its variety is not always the differential form of the first kind.

In the projective space of dimension 3 with the field of characteristic 0 as universal domain, we consider the variety V^2 with homogeneous equation $X_3^4 = X_1^4 + X_2^4$. Let k be a defining field of V and (x_0, x_1, x_2, x_3) a set of homogeneous coordinates of a generic point P of V over k.

1) Put $\frac{x_1}{x_0} = x$, $\frac{x_2}{x_0} = y$, $\frac{x_3}{x_0} = z$; $\frac{x_0}{x_1} = u$, $\frac{x_2}{x_1} = v$, $\frac{x_3}{x_1} = w$.

Since k[1, x, y, z], k[u, 1, v, w], $k[x_0/x_2, x_1/x_2, 1, x_3/x_2]$, $k[x_0/x_3, x_1/x_3, x_2/x_3, 1]$ are integrally closed, V is everywhere normal. And it is easily seen that (1, 0, 0, 0) is the only singular point of V.

2) Consider the differential form $\omega = 1/z^3 dxdy$ on V defined over k; ω is finite on every point of V except (1, 0, 0, 0).

$$z^{3}dz = x^{3}dx + y^{3}dy.$$

$$\frac{1}{z^{3}}dxdy = +\frac{1}{y^{3}}dzdx = \frac{1}{x^{3}}dxdz = -\frac{1}{2w^{3}}dudv = \frac{1}{2v^{3}}dudw \quad \text{etc.}$$

$$w^{4} = 1 + v^{4}.$$

This shows the assertion.

3) ω is not the differential form of the first kind. Put x = r, y/x = s, z/x = t.

$$k(\mathbf{P}) = k(\mathbf{r}, s, t).$$

Received Oct. 15, 1950.

¹⁾ On the differential forms of the first kind on algebraic varieties. Journal of the Mathematical Society of Japan. Vol. 1 (1949).

On the locus U of (r, s, t) over k the point (0, 0, 1) is the simple point of U with uniformizing parameters r, s.

$$\frac{1}{z^3}dxdy=\frac{1}{r^2t^4}\,drds\,.$$

 $\frac{1}{r^2t^3}$ is not in the specialization ring of (0, 0, 1) in k(r, s, t).

Mathematical Institute, Nagoya University