Enhanced Resolution from Full-Field Ptychography with an Electron Microscope Pixel Array Detector

Yi Jiang¹, Yimo Han², Zhen Chen², Veit Elser¹, David A. Muller^{2,3}

^{1.} Department of Physics, Cornell University, Ithaca NY, USA

² School of Applied and Engineering Physics, Cornell University, Ithaca NY, USA

³ Kavli Institute at Cornell for Nanoscale Science, Ithaca NY, USA

In STEM, complete information about the scattering potential of a sample is encoded in the distribution of transmitted electrons. To measure the entire diffraction pattern, a new generation of high-speed, momentum-resolved detectors has been developed, enabling new imaging modes. Unfortunately, most of the new detectors were designed for low-dose x-ray and biological imaging. Their pulse counting architectures are limited to beam currents of less than ~ 0.1 pA/pixel, making them poorly suited to high-speed scanning electron diffraction applications.

Recently, we developed electron microscope pixel array detector (EMPAD) [1] that has a high dynamic range (1,000,000:1) while preserving single electron sensitivity. The camera has fast readout speed (0.86 ms/frame) and can record all the scattered electrons for atomic-resolution probes. These properties open the doors for new quantitative imaging applications including strain fields in 2D materials [2] and polarization vortices in ferroelectrics [3].

Here we show that applying electron ptychography to full diffraction patterns obtained by EMPAD leads to higher resolution reconstructions than ADF-STEM or prior bright-field ptychography techniques. Figure 1(a) shows a diffraction pattern extracted from a single molybdenum atom from a 4D data set of a monolayer MoS₂ recorded on an aberration-corrected FEI Titan at 80 keV and 7 pA. We used the super-resolution ePIE algorithm [4] and simultaneously reconstructed the transmission function and probe functions with a pixel size of 0.11 angstrom, roughly half of the scan step size. Compared with annular dark field (Figure 1b) and integrated center-of-mass images (Figure 1c), the ptychography reconstruction (Figure 1d) achieves a higher resolution and is more robust to noise and aberrations in the probe. The sulfur monovacancy (indicated by red arrows) is also well-resolved, as shown in Figure 3c.

We explored the role of higher angle diffraction information by applying a mask to each CBED pattern before ptychographic reconstruction. The cutoffs are chosen to be integer multiples of the convergence semi-angle (α =21.4 mrad). When only using the central bright-field disk, the reconstructed phase (Figure 2a) is similar in resolution to iCoM and ADF. As the cutoff increases, atoms become sharper until about 3 α (Figure 2b-d). However, the probe's shape is similar at different cutoffs (Figure 3a), indicating resolution improvement is mainly due to the electrons collected at high scattering angles.

References:

[1] M. Tate et al, Microscopy and Microanalysis 22 (2016), p. 237-249.

- [2] Y. Han et al, Microscopy and Microanalysis 22, (2016), p. 870-871.
- [3] K. Nguyen et al, Microscopy and Microanalysis 22, (2016), p. 472-473.
- [4] A. Maiden et al, J. Opt. Soc. Am. 28 (2011), p.604-612.

[5] Y. Jiang is supported by DOE grant DE-SC0005827. Facility support from NSF DMR-1120296. Helpful discussion with Martin Humphries and Peter Nellist are acknowledged.

Figure 1. (a) CBED pattern from a monolayer MoS_2 . (b) ADF image. (c) Integrated center-of-mass image. (d) Phase of the specimen transmission function reconstructed by ptychography.

Figure 2. Ptychography reconstructions using data collected within cutoff angles of α , 2α , 3α and 4α , where α is the convergence semi-angle. The average CBED patterns are shown at the top-right corners.

Figure 3. (a) Line profiles across probe intensity reconstructed using data collected within different cutoff angles. (b) Reconstructed probe intensity at 4α . (c) Line profile across three sulfur (S) columns as indicated in Figure 2d. Tails from the Mo atoms are present at 2 and 5 Å.