
ANTICOMMUTING LINEAR TRANSFORMATIONS 

H. KESTELMAN 

1. It is well known that any set of four anticommuting involutions (see §2) 
in a four-dimensional vector space can be represented by the Dirac matrices 

<» *«=(;•-!)•*•• - t:-h- - (si-)-*-- (B,;-) 
where the Bi>r are the Pauli matrices 

(2, * , - (j _;), * , - (; j).*.. - <_? j). 
(See (1) for a general exposition with applications to Quantum Mechanics.) 
One formulation, which we shall call the Dirac-Pauli theorem (2; 3; 1), is 

THEOREM 1. If Mu ikf2, ikf3, M\ are 4 X 4 matrices satisfying 

MrMs + MMt = 2ôrsl4 (r, 5 = 1 , 2 , 3, 4), 

then there is a matrix T such that 

T-'MrT = B2,r^ (1 < r < 4), 

and T is unique apart from an arbitrary numerical multiplier. 

Various proofs of this theorem are known; those due to Van der Waerden 
(4) and Pauli (2; 1) depend on ideas belonging to representation theory; the 
most elementary proof (ignoring the uniqueness of T) is given by Dirac (2). 

Eddington has shown (5) that a set of anticommuting 4 X 4 involution 
matrices cannot include more than five members, and this was extended by 
Newman (6) to involution matrices of arbitrary order. This had been investi
gated earlier by Hurwitz (7). 

In this note we give a completely elementary proof of Theorem 1 (on the 
lines of Dirac's proof), giving an explicit calculation of T (Theorem 5 and 
corollary) ; the generalization of Theorem 1 to linear transformations of spaces 
of dimension 2k is given in Theorem 7. In Theorem 2 we prove a generalization 
of the Eddington-Newman result in which the restriction to involution 
matrices is removed. 

2. Notation. If V is an ^-dimensional vector space, we write d(V) = n, 
and if L is a linear transformation (L.T.) of V into itself we write d(L) = n. 
If M is an n X n matrix, we write d(M) = n\ the transpose of M is denoted 
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ANTICOMMUTING LINEAR TRANSFORMATIONS 615 

by M'. The identity mapping in Fis denoted by 1 or lw, and the same symbols 
are used to denote the unit matrix. 

If X is an eigenvalue of L, ©\(L) denotes the space spanned by the eigen
vectors of L belonging to X. L is called regular if 0 is not one of its eigenvalues. 
A subset 5 of F is said to be stable for L if L (S) C S. If d ( V) = n, any ordered 
set {0i, 02, . . . , 0n} which span V is called a fom's of V\ if S3 denotes this 
basis and c is a non-zero complex number then c93 denotes the basis {c0], c02, 
. . . , c/3n}. We say the matrix M represents the linear transformation L in 33 if 

n 

M = (wrs) where L/3S = X] ^rs0r (1 < s < w) ; 

this is denoted by L ~ M or by L ~ M (in 93) if the basis is to be made 
explicit. Plainly if L ~ M (in 93) then L ~ M (in cS5). 

L is called an involution if L2 = 1 and L ^ ± 1 ; the involution matrix 
diag.(lWf — ln) is denoted by /2w. L\ and L2 are said to anticommute if 
Lt\Li2 = — JL 2i^i. 

3. It will be convenient to list some elementary properties of matrices and 
L.T.'s: it is assumed throughout that the spaces are of finite dimensions; 
most of the proofs are omitted. 

(i) If d(M) = 2n then M anticommutes with I2n if and only if 

M=\p o ) w i t h d{p) = d{Q) = n' 

and M is then an involution if and only if PQ = ln, that is, 

\x o ) and \Y o ) 
anticommute if and only if X~lY = — Y~lX. If Li, L2, . . . , L2ff are anti-
commuting involutions then 

iqLiL2. . • L2Q 

is an involution which anticommutes with each of Lh L2, . . . , L2(Z; (the pro
duct of an odd set, three or more, will commute with the factors), 

(ii) If A and B are regular and anticommute then, since 

det(AB) = det(BA) ( - 1)<*(A), 

and since these determinants are not zero, d{A) must be even, 
(iii) If L is an involution in V then for every x in V 

(1 + L)x e gi(L), (1 - L)x e <S-i(£), 2x = (1 + L)x + (1 - L)x, 
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616 H. KESTELMAN 

and so F is the direct sum of ®i(L) and S_i(L) ; in any basis formed by uniting 
a basis of ®i(L) and a basis of @_i(L), L ^ diag. (lm, — ln) for some m, n. 

(iv) The basic simple result, to be used repeatedly, is that if S and T are 
L.T.'s of V, and ST = kTS where k is a non-zero number, and X is an eigen
value of T, then S maps 0£\(T) into Sx/* (7"), and 

(3) 5{gx(T)} = gx,*(T) 

if 5 is regular. (The proof is trivial: Tx = \x implies T(Sx) = k~lS{Tx) 
= &_1A5x, and if 5 is regular we have (since S(V) = V with d(V) < <») 
S-iT = k~lTS~\ so that S~l maps (gx/Jfc(T) into @x(r).) 

In particular, if an involution L anticommutes with a regular 5 then 

5{<Si(L)} = S-i(L) and S{<g_i(L)} = @x(L), 

and it follows from (iii) that d{@i(L)} = d{(§_i(L)} = ^d(L), and that, in 
a suitable basis of V, L ~ Iin (n = %d(L)). 

(v) If Si and £2 both anticommute with T, then S1S2 commutes with T, 
and so (by (iv)) every eigenspace of T is stable for S1S2. In particular, if 
•Si, S2, Sa are anticommuting involutions then 

(4) iS2Sz is an involution which maps @r(.Si) onto itself (r — ± 1), 

(this depends on (i) and (3)). 

4. The following generalizes the Eddington-Newman result. 

THEOREM 2. Suppose L\, L2, . . . , L2jc are regular anticommuting L.T.'s of 
V; then 2k is a divisor of d(V). 

Proof. For k = 1 we appeal to § 3 (ii). Now suppose, if possible, that the 
theorem is true for k = 1, . . . , K — 1 but false for k = K. This means that 
there is a space IF in which there are 2K regular anticommuting L.T.'s whereas 
2K is not a divisor of d(W). We prove that this leads to a contradiction. 

Let A be the least value which d(W) can have in the conditions postulated, 
and suppose IF chosen so that d(IF) = A. Let (Sx be an eigenspace of L\, by 
§ 3(v), @x is stable for L2LS (3 < 5 < 2K), and the L2LS anticommute in 
Sx; hence, by the induction hypothesis, 2K~l\d(Ç£\). Since Lr(d\) = (§±x for 
1 < r < 2K by (3), the direct sum of ©x and QLx is stable for all these Lr; 
thus, in a suitable basis of IF, 

(5) Lr - \^r P^J where d(Mr) = 2d(<gx), 

which means d(Mr) is divisible by 2K while d(Lr) is not. Hence d(Ar) is 
positive and not divisible by 2K. But, by (5) and the assumption on the Lr, 
the Ar are regular and they anticommute; thus d(AT) > A = d(Lr), which 
contradicts d(Mr) > 0. 

It is shown by Newman (6) that if d(V) = 2n then there is a set of 2n + 1 
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ant icommuting involutions in V (see also § 7 below), bu t it must not be 
concluded t h a t an arbi t rary set of ant icommuting involutions in V which 
has fewer than 2n + 1 members is par t of a maximal set. Thus , with n = 2, 

-82,0, $2 ,1 , ^ 2 . 0 ^ 2 , 1 

ant icommute , bu t it is easily verified (using § 3(i)) t ha t an involution which 
ant icommutes with the first cannot ant icommute with the other two. T h e 
same is t rue if the L.T. 's are regular bu t not involutory; it is easily verified 
(using § 3 Ci)) f ° r the ant icommuting matrices 

^ 1 0 0 0 ^ /o 1 0 0^ ( ° 1 0 o\ 
0 - 1 0 0 1 0 0 0 - 1 0 0 0 
0 0 2 0 

Vo 0 0 -2) 
» 0 0 0 2 

Vo 0 2 0/ 

J 0 
^ 0 

0 
0 

0 
- 4 

4 
0/ 

M anticommute s with the first then 

[O b 0 °) 
M = 

a 0 0 
0 0 0 

Vo 0 d 

0 
c f 

and for this to ant icommute with the other two, M must vanish. 

5. By § 3(hi) every involution in two dimensions has 1 as a simple eigenvalue. 

T H E O R E M 3. Let <n and a 2 be anticommuting involutions in two dimensions 
and Pi the eigenvector {unique apart from a constant of multiplication) of <TI 
belonging to eigenvalue 1. Then, apart from an arbitrary numerical multiplier, 
{£1, 0"2(0i)} is the only basis in which 

(6) 0-1 (J _!) ^d „ ~ (J J). 
Proof. Any basis in which (6) holds must have fix (or a numerical multiple 

of it) for its first member, and for a2 to have the matr ix assigned in (6) the 
second member of the basis must be 0-2 C#i). Conversely, if /32 is defined as 
(r2(0i), then fo e S-i(ori) by §3 ( iv ) , and <r2(j82) = ^22(^i) = ft; hence (6) is 
valid in the basis {/?i, /32}. 

T H E O R E M 4. Suppose a± and a2 are anticommuting involutions in a two-
dimensional space; then, the only regular L.T. 's which anticommute with a± 
and a2 are the numerical multiples of <i\<j2 and of these the only involutions are 

d= i<J\(72. 

Proof. By Theorem 3, we may choose a basis so t ha t (6) holds. A matr ix 
M which ant icommutes with the first in (6) has the form 

C°î) 
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by § 3 Ci)» and this an t icommutes with the second if and only if p = — q, 
t h a t is, 

M = p ovo i 
.0 - 1 / \ 1 0 

' pO'10'2', 

M is involutory if and only if p2 = — 1. 
I t is a consequence of Theorem 3 and § 3(iv) t h a t if <T\ and a2 are ant i -

commuting involutions in a space V with d(V) = 2n then V is the direct 
sum of n two-dimensional spaces each stable for ci and a2; in a suitable basis 
of V 

(8) ' d iag . (5 i , r _i , BitT-i, . . . , 5 i f r - i ) (r = 1,2). 

This follows from § 3(iv) whereby if {(3U /33, . . . , /32/i-i} is a basis of @i(<7i) 
and ^2r = cr2(jS2r-i), then for-i and /32r span a space stable for <7i and a2, and 
(8) will hold in the basis {/?i, /32, . . . , /32»-i, jS2w}. 

W e now prove the Dirac-Pauli theorem (this is generalized in § 7). 

T H E O R E M 5. Let LQ, LI, L2, L% be anticommuting involutions in the four-
dimensional space V; then there is a unique basis {apart from a numerical multi-

plier) such that Lr B2,r (r = 0,1 , 2, 3), the B2>r being defined by (1). 

Proof. Since 

(i 0 0 (A ( 0 0 1 ô  
B2,0 = 0 1 0 0 1 B2fi = 0 0 0 - i , 

0 

Vo 
0 
0 

- 1 
0 

0 
-l) \ 

1 0 
,Q - 1 

0 
0 

0 

(° 0 0 l\ [ ° 0 0 1\ 

B2,2 = 
0 
0 

Vi 

0 
1 
0 

1 
0 
0 

0 
0 
0^ 

J B2,z = i 
0 

1 0 
V-i 

0 -
1 
0 

-1 
0 
0 

0 
0 

1 

we have 

(l 0 0 6\ (o 1 0 o\ 
iB2t2B2j 3 — 

0 
0 

Vo 

- 1 
0 
0 

0 
1 
0 

0 
0 

-l) 

and iB-i 3-£>2,l = 
1 
0 

Vo 

0 
0 
0 

0 
0 
1 

0 
1 
o) 

1 

and hence the basic vectors er = (<5ri, ôr2, <5r3, <5r4) are completely characterized 
in terms of the B2fT as follows: 

(a) ei is the non-zero vector (unique apa r t from a numerical multiplier) , 
which is common to Ëi(^2 ,o) and (§1(^2,2^2,3), 

(b) iB2fZB2tiei, e$ — B2tle\, e± = — ^2,1^2 = iB2^ex. 

Thus , it is enough to show t h a t (apart from a numerical multiplier) 
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(a') there is just one non-zero x in (Si(L0) which satisfies iL2L%x = x, and 
tha t if 0i is such an x, and we define 

(b') 02 = i i s i l /31 , 03 = Ll/3l, 04 = iX80l = - Lx02, 

then {0i, 02, 03, 04Î is a basis of V in which L r ~ 5 2 > r (0 < r < 3). Now by 
§ 3(v) @i(Lo) is stable for iLJLz and for iLzLi, and these involutions ant i-
commute in 6 i ( L 0 ) . Hence, by Theorem 3, (a') is t rue, and if 02 = iL 3L i0i, 
then 

iL2L,(/3h 02) = (0i, - 02) and ^X3L1(01, 02) = (02, 0 0 ; 

furthermore, {0i, 02} span fëi(Lo), and so 03, 04 may be defined as in (b r), 
and by § 3(iv) {03, 04} span S_i(Lo). Thus , in the basis {0i, 02, 03, 04}, L0 ^ 72 

and by § 3(i) 

Z , ~ ( ^ *') ( K r < 3 ) . 

I t is therefore enough to verify t ha t X r = Bir (1 < r < 3). For r = 1, 2 
this follows from (b') which implies also t ha t L3(0i , 02) = (— if$iyiL$i) 
= (— 2*04, i03) ; this completes the proof. 

COROLLARY 1. Theorem 1 follows from Theorem 5. 7/ //ze L r are matrices Mr 

{that is, V is the space of number quadruples), then 0i, 02, 03, 04 are the columns, 
in order, of a matrix T which satisfies MrT = TB2<r (0 < r < 3). These columns 
are found explicitly from (a') and (br) viz. 

(Mo - l4)0i = (M2Mz + *l4)0i - 0, 

and 

02 = iMaMijSi, 03 = Mi/3 lf 04 - iM^x. 

COROLLARY 2. 7 / J r (0 < r < 3) are anticommuting involutions in V (of 

Theorem 5) then there is a regular L.T., X, of V such that Jr = Ï ^ L r ï (0 < r < 3) ; 
X is unique apart from a numerical multiplier. 

Proof. By Theorem 5 there is a basis 33 in which Jr ^ B2,r (0 < r < 3 ) 
and 93 is unique apar t from a numerical multiplier. If Lr ^ Mr (in 93) then 
(by Corollary 1) there is a matrix T, unique apar t from a numerical multiplier, 
with T~lMrT = Br. Hence the L.T. X represented by T in 93 is unique (apart 
from a numerical multiplier) in satisfying X~1LrX = Jr (0 < r < 3). 

COROLLARY 3. A regular L.T. A which anticommutes with all the Lr of Theorem 
5 must be a numerical multiple of the involution LQLIL2L%. 

Proof. A has to satisfy ALrA~l = — Lr (0 < r < 3) ; the involution 
L0LiL27>3 certainly does this, and the result now follows from Corollary 2 
with Jr — — Lr. 
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5.1. To illustrate the corollaries to Theorem 5, we prove that (cf. 3, p. 121) 
if No, Nu N2, Nz are anticommuting 4 X 4 involution matrices, then there 
is a skew-symmetric matrix A such that Nr = A~lNr

fA (0 < r < 3) ; A is 
readily computed. 

Since B2jT
f (0 < r < 3) are anticommuting involutions, there is, by Corol

lary 1, a matrix T with 

B2,r = TB2,rT~l (0 < r < 3), 

and the columns of T, {0i, 02, 03, 04}, are found from B2,oPi = — iB2>2B2)z/31 

= 0i, 02 = — iB2iZB2A(31, 03 = B2,iPi, 04 = — iB2,z0im, these give 0i = e2, 
02 = — ei, 03 = — e4, 04 = e3l

 t n a t îs 

(a) r = 

/o - 1 0 °\ 1 0 0 0 
0 0 0 1 

u 0 - 1 0 / 

Since the 7Vr are anticommuting involutions, one could compute by Corollary 
1 a matrix Q with 

QNrQ-1 = B2,r (0 < r < 3). 

We now have 

( W ^ - 1 = (TB2>rT-lY = (TQNrQ-'T-1)', that is, NT = ^ _ 1 i V ^ , 

where ^4, equal to Q'T'Q, is skew-symmetric because 7" is. 
As a second illustration, we find a formula for all sets of four anticommuting 

4 X 4 involution matrices with are skew-symmetric. This means (by Theorem 
5) finding a formula for all matrices P which satisfy 

PB2tTP- - (p-yB2,rp'} ( 0 < r < 3 ) ; 

using the illustration above, this means simply that T~lP'P anticommutes 
with B2jT (0 < r < 3). By Corollary 3 this is equivalent to the statement 
that T~lP'P is a numerical multiple of 

( ° l2) 
which, by (a), means that P'P is a numerical multiple of 

/o 0 
0 0 

1 ON 
0 - 1 

1 0 
V 0 - 1 

0 0 
0 0) 

that is, of B2JI. Bearing in mind that the eigenvalues of B2<i are ± 1 it is 
easy to see that 
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(l 0 1 o\ 
0 1 0 - 1 
i 

Vo 
0 
i 

—* 
0 

0 
i) 

B2,i = \M'M, where M = 

and hence that P has the form cSLM where c is an arbitrary number and 12 
an arbitrary orthogonal matrix (that is, 1212' = 14). Thus the formula 

Jr = VMB2,rM-1n' (0 < r < 3) 

gives the required sets of involutions. 

5.2. The result corresponding to (8) is as follows: 

THEOREM 6. Suppose L0, Liy L2, Lz are anticommuting involutions of V and 
d(V) > 4; then V is the direct sum of four-dimensional subspaces each stable 
for all the Lr, and in a suitable basis of V 

LT~ diag.(B2,r,B2.r, . . . ,B 2 f r ) (0 < r < 3). 

Proof. Write S\ for iL2L% and S2 for iL%L\. Then, as in the proof of Theorem 
5, Si(Lo) is the direct sum of two-dimensional spaces, say W\, W2, . . . , Wq, 
each of which is stable for 5] and S2 as well as for L0. If WV is defined as Li(Wr), 
then by §3(iv), W/ C S~i(L0) and Wr' is stable for 5i and 52. Thus the 
direct sum of Wr and iPF/ is stable for L0, Li, Si, and S2; it is therefore 
stable for L2 and L3. It now follows from Theorem 5 that in this subspace 
of V there is a basis in which L s ~ B2>s. Since this holds for 1 < 5 < q, and 
V is the direct sum of @iÇL0) and (§_i(L0), this completes the proof. 

6. If a scalar product is defined in the spaces considered in Theorems 3 and 
5, then the conclusions can be further particularized if the <rr and the Lr are 
unitary (an involution is unitary if and only if it is hermitean). The modifi
cation is that the basis can be chosen orthonormal. This will follow in Theorem 
3 from the fact that ©i(o"i) and ®-i(o"i) are orthogonal and that if ||/3i|| = 1 
then ||/32|| = ||cr2(/3i)|| = 1. In the case of Theorem 5, the Sr defined in Theorem 
6 will be unitary if the Lr are unitary, and consequently, as above £i, /32 

can be chosen orthonormal in Si(Lo); it then follows from (br) in Theorem 5 
that fo and 04 are orthonormal in ©_i(L0) while the two spaces (Si(Lo) and 
(S_i(Lo) are orthogonal. Similarly, if the matrices Mr in Theorem 1 are her
mitean, then T can be chosen unitary. Since the B2>r are hermitean, it follows 
that the Mr are hermitean if and only if there is a unitary matrix U with 
Mr = U~lB2,rU (0 < r < 3). 

7. In this section we generalize Theorem 5. Having defined 

5 M = \ 0 _?). B^ = (î D' B^=iB^B^=*(_? J)> 
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we now define, inductively, for every positive integer n a set of 2ra + 1 
matrices as follows: 

la .-»0 \ H _ (0 B _ w 

^«,2w = 1 Bn^Bn,\ . . . Bnt2n-i. 

By § 3(i) it follows a t once tha t , because the B\r are involutions, the 2n + 1 
involutions 5 w , r an t icommute . 

LEMMA. 

(9) Bn ,2n ^'\ — 1 9 B _ ! H2" / ' t h a t i S ' Bn'°Bn^- ' 'Bn,2n-lBn.2n = ( -* )* ! 2 

Proof. T h e equivalence of the two s ta tements in (9) follows from the 
definition of Bn,2n which gives inBn^Bn^ . . . BnM = (Bnj2n)

2l2
n. T h e lemma 

is obvious when n = 1. Suppose g > 1 and t ha t the lemma has been proved 
for n = q — 1. By the definition of -BÇ)2g, 

£«.2* = iQ 
1 o V o ^ - i . o V o Bq-ltl\ (0 5ff_ii2ff_2\ 
0 - l / V s ^ x . o 0 / W i , i 0 / ' * * W i , 2 , _ 2 0 / 

_ .J\ 0\( 0 Bq-itoBq-iti . . . J5ç_i)2g-2 
~~ * \ 0 - 1 / VBff_i,oBff_ifi. . . 5,- i ,2 ç-2 0 

and by the induction hypothesis this gives 

T H E O R E M 7. Suppose L0 , Lx , . . . , -L2,_i is a set of 2q anticommuting involu
tions in V and d(V) = 2q; then, defining L2q = iqL0Li . . . L2(7_i, there is a 
basis 93 in which Lr ^ BqyT (0 < r < 2#), a?zd 33 is unique apart from a numer
ical multiplier. The only regular L .T. ' s of V which anticommute with L0 , Li} 

. . . , L2q-i are the numerical multiples of L2q, and, of these, =L L2q are the only 
involutions. 

Proof (by induction on q). Theorems 3 and 4 justify Theorem 7 when 
q = 1. Suppose the theorem is t rue when q = n > 1 and let L0, Lx, . . . , L2n+i 
be a set of 2n + 2 ant icommut ing involutions in F with d(V) = 2n+l. 

We first assume t h a t V has a basis 93 in which L r ^ Bn+ir (0 < r < 2 ^ + 2 ) , 
and show tha t 93 is essentially unique ( tha t is, t h a t any other basis with the 
same proper ty mus t be £33). Define 

L* = iLsL2n+2 (1 < 5 < 2n + 1) ; 

by § 3(v) the L*s are an t icommut ing involutions for which ®i(L0) and @_i(L0) 
are s table; denote by L**s the L .T. of (Si(Lo) effected by L*s . T h e involutions 
L**s an t icommute in ®i(L0) which has dimension 2n, and so, by the induction 
hypothesis, (Si(Lo) has a basis 33i = {/5i, /32, - • - , /52

n} (unique apa r t from a 

https://doi.org/10.4153/CJM-1961-050-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-050-2


ANTICOMMUTING LINEAR TRANSFORMATIONS 623 

numerical multiplier) in which L**s ^ J3w>s_i (1 < s < 2n). But, in the 
postulated basis 93, LQ ~ I2

n
f and 

: 2" members o 

/ 0 12»\ 

Hence /?i, /32, . . . , /32
n are the first 2W members of 93. Since 

(in 93), it follows now that if 93 = {/3h /32, . . . , 02
n+1! then 

£r+2n = iL2n+2$r ( l < r <2W) , 

and so 93 is determined completely (apart from a numerical multiplier) by 

We now define 93' as {93], iL2n+2$8i} and proceed to prove that Lr~Bn+itT 

(in 93') f° r 0 < r < 2^ + 2. Since 931 spans 6i(L0) and L2w+2(93i) spans 
@_i(Z,0) (§ 3(iv)), it follows that in 93' 

l2n 0 \ T .( 0 12» Lo~Vo - J ' L w ^ V i , o yand 

*XsL2„+2 ~ ( j ^ ' * - 1 ^ ) ( 1 < 5 < 2n), 

where the exact form of Xs need not concern us. These imply 

T - (J T \T - (B".°-l ° V ° M - ( ° 5-.-A. 
Ls - ( L , L 2 B + 2 ) L 2 K + 2 - ^ X s ; V - l 2 » 0 / " \-X. 0 / ' 

and since Ls anticommutes with L0 it now follows by § 3(i) that 

Ls ~ ( ^ ^ Qn>s~l) = AH-M for s = 1, 2, . . . , 2n, 2rc + 2. 

To verify that the formula holds also when s = 2w + 1, we note that 
-̂ 2̂ +2 = in+lL0. . . L2„+i (by definition) andL2re+2 ~ in+1J3n+if0J3n+i.i.. .Bn+lt2n-\i 
from the known matrix representing L2n+2. This proves L2n+1 ~ Bn+1,2n+1. 

Finally, consider matrices M which satisfy 

(10) M~\- Bq,s)M = Bq8 (0<s <2g - 1). 

The columns of such an M are, in order, the members of a basis (of the space 
of number 2ff-ples) in which the (— BQfS) are represented by the Bq>s re
spectively. Since the 2g involutions — BQti, — Bq2, . . . , — Bqt2q-i anti-
commute, it follows from the first part of this theorem that such a basis is 
essentially unique. Since M = BQj2q satisfies (10), it now follows that 
M = cBQf2q, with c an arbitrary number, is the complete solution of (10) 
and that M is an involution if and only if c2 — 1. Since the Lr are represented 
by the Bqr, this completes the proof of the theorem. 
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