ANTICOMMUTING LINEAR TRANSFORMATIONS

H. KESTELMAN

1. It is well known that any set of four anticommuting involutions (see $\S 2$) in a four-dimensional vector space can be represented by the Dirac matrices

(1)
$$B_{2,0} = \begin{pmatrix} 1_2 & 0 \\ 0 & -1_2 \end{pmatrix}, B_{2,1} = \begin{pmatrix} 0 & B_{1,0} \\ B_{1,0} 0 \end{pmatrix}, B_{2,2} = \begin{pmatrix} 0 & B_{1,1} \\ B_{1,1} 0 \end{pmatrix}, B_{2,3} = \begin{pmatrix} 0 & B_{1,2} \\ B_{1,2} 0 \end{pmatrix}$$

where the $B_{1,r}$ are the Pauli matrices

(2)
$$B_{1,0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, B_{1,1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B_{1,2} = i \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

(See (1) for a general exposition with applications to Quantum Mechanics.) One formulation, which we shall call the Dirac-Pauli theorem (2; 3; 1), is

THEOREM 1. If M_1 , M_2 , M_3 , M_4 are 4×4 matrices satisfying

$$M_r M_s + M_s M_r = 2\delta_{rs} 1_4$$
 (r, s = 1, 2, 3, 4),

then there is a matrix T such that

$$T^{-1}M_r T = B_{2,r-1} \qquad (1 \le r \le 4),$$

and T is unique apart from an arbitrary numerical multiplier.

Various proofs of this theorem are known; those due to Van der Waerden (4) and Pauli (2; 1) depend on ideas belonging to representation theory; the most elementary proof (ignoring the uniqueness of T) is given by Dirac (2).

Eddington has shown (5) that a set of anticommuting 4×4 involution matrices cannot include more than five members, and this was extended by Newman (6) to involution matrices of arbitrary order. This had been investigated earlier by Hurwitz (7).

In this note we give a completely elementary proof of Theorem 1 (on the lines of Dirac's proof), giving an explicit calculation of T (Theorem 5 and corollary); the generalization of Theorem 1 to linear transformations of spaces of dimension 2^k is given in Theorem 7. In Theorem 2 we prove a generalization of the Eddington-Newman result in which the restriction to involution matrices is removed.

2. Notation. If V is an n-dimensional vector space, we write d(V) = n, and if L is a linear transformation (L.T.) of V into itself we write d(L) = n. If M is an $n \times n$ matrix, we write d(M) = n; the transpose of M is denoted

Received July 8, 1960.

by M'. The identity mapping in V is denoted by 1 or 1_n , and the same symbols are used to denote the unit matrix.

If λ is an eigenvalue of L, $\mathfrak{E}_{\lambda}(L)$ denotes the space spanned by the eigenvectors of L belonging to λ . L is called *regular* if 0 is not one of its eigenvalues. A subset S of V is said to be *stable* for L if $L(S) \subset S$. If d(V) = n, any ordered set $\{\beta_1, \beta_2, \ldots, \beta_n\}$ which span V is called a *basis* of V; if \mathfrak{B} denotes this basis and c is a non-zero complex number then $c\mathfrak{B}$ denotes the basis $\{c\beta_1, c\beta_2, \ldots, c\beta_n\}$. We say the matrix M represents the linear transformation L in \mathfrak{B} if

$$M = (m_{\tau s}) \text{ where } L\beta_s = \sum_{\tau=1}^n m_{\tau s}\beta_{\tau} \qquad (1 \leqslant s \leqslant n);$$

this is denoted by $L \sim M$ or by $L \sim M$ (in \mathfrak{B}) if the basis is to be made explicit. Plainly if $L \sim M$ (in \mathfrak{B}) then $L \sim M$ (in \mathfrak{cB}).

L is called an *involution* if $L^2 = 1$ and $L \neq \pm 1$; the involution matrix diag. $(1_n, -1_n)$ is denoted by I_{2n} . L_1 and L_2 are said to *anticommute* if $L_1L_2 = -L_2L_1$.

3. It will be convenient to list some elementary properties of matrices and L.T.'s: it is assumed throughout that the spaces are of finite dimensions; most of the proofs are omitted.

(i) If d(M) = 2n then M anticommutes with I_{2n} if and only if

$$M = \begin{pmatrix} 0 & Q \\ P & 0 \end{pmatrix} \text{ with } d(P) = d(Q) = n,$$

and M is then an involution if and only if $PQ = 1_n$, that is,

$$M = \begin{pmatrix} 0 & P^{-1} \\ P & 0 \end{pmatrix};$$
$$\begin{pmatrix} 0 & X^{-1} \\ X & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & Y^{-1} \\ Y & 0 \end{pmatrix}$$

anticommute if and only if $X^{-1}Y = -Y^{-1}X$. If L_1, L_2, \ldots, L_{2q} are anticommuting involutions then

$$i^q L_1 L_2 \dots L_{2q}$$

is an involution which anticommutes with each of L_1, L_2, \ldots, L_{2q} ; (the product of an *odd* set, three or more, will *commute* with the factors).

(ii) If A and B are regular and anticommute then, since

$$\det(AB) = \det(BA) \ (-1)^{d(A)},$$

and since these determinants are not zero, d(A) must be even.

(iii) If L is an involution in V then for every x in V

$$(1+L)x \in \mathfrak{G}_1(L), \quad (1-L)x \in \mathfrak{G}_{-1}(L), \quad 2x = (1+L)x + (1-L)x,$$

and so V is the direct sum of $\mathfrak{E}_1(L)$ and $\mathfrak{E}_{-1}(L)$; in any basis formed by uniting a basis of $\mathfrak{E}_1(L)$ and a basis of $\mathfrak{E}_{-1}(L)$, $L \sim \text{diag.}(1_m, -1_n)$ for some m, n.

(iv) The basic simple result, to be used repeatedly, is that if S and T are L.T.'s of V, and ST = kTS where k is a non-zero number, and λ is an eigenvalue of T, then S maps $\mathfrak{E}_{\lambda}(T)$ into $\mathfrak{E}_{\lambda/k}(T)$, and

(3)
$$S{\mathfrak{G}_{\lambda}(T)} = \mathfrak{G}_{\lambda/k}(T)$$

if S is regular. (The proof is trivial: $Tx = \lambda x$ implies $T(Sx) = k^{-1}S(Tx) = k^{-1}\lambda Sx$, and if S is regular we have (since S(V) = V with $d(V) < \infty$) $S^{-1}T = k^{-1}TS^{-1}$, so that S^{-1} maps $\mathfrak{E}_{\lambda/k}(T)$ into $\mathfrak{E}_{\lambda}(T)$.)

In particular, if an involution L anticommutes with a regular S then

$$S{\mathfrak{G}_1(L)} = \mathfrak{G}_{-1}(L)$$
 and $S{\mathfrak{G}_{-1}(L)} = \mathfrak{G}_1(L)$,

and it follows from (iii) that $d\{\mathfrak{E}_1(L)\} = d\{\mathfrak{E}_{-1}(L)\} = \frac{1}{2}d(L)$, and that, in a suitable basis of $V, L \sim I_{2n}$ $(n = \frac{1}{2}d(L))$.

(v) If S_1 and S_2 both anticommute with T, then S_1S_2 commutes with T, and so (by (iv)) every eigenspace of T is stable for S_1S_2 . In particular, if S_1 , S_2 , S_3 are anticommuting involutions then

(4) iS_2S_3 is an involution which maps $\mathfrak{G}_r(S_1)$ onto itself $(r = \pm 1)$,

(this depends on (i) and (3)).

4. The following generalizes the Eddington-Newman result.

THEOREM 2. Suppose L_1, L_2, \ldots, L_{2k} are regular anticommuting L.T.'s of V; then 2^k is a divisor of d(V).

Proof. For k = 1 we appeal to § 3 (ii). Now suppose, if possible, that the theorem is true for k = 1, ..., K - 1 but false for k = K. This means that there is a space W in which there are 2K regular anticommuting L.T.'s whereas 2^{K} is not a divisor of d(W). We prove that this leads to a contradiction.

Let Δ be the least value which d(W) can have in the conditions postulated, and suppose W chosen so that $d(W) = \Delta$. Let \mathfrak{S}_{λ} be an eigenspace of L_1 ; by § 3(v), \mathfrak{S}_{λ} is stable for L_2L_s ($3 \leq s \leq 2K$), and the L_2L_s anticommute in \mathfrak{S}_{λ} ; hence, by the induction hypothesis, $2^{K-1}|d(\mathfrak{S}_{\lambda})$. Since $L_r(\mathfrak{S}_{\lambda}) = \mathfrak{S}_{\pm\lambda}$ for $1 \leq r \leq 2K$ by (3), the direct sum of \mathfrak{S}_{λ} and $\mathfrak{S}_{-\lambda}$ is stable for all these L_r ; thus, in a suitable basis of W,

(5)
$$L_{\tau} \sim \begin{pmatrix} M_{\tau} & P_{\tau} \\ 0 & A_{\tau} \end{pmatrix} \text{ where } d(M_{\tau}) = 2d(\mathfrak{E}_{\lambda}),$$

which means $d(M_{\tau})$ is divisible by 2^{κ} while $d(L_{\tau})$ is not. Hence $d(A_{\tau})$ is positive and not divisible by 2^{κ} . But, by (5) and the assumption on the L_{τ} , the A_{τ} are regular and they anticommute; thus $d(A_{\tau}) \ge \Delta = d(L_{\tau})$, which contradicts $d(M_{\tau}) > 0$.

It is shown by Newman (6) that if $d(V) = 2^n$ then there is a set of 2n + 1

anticommuting involutions in V (see also §7 below), but it must not be concluded that an arbitrary set of anticommuting involutions in V which has fewer than 2n + 1 members is part of a maximal set. Thus, with n = 2,

$$B_{2,0}, B_{2,1}, iB_{2,0}B_{2,1}$$

anticommute, but it is easily verified (using 3(i)) that an involution which anticommutes with the first cannot anticommute with the other two. The same is true if the L.T.'s are regular but not involutory; it is easily verified (using 3(i)) for the anticommuting matrices

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \end{pmatrix}$$

that if M anticommutes with the first then

$$M = \begin{pmatrix} 0 & b & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & d & 0 \end{pmatrix},$$

and for this to anticommute with the other two, M must vanish.

5. By 3(iii) every involution in two dimensions has 1 as a simple eigenvalue.

THEOREM 3. Let σ_1 and σ_2 be anticommuting involutions in two dimensions and β_1 the eigenvector (unique apart from a constant of multiplication) of σ_1 belonging to eigenvalue 1. Then, apart from an arbitrary numerical multiplier, $\{\beta_1, \sigma_2(\beta_1)\}$ is the only basis in which

(6)
$$\sigma_1 \sim \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\sigma_2 \sim \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Proof. Any basis in which (6) holds must have β_1 (or a numerical multiple of it) for its first member, and for σ_2 to have the matrix assigned in (6) the second member of the basis must be $\sigma_2(\beta_1)$. Conversely, if β_2 is defined as $\sigma_2(\beta_1)$, then $\beta_2 \in \mathfrak{E}_{-1}(\sigma_1)$ by § 3(iv), and $\sigma_2(\beta_2) = \sigma_2^2(\beta_1) = \beta_1$; hence (6) is valid in the basis { β_1, β_2 }.

THEOREM 4. Suppose σ_1 and σ_2 are anticommuting involutions in a twodimensional space; then, the only regular L.T.'s which anticommute with σ_1 and σ_2 are the numerical multiples of $\sigma_1\sigma_2$ and of these the only involutions are $\pm i\sigma_1\sigma_2$.

Proof. By Theorem 3, we may choose a basis so that (6) holds. A matrix M which anticommutes with the first in (6) has the form

$$\begin{pmatrix} 0 & p \\ q & 0 \end{pmatrix}$$

by § 3(i), and this anticommutes with the second if and only if p = -q, that is,

$$M = p \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sim p \sigma_1 \sigma_2;$$

M is involutory if and only if $p^2 = -1$.

It is a consequence of Theorem 3 and § 3(iv) that if σ_1 and σ_2 are anticommuting involutions in a space V with d(V) = 2n then V is the direct sum of n two-dimensional spaces each stable for σ_1 and σ_2 ; in a suitable basis of V

(8)
$$\sigma_r \sim \text{diag.}(B_{1,r-1}, B_{1,r-1}, \ldots, B_{1,r-1})$$
 $(r = 1, 2).$

This follows from § 3(iv) whereby if $\{\beta_1, \beta_3, \ldots, \beta_{2n-1}\}$ is a basis of $\mathfrak{E}_1(\sigma_1)$ and $\beta_{2r} = \sigma_2(\beta_{2r-1})$, then β_{2r-1} and β_{2r} span a space stable for σ_1 and σ_2 , and (8) will hold in the basis $\{\beta_1, \beta_2, \ldots, \beta_{2n-1}, \beta_{2n}\}$.

We now prove the Dirac-Pauli theorem (this is generalized in §7).

THEOREM 5. Let L_0 , L_1 , L_2 , L_3 be anticommuting involutions in the fourdimensional space V; then there is a unique basis (apart from a numerical multiplier) such that $L_\tau \sim B_{2,\tau}$ (r = 0, 1, 2, 3), the $B_{2,\tau}$ being defined by (1).

Proof. Since

$$B_{2,0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \qquad B_{2,1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$
$$B_{2,2} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad B_{2,3} = i \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$

we have

$$iB_{2,2}B_{2,3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{ and } iB_{2,3}B_{2,1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

and hence the basic vectors $e_{\tau} = (\delta_{\tau 1}, \delta_{\tau 2}, \delta_{\tau 3}, \delta_{\tau 4})$ are completely characterized in terms of the $B_{2,\tau}$ as follows:

(a) e_1 is the non-zero vector (unique apart from a numerical multiplier), which is common to $\mathfrak{S}_1(B_{2,0})$ and $\mathfrak{S}_1(iB_{2,2}B_{2,3})$,

(b)
$$e_2 = iB_{2,3}B_{2,1}e_1$$
, $e_3 = B_{2,1}e_1$, $e_4 = -B_{2,1}e_2 = iB_{2,3}e_1$.

Thus, it is enough to show that (apart from a numerical multiplier)

618

(a') there is just one non-zero x in $\mathfrak{S}_1(L_0)$ which satisfies $iL_2L_3x = x$, and that if β_1 is such an x, and we define

(b')
$$\beta_2 = iL_3L_1\beta_1, \ \beta_3 = L_1\beta_1, \ \beta_4 = iL_3\beta_1 = -L_1\beta_2,$$

then $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ is a basis of V in which $L_r \sim B_{2,r}$ ($0 \leq r \leq 3$). Now by $\{3(v) \ \mathfrak{S}_1(L_0)$ is stable for iL_2L_3 and for iL_3L_1 , and these involutions anticommute in $\mathfrak{S}_1(L_0)$. Hence, by Theorem 3, (a') is true, and if $\beta_2 = iL_3L_1\beta_1$, then

$$iL_2L_3(\beta_1, \beta_2) = (\beta_1, -\beta_2)$$
 and $iL_3L_1(\beta_1, \beta_2) = (\beta_2, \beta_1);$

furthermore, $\{\beta_1, \beta_2\}$ span $\mathfrak{E}_1(L_0)$, and so β_3, β_4 may be defined as in (b'), and by § 3(iv) $\{\beta_3, \beta_4\}$ span $\mathfrak{E}_{-1}(L_0)$. Thus, in the basis $\{\beta_1, \beta_2, \beta_3, \beta_4\}$, $L_0 \sim I_2$ and by § 3(i)

$$L_r \sim \begin{pmatrix} 0 & X_r \\ X_r^{-1} & 0 \end{pmatrix} \qquad (1 \leqslant r \leqslant 3)$$

It is therefore enough to verify that $X_r = B_{1,r}$ $(1 \le r \le 3)$. For r = 1, 2 this follows from (b') which implies also that $L_3(\beta_1, \beta_2) = (-i\beta_4, iL_1\beta_1) = (-i\beta_4, i\beta_3)$; this completes the proof.

COROLLARY 1. Theorem 1 follows from Theorem 5. If the L_r are matrices M_r (that is, V is the space of number quadruples), then $\beta_1, \beta_2, \beta_3, \beta_4$ are the columns, in order, of a matrix T which satisfies $M_rT = TB_{2,r}$ ($0 \le r \le 3$). These columns are found explicitly from (a') and (b') viz.

$$(M_0 - 1_4)\beta_1 = (M_2M_3 + i1_4)\beta_1 = 0,$$

and

$$\beta_2 = i M_3 M_1 \beta_1, \qquad \beta_3 = M_1 \beta_1, \qquad \beta_4 = i M_3 \beta_1.$$

COROLLARY 2. If J_r ($0 \le r \le 3$) are anticommuting involutions in V (of Theorem 5) then there is a regular L.T., \mathfrak{T} , of V such that $J_r = \mathfrak{T}^{-1}L_r\mathfrak{T}$ ($0 \le r \le 3$); \mathfrak{T} is unique apart from a numerical multiplier.

Proof. By Theorem 5 there is a basis \mathfrak{B} in which $J_r \sim B_{2,r}$ $(0 \leq r \leq 3)$ and \mathfrak{B} is unique apart from a numerical multiplier. If $L_r \sim M_r$ (in \mathfrak{B}) then (by Corollary 1) there is a matrix T, unique apart from a numerical multiplier, with $T^{-1}M_rT = B_r$. Hence the L.T. \mathfrak{T} represented by T in \mathfrak{B} is unique (apart from a numerical multiplier) in satisfying $\mathfrak{T}^{-1}L_r\mathfrak{T} = J_r$ ($0 \leq r \leq 3$).

COROLLARY 3. A regular L.T. A which anticommutes with all the L_r of Theorem 5 must be a numerical multiple of the involution $L_0L_1L_2L_3$.

Proof. A has to satisfy $AL_rA^{-1} = -L_r$ ($0 \le r \le 3$); the involution $L_0L_1L_2L_3$ certainly does this, and the result now follows from Corollary 2 with $J_r = -L_r$.

5.1. To illustrate the corollaries to Theorem 5, we prove that (cf. 3, p. 121) if N_0 , N_1 , N_2 , N_3 are anticommuting 4×4 involution matrices, then there is a skew-symmetric matrix A such that $N_r = A^{-1}N_r A$ ($0 \le r \le 3$); A is readily computed.

Since $B_{2,r'}$ ($0 \le r \le 3$) are anticommuting involutions, there is, by Corollary 1, a matrix T with

$$B'_{2,r} = TB_{2,r}T^{-1} \qquad (0 \leqslant r \leqslant 3),$$

and the columns of T, $\{\beta_1, \beta_2, \beta_3, \beta_4\}$, are found from $B_{2,0}\beta_1 = -iB_{2,2}B_{2,3}\beta_1 = \beta_1, \beta_2 = -iB_{2,3}B_{2,1}\beta_1, \beta_3 = B_{2,1}\beta_1, \beta_4 = -iB_{2,3}\beta_1$; these give $\beta_1 = e_2, \beta_2 = -e_1, \beta_3 = -e_4, \beta_4 = e_3$, that is

(a)
$$T = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

Since the N_r are anticommuting involutions, one could compute by Corollary 1 a matrix Q with

$$QN_r Q^{-1} = B_{2,r}$$
 (0 $\leq r \leq 3$).

We now have

$$QN_rQ^{-1} = (TB_{2,r}T^{-1})' = (TQN_rQ^{-1}T^{-1})'$$
, that is, $N_r = A^{-1}N'_rA$,

where A, equal to Q'T'Q, is skew-symmetric because T is.

As a second illustration, we find a formula for all sets of four anticommuting 4×4 involution matrices with are skew-symmetric. This means (by Theorem 5) finding a formula for all matrices P which satisfy

$$PB_{2,r}P^{-1} = - (P^{-1})'B_{2,r}P', \qquad (0 \le r \le 3);$$

using the illustration above, this means simply that $T^{-1}P'P$ anticommutes with $B_{2,r}$ ($0 \le r \le 3$). By Corollary 3 this is equivalent to the statement that $T^{-1}P'P$ is a numerical multiple of

$$\begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}$$

which, by (a), means that P'P is a numerical multiple of

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

that is, of $B_{2,1}$. Bearing in mind that the eigenvalues of $B_{2,1}$ are ± 1 it is easy to see that

620

$$B_{2,1} = \frac{1}{2}M'M, \text{ where } M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ i & 0 & -i & 0 \\ 0 & i & 0 & i \end{pmatrix},$$

and hence that P has the form $c\Omega M$ where c is an arbitrary number and Ω an arbitrary orthogonal matrix (that is, $\Omega\Omega' = 1_4$). Thus the formula

$$J_r = \Omega M B_{2,r} M^{-1} \Omega' \qquad (0 \leqslant r \leqslant 3)$$

gives the required sets of involutions.

5.2. The result corresponding to (8) is as follows:

THEOREM 6. Suppose L_0 , L_1 , L_2 , L_3 are anticommuting involutions of V and d(V) > 4; then V is the direct sum of four-dimensional subspaces each stable for all the L_τ , and in a suitable basis of V

$$L_r \sim \text{diag.}(B_{2,r}, B_{2,r}, \dots, B_{2,r})$$
 $(0 \le r \le 3).$

Proof. Write S_1 for iL_2L_3 and S_2 for iL_3L_1 . Then, as in the proof of Theorem 5, $\mathfrak{S}_1(L_0)$ is the direct sum of two-dimensional spaces, say W_1, W_2, \ldots, W_q , each of which is stable for S_1 and S_2 as well as for L_0 . If W_r' is defined as $L_1(W_r)$, then by § 3(iv), $W_r' \subset \mathfrak{S}_{-1}(L_0)$ and W_r' is stable for S_1 and S_2 . Thus the direct sum of W_r and W_r' is stable for L_0, L_1, S_1 , and S_2 ; it is therefore stable for L_2 and L_3 . It now follows from Theorem 5 that in this subspace of V there is a basis in which $L_s \sim B_{2,s}$. Since this holds for $1 \leq s \leq q$, and V is the direct sum of $\mathfrak{S}_1(L_0)$ and $\mathfrak{S}_{-1}(L_0)$, this completes the proof.

6. If a scalar product is defined in the spaces considered in Theorems 3 and 5, then the conclusions can be further particularized if the σ_r and the L_r are unitary (an involution is unitary if and only if it is hermitean). The modification is that the basis can be chosen orthonormal. This will follow in Theorem 3 from the fact that $\mathfrak{E}_1(\sigma_1)$ and $\mathfrak{E}_{-1}(\sigma_1)$ are orthogonal and that if $||\beta_1|| = 1$ then $||\beta_2|| = ||\sigma_2(\beta_1)|| = 1$. In the case of Theorem 5, the S_r defined in Theorem 6 will be unitary if the L_r are unitary, and consequently, as above β_1 , β_2 can be chosen orthonormal in $\mathfrak{E}_1(L_0)$; it then follows from (b') in Theorem 5 that β_3 and β_4 are orthonormal in $\mathfrak{E}_{-1}(L_0)$ while the two spaces $\mathfrak{E}_1(L_0)$ and $\mathfrak{E}_{-1}(L_0)$ are orthogonal. Similarly, if the matrices M_r in Theorem 1 are hermitean, then T can be chosen unitary. Since the $B_{2,r}$ are hermitean, it follows that the M_r are hermitean if and only if there is a unitary matrix U with $M_r = U^{-1}B_{2,r}U$ ($0 \leq r \leq 3$).

7. In this section we generalize Theorem 5. Having defined

$$B_{1,0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ B_{1,1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ B_{1,2} = iB_{1,0}B_{1,1} = i\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

we now define, inductively, for every positive integer n a set of 2n + 1 matrices as follows:

$$B_{n,0} = \begin{pmatrix} 1_{2^{n-1}0} \\ 0 & -1_{2^{n-1}} \end{pmatrix}, \ B_{n,r} = \begin{pmatrix} 0 & B_{n-1,r-1} \\ B_{n-1,r-1} & 0 \end{pmatrix} (1 \leqslant r \leqslant 2n - 1),$$
$$B_{n,2n} = i^n B_{n,0} B_{n,1} \dots B_{n,2n-1}.$$

By § 3(i) it follows at once that, because the $B_{1,r}$ are involutions, the 2n + 1 involutions $B_{n,r}$ anticommute.

LEMMA.

(9)
$$B_{n,2n} = i \begin{pmatrix} 0 & 1_{2^{n-1}} \\ -1_{2^{n-1}} & 0 \end{pmatrix}$$
, that is, $B_{n,0}B_{n,1} \dots B_{n,2n-1}B_{n,2n} = (-i)^n 1_{2^n}$.

Proof. The equivalence of the two statements in (9) follows from the definition of $B_{n,2n}$ which gives $i^n B_{n,0} B_{n,1} \dots B_{n,2n} = (B_{n,2n})^2 \mathbb{1}_{2^n}$. The lemma is obvious when n = 1. Suppose q > 1 and that the lemma has been proved for n = q - 1. By the definition of $B_{q,2q}$,

$$B_{q,2q} = i^{q} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & B_{q-1,0} \\ B_{q-1,0} & 0 \end{pmatrix} \begin{pmatrix} 0 & B_{q-1,1} \\ B_{q-1,1} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & B_{q-1,2q-2} \\ B_{q-1,2q-2} & 0 \end{pmatrix}$$
$$= i^{q} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & B_{q-1,0}B_{q-1,1} \dots B_{q-1,2q-2} \\ B_{q-1,0}B_{q-1,1} \dots B_{q-1,2q-2} & 0 \end{pmatrix},$$

and by the induction hypothesis this gives

$$B_{q,2q} = i^{q} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & (-i)^{q-1} 1_{2q-1} \\ (-i)^{q-1} 1_{2q-1} & 0 \end{pmatrix} = i \begin{pmatrix} 0 & 1_{2q-1} \\ -1_{2q-1} & 0 \end{pmatrix}.$$

THEOREM 7. Suppose $L_0, L_1, \ldots, L_{2q-1}$ is a set of 2q anticommuting involutions in V and $d(V) = 2^q$; then, defining $L_{2q} = i^q L_0 L_1 \ldots L_{2q-1}$, there is a basis \mathfrak{B} in which $L_r \sim B_{q,r}$ ($0 \leq r \leq 2q$), and \mathfrak{B} is unique apart from a numerical multiplier. The only regular L.T.'s of V which anticommute with $L_0, L_1, \ldots, L_{2q-1}$ are the numerical multiples of L_{2q} , and, of these, $\pm L_{2q}$ are the only involutions.

Proof (by induction on q). Theorems 3 and 4 justify Theorem 7 when q = 1. Suppose the theorem is true when q = n > 1 and let $L_0, L_1, \ldots, L_{2n+1}$ be a set of 2n + 2 anticommuting involutions in V with $d(V) = 2^{n+1}$.

We first assume that V has a basis \mathfrak{B} in which $L_{\tau} \sim B_{n+1,\tau}$ $(0 \leq r \leq 2n+2)$, and show that \mathfrak{B} is essentially unique (that is, that any other basis with the same property must be $c\mathfrak{B}$). Define

$$L_{s}^{*} = iL_{s}L_{2n+2}$$
 $(1 \leq s \leq 2n+1);$

by § 3(v) the $L^*{}_s$ are anticommuting involutions for which $\mathfrak{E}_1(L_0)$ and $\mathfrak{E}_{-1}(L_0)$ are stable; denote by $L^{**}{}_s$ the L.T. of $\mathfrak{E}_1(L_0)$ effected by $L^*{}_s$. The involutions $L^{**}{}_s$ anticommute in $\mathfrak{E}_1(L_0)$ which has dimension 2^n , and so, by the induction hypothesis, $\mathfrak{E}_1(L_0)$ has a basis $\mathfrak{B}_1 = \{\beta_1, \beta_2, \ldots, \beta_2^n\}$ (unique apart from a numerical multiplier) in which $L^{**}{}_s \sim B_{n,s-1}$ $(1 \leq s \leq 2n)$. But, in the postulated basis \mathfrak{B} , $L_0 \sim I_{2^n}$, and

$$L_{s}^{*} \sim i \begin{pmatrix} 0 & B_{n,s-1} \\ B_{n,s-1} & 0 \end{pmatrix} i \begin{pmatrix} 0 & 1_{2^{n}} \\ -1_{2^{n}} & 0 \end{pmatrix} = \begin{pmatrix} B_{n,s-1} & 0 \\ 0 & B_{n,s-1} \end{pmatrix} \qquad (1 \leq s \leq 2n)$$

Hence $\beta_1, \beta_2, \ldots, \beta_{2^n}$ are the first 2^n members of \mathfrak{B} . Since

$$L_{2n+2} \sim i \begin{pmatrix} 0 & 1_{2n} \\ -1_{2n} & 0 \end{pmatrix}$$

(in \mathfrak{B}), it follows now that if $\mathfrak{B} = \{\beta_1, \beta_2, \ldots, \beta_{2^{n+1}}\}$ then

$$\beta_{r+2^n} = iL_{2n+2}\beta_r \qquad (1 \leqslant r \leqslant 2^n),$$

and so \mathfrak{B} is determined completely (apart from a numerical multiplier) by $L_0, L_1, \ldots, L_{2n+1}$.

We now define \mathfrak{B}' as $\{\mathfrak{B}_1, iL_{2n+2}\mathfrak{B}_1\}$ and proceed to prove that $L_r \sim B_{n+1,r}$ (in \mathfrak{B}') for $0 \leq r \leq 2n + 2$. Since \mathfrak{B}_1 spans $\mathfrak{E}_1(L_0)$ and $L_{2n+2}(\mathfrak{B}_1)$ spans $\mathfrak{E}_{-1}(L_0)$ (§ 3(iv)), it follows that in \mathfrak{B}'

$$L_{0} \sim \begin{pmatrix} 1_{2^{n}} & 0\\ 0 & -1_{2^{n}} \end{pmatrix}, \ L_{2n+2} \sim i \begin{pmatrix} 0 & 1_{2^{n}}\\ -1_{2^{n}} & 0 \end{pmatrix} \text{ and} \\ iL_{s}L_{2n+2} \sim \begin{pmatrix} B_{n,s-1} & 0\\ 0 & X_{s} \end{pmatrix} \qquad (1 \leqslant s \leqslant 2n),$$

where the exact form of X_s need not concern us. These imply

$$L_{s} = (L_{s}L_{2n+2})L_{2n+2} = \begin{pmatrix} B_{n,s-1} & 0\\ 0 & X_{s} \end{pmatrix} \begin{pmatrix} 0 & 1_{2^{n}} \\ -1_{2^{n}} & 0 \end{pmatrix} = \begin{pmatrix} 0 & B_{n,s-1} \\ -X_{s} & 0 \end{pmatrix};$$

and since L_s anticommutes with L_0 it now follows by § 3(i) that

$$L_s \sim \begin{pmatrix} 0 & B_{n,s-1} \\ B_{n,s-1} & 0 \end{pmatrix} = B_{n+1,s}$$
 for $s = 1, 2, \dots, 2n, 2n + 2$.

To verify that the formula holds also when s = 2n + 1, we note that $L_{2n+2} = i^{n+1}L_0 \dots L_{2n+1}$ (by definition) and $L_{2n+2} \sim i^{n+1}B_{n+1,0}B_{n+1,1}\dots B_{n+1,2n+1}$ from the known matrix representing L_{2n+2} . This proves $L_{2n+1} \sim B_{n+1,2n+1}$.

Finally, consider matrices M which satisfy

(10)
$$M^{-1}(-B_{q,s})M = B_{qs} \qquad (0 \le s \le 2q - 1).$$

The columns of such an M are, in order, the members of a basis (of the space of number 2^{q} -ples) in which the $(-B_{q,s})$ are represented by the $B_{q,s}$ respectively. Since the 2q involutions $-B_{q,1}, -B_{q,2}, \ldots, -B_{q,2q-1}$ anticommute, it follows from the first part of this theorem that such a basis is essentially unique. Since $M = B_{q,2q}$ satisfies (10), it now follows that $M = cB_{q,2q}$, with c an arbitrary number, is the complete solution of (10) and that M is an involution if and only if $c^{2} = 1$. Since the L_{r} are represented by the $B_{q,r}$, this completes the proof of the theorem.

References

- 1. R. H. Good, Properties of the Dirac matrices, Rev. Mod. Phys., 27 (1955), 187.
- 2. P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. A., 117 (1928), 616.
- 3. W. Pauli, Contributions mathématiques à la théorie de Dirac, Ann. Inst. Henri Poincaré, 6 (1936), 109.
- 4. B. L. Van der Waerden, Die Gruppentheoretische Methode in der Quantenmechanik (Berlin, 1932), 55.
- 5. A. S. Eddington, On sets of anticommuting matrices, J. London Math. Soc., 17 (1932), 58.
- M. H. A. Newman, Note on an algebraic theorem of Eddington, J. London Math. Soc., 17 (1932), 93.
- 7. A. Hurwitz, Ueber die Komposition der Quadratischen Formen, Math. Annalen, 88 (1923), 1.

University College London