
CLASSIFICATION OF DEMUSHKIN GROUPS 

JOHN P. LABUTE 

A pro-£-group G is said to be a Demushkin group if 
(1) dimVpIP(G,Z/pZ) < » , 
(2) dimFpH*(G,Z/pZ) = 1, 
(3) the cup product IP(G, Z/pZ) X IP(G, Z/pZ)-> H*(G, Z/pZ) is a 

non-degenerate bilinear form. Here FP denotes the field with p elements. 
If G is a Demushkin group, then G is a finitely generated topological group 
with n(G) = dim Hl{G, Z/pZ) as the minimal number of topological genera
tors; cf. §1.3. Condition (2) means that there is only one relation among a 
minimal system of generators for G; that is, G is isomorphic to a quotient 
F/(r), where F is a free pro-£-group of rank n = n(G) and (r) is the closed 
normal subgroup of F generated by an element r G F11 (F, F); cf. §1.4. (If 
x, y are elements of a pro-£-group H, we let (x, y) denote the commutator 
x~ly~lxy and (H, H) the closed subgroup generated by all commutators of H.) 
Hence G/ (G, G) is isomorphic to (Zp)

n~l X (Zp/qZp), where q = q (G) is a uniquely 
determined power of p. (By convention pm = 0; Zp denotes the ring of £-adic 
integers.) 

If q 9e 2, Demushkin has shown (1; 2) that n is even and that there exists 
a basis x\, . . . , xn of F such that 

(1) r = xiff(xi, xt)(xz, XA) . . . (xw_i, xn). 

Moreover, for any relation r of the form (1) with n even and q = pg, g being 
an integer > 1 or » , the group G — F/ (r) is a Demushkin group with n (G) = n, 
q(G) = q. 

To classify those Demushkin groups for which q(G) = 2, Serre (8) intro
duced a new invariant of a Demushkin group G as follows: There exists a unique 
continuous homomorphism x' G —-> Up, the group of units of Zp, such that, if Ij(x) 
denotes the G-module obtained by letting G act on Z/pjZ by means of x, the homo
morphism Hl(G, Ij(x)) —> Hl(G, I\(x)) ^ surjective for j > 1. The invariant 
Im(x) makes the invariant q(G) superfluous; in fact, q = q{G) is the highest 
power of p such that Im(x) C 1 + qZp; cf. §3. For a relation of the form (1) 
we have 

Im(x) = iy*> = 1 + p°Zp if q = p° ?* 2. 
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If q(G) = 2 and n = n(G) is odd, Serre has shown (8) that there exists a 
basis xi, . . . , xn for F such that 

(2) r = xi2x2
2f(x2l xz) . . . (xn-i, xn) 

where / is an integer > 2 or oo. Moreover, for any relation r of the form (2) 
with n odd and / such an integer, the group G = F/ (r) is a Demushkin group 
with n(G) = n, Im(x) = {±1} X U2

(/ ). 
In §3 of this paper we give proofs of the above results as well as a preliminary 

classification of those Demushkin groups with q(G) = 2, n(G) even; cf. 
Theorem 3. The main section of this paper is §4, in which we prove the following 
theorem, thus completing the classification of Demushkin groups; cf. (5). 

THEOREM 1. Let r be an element of the free pro-p-group F of rank 2N, with 
N > 1, and let G = F/(r). Suppose that G is a Demushkin group with invariants 
n{G) = 27V", q(G) = 2 and Im(x) = A. Then there exists a basis xi, . . . xn of 
F such that 

(3) r = Xi2+2f(xu X2)(x*, XA) . . . (x2N-i, %2N) if (A:A2) = 2, 

where f is an integer > 2 or oo, or 

(4) r = Xi2(xi, x2)x3
2/(x3, x4) . . . (*2j\r-i, ^2^) if (A:A2) = 4 

where f is an integer > 2 . Moreover, for any relation r of the form (3) {of the form 
(4)) wïA iV aw integer > 1 (>2) , and f an integer ^2 or <*>, the group G = F/(r) 
is a Demushkin group with invariants n(G) = 2N, Im(x) = U2C/] (Im(x) = 
{±1} X U2(/)). Here U2

[/I is the closed subgroup of U2 generated by — 1 + 2 / . 

Remarks. (1) If the Demushkin group G is infinite (or, equivalently, if 
n (G) 9^ 1), Tate has shown that G is of cohomological dimension two, and hence 
the character x associated with G is nothing but the character associated with 
the dualizing module of G; cf. (8, pp. 9-10). 

(2) For every pair (n, A ) where n is an integer > 1 and A is a closed subgroup 
of Up

(1), there is a Demushkin group G with invariants n(G) = n, Im(x) = A, 
provided that either 

(i) n is even and pn > (A\AV), or 
(ii) n is odd, n > 3, and A = {±1} X U2

( / ), w i t h / a n integer > 2 or 00, or 
(hi) » = l , i l = {±1}. 
(3) The preceding results imply that two Demushkin groups with the same 

invariants n and Im(x) are isomorphic; in fact they imply the following 
stronger theorem concerning relations: 

THEOREM 2. Let r, r' Ç FP{F, F), where F is a free pro-p-group, and let 
G = F/(r), G' = F/(r'). Suppose that G, G' are Demushkin groups with 
Im(x) = Im(x ;)- Then there exists an automorphism of F which sends r into r'. 
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COROLLARY. If (r) = (r') and if the quotient F/(r) is a Demushkin group, 
there is an automorphism of F sending r into r'. 

In §5 we shall use the above results to show that the Galois group of the 
maximal ^-extension of a local field K is completely determined by [K:QP] 
and the intersection Kr of the field of ^ t h roots of unity (N —» °° ) with K. 

On completion of this work I learned that Theorem 1 was also proved by 
S. Demushkin in his paper Topological 2-groups with an even number of generators 
and one defining relation (in Russian), Izvestia Akad. Nauk USSR, 29, (1965), 
3-10. However, Theorem 2 of that paper is incorrect, a counter-example 
being provided by the example at the end of §5 of our paper. The correct result 
is given by Theorem 9. 

§1. Preliminaries on profinite groups. 

1.1. Cohomology. A topological group G is called a profinite group if it is 
the projective limit of finite groups (each having the discrete topology). Such 
a group is compact and totally disconnected. Conversely, if G is compact and 
totally disconnected, G has a basis of neighbourhoods of the identity consisting 
of open normal subgroups U, and hence the canonical homomorphism 

G -> Km G/U 

is a bijection, which shows that G is a profinite group. 
Let G be a profinite group and let *$ G be a full subcategory of the category 

of topological G-modules M, where the abelian groups M are either all discrete 
or all profinite. By definition the product g-m, g £ G, m G M, depends con
tinuously on the pair (g, m). An w-cochain of G with values in M is a continuous 
mapping u of the w-fold product G X . . . X G into M. The coboundary du 
of the cochain u is defined by the usual formula: 

du(gi. .. ,gn+i) = gvuigi, . . . ,gn+l) + Ç (-l)'u(gi, . . . ,gj-igj+i, • . .,g„+i) 

+ T-Dn+V(g1,...)g„). 
In this way we obtain a complex C(G, M) = {Cn(G, M)} whose cohomology 
groups are denoted by Hn(G, M). These groups coincide with the cohomology 
groups defined by Tate in case M is discrete; cf. (3). The group H°(G, M) may 
be identified with the set MG of elements of M left invariant by G. A 1-cocycle 
u is a continuous "crossed homomorphism" of G into M, in other words, a 
continuous mapping satisfying the identity 

u(gh) = u(g) + g-u(h), g,h £ G. 

11 is a coboundary if there exists an element m G M such that u (g) = g-m — m 
for all g Ç G. 
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Let 0—> A —> B —» C —» 0 be an exact sequence in ^ G. Then there exists a 
continuous section C —> B and hence the sequence of complexes 

0 -> C(G, A ) -> C(G, B) -> C(G, C) -> 0 

is exact. We thus obtain an exact sequence of cohomology groups 

. . . -» fl*(G, 4 ) -» fl*(Gf 5 ) -> fl»(G, C) -> Hn+1(G,A) -> 

Let F be a profinite group and let R be a closed normal subgroup of F. Set 
G = F/R and let the image of x Ç F in G be denoted by x. If ikf 6 fé^, the 
restriction and inflation homomorphisms 

Res:C*(F, Af) -> C"(F, Jlf), Inf:C*(G, M) -> Cn(7^, ikf) 

are defined as usual by the formulas 

Res tt(n, . . . , r„) = u(ru . . . , rn), r, 6 R, 

lnîu(xu . . • , *n) = w(xi, . . . , £„), *, £ F. 

We then obtain homomorphisms 

Res: Hn(F, M) -> FP(F, ilf) and Inf: Hn(G, M) ~> #W(F, M) 

on cohomology. 
FT1 (F, M) becomes an F-module if we define 

(pc-u)(r) = xu(xrlrx), x £ F, r 6 R, u £ H^R, M). 

If F acts trivially on M> then x-z/ = w if and only if u{x~lrx) = u(r), that is, 
if and only if u^r^x'^rx) = 0; hence u £ Hl{R, M)F if and only if u is a 
continuous homomorphism of R into ikf which vanishes on (F, F ) . 

We now let M £ &Gl with the action of G on ikf trivial, and establish the 
existence of an exact sequence 

(A) 0^H\G,M)-^H\F,M)-^^H\R,M)F 

where tg is the so-called "transgression homomorphism" which we proceed 
to define below. Let s: G —» F be a continuous section such that s(l) = 1 
and let 7r: F —» R be defined by n (x) — xs^x)"1. Then if x Ç F, r G R, we have 
TT(0 = r, ?r(rx) = nr(z). Let « 6 i ï 1 ^ , M) F , ^0 = uoir g Cx(F, ikf), and 
ô = d«0 € C2(F, M). If r, / G R, x,y G F, then 

Uo(ra, ty) = u0(rx) + u0(ty) — u0(rxty) 
= u(r) + u0(x) + u(t) + u0(y) — u(r) — u0(xty). 

But 

u0(xty) = w(7r(a#y)) = u(xty s(xy)~l) 
= u{xtx~lt~1txy s{xy)~l) = u(t) + u0(xy). 

Hence 
z/0(>x, ty) = u0(x) + u0(y) - u0(xy) = VQ(X, y), 
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which implies the existence of a unique 2-cocycle v G C2(G, M) such that 
VQ = Inf (v). We let tg(u) be the class of v in H2{G, M). I t is easy to show that 
tg(u) is independent of the choice of s. 

The exactness of 

0 -> W{G, M) -> Hl{F, M) -* JF(1?, Af)F 

is clear, and 

(i) tgo Res = 0: If u = Res(0 with * G H1 (F, M), then 

2>o(#, 3>) = d(u ow)(x,y) = ^(xs^r) - 1) + u(ys{y)~l) — u(xys(xy)~l) 

= — {u o s(x) + w o s(;y) — w o s(:ry)). 
If z;0 = Inf (z>), then 

v(x, y) = v0(#, y) = — d(w o s) (x, y) 

which implies that tg(w) = 0. 
(ii) Ker(tg) C Im(Res): Let u G IP(R, M)F with tgO) = 0. Then if 

u0 = u 0 7T, there is a 1-cochain w G C^G, M) such that if ZJ0 = du0 and 
z/0 = Inf (y), then */ = dw. If w0 = Inf (w), then t/0 = dze/o, that is, 

w0(x) + «o(y) — ^ o ( ^ ) = Wo(x) + w0(y) — v>o(xy). 

Hence if t = u0 — w0l then t G Hl(F> M) and 

/(r) = u0(r) — wQ(r) = u(r) 

for ail r G R, that is, w = Res(0-
(iii) Info tg = 0: Immediate from the definition of tg. 
(iv) Ker(Inf) C Im(tg): Let a G H2(G, M) with Inf (a) = 0. Let v be a 

2-cocycle representing a such that v(l, g) — v(g, 1) = 0 for all g G G. Then, if 
Vo = Inf(fl), we have 

Vo{xy y) = u'(x) + u'(y) — w'(x;y) 

for some u' G 0(7% M). U u = Res(zO> then w(r/) = u(r) + u(t) for all 
r, t £ R, and if x G F, r £ R, we have 

^(rxr^x"1) = u(r) + ^ (x r^x - 1 ) = w(r) + ^(#) + u{r~lx~l) — z/o(x, r_1x_1) 
= u(r) + u(x) + u(r~l) + w(x-1) — z/0(^

_1, x - 1) — v0(x, r~lx~l) 

= u(x) + ^(x - 1) — »o(#, x - 1) = ^ '(xx - 1) = w'(l) = 0. 

Hence u G H^R, M)F. If w0 = u o TT, then 

(V — Wo)(#) = ^'(x) — ̂ '(x^â;)"1) = u'{s{x)x"lx) 
= «' os(x) = Inf(V os)(x). 

Hence du' — du0 = Inl(d(u' o s)). But du' = lnl(v) and du0 = Inf (V) where 
z/ is in the cohomology class of tg(w). Thus v — v' = diu' o s), which implies 
that tg(w) = a. 

This establishes the exactness of the sequence (A). 
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Let Mi, M"2, M £ ^ and suppose there exists a continuous bilinear mapping 
M1 X M2 —» .M ((wi,w2) i->mi-ra2), such that g(wi-m2) = (gwi)-(gm2) for 
g € G, nti, m2 6 If. We then define a cochain cup product 

(7(G, Mi) X C<(G, ikf2) -» Cp+ff(G, M) 

by setting 

u U »(gi, . . . , &,, Ai, . . . , ha) = u(gh ...,gp)-gig2... gP v(hi, . . . , hq). 

Using the easily derived formula d(u\J v) =duVJv+ ( — l)pu\Jdv, we 
obtain a cup product on cohomology. 

1.2. Free pro-p-groups. Let p be a prime number. Then a profini te group 
G is said to be a pro-p-group if G is the projective limit of finite p-groups. Let I 
be a finite set of cardinality n and let L(I) be the discrete free group with 
generators xi, . . . , xn G / . The /Vee pro-p-group F (I) generated by xi, . . . , xw 

is by definition the projective limit of the quotients of L(I) which are finite 
p-groups. If ai, . . . , aw are arbitrary elements of a pro-p-group G, there exists 
a continuous homomorphism of F (I) into G sending #* into a f. If Z = { 1 , . . . , w}, 
we write ^(w) in place of F (I) ; the group F(n) is the free pro-p-group of rank n. 

1.3. Interpretation of i?1: number of generators. If G is a pro-p-group, 
we let Hl(G) denote the group H^G, Z/pZ) where the action of G on Z/pZ is 
trivial. Hl(G) is then a vector space over Fp. H

l(G) is the set of all continuous 
homomorphisms of G into the discrete group Z/pZ. Each such homomorphism 
vanishes on G* = GP(G, G). Hence Hl(G) may be identified with Hl(G/G*), 
which implies that the abelian groups G/G* and Hl(G) are dual, the first 
group being compact and the second, discrete. It may be shown (9, ch. I, 
Prop. 25) that gh . . . , gn generate G topologically if and only if their images in 
G/G* generate this group. Hence, if dim Hl(G) = n < œ, G is a finitely 
generated topological group with n as the minimal number of generators. 

1.4. Interpretation of H2: number of relations. Let R be a closed 
normal subgroup of a pro-p-group F. If x £ F and u Ç H1^) then, as we have 
seen, x-u — u if and only if u vanishes on (R, F). Hence H1(R)F may be 
identified with H1(R/RP(R1 F)), which implies that the groups R/RP(R, F) 
and H1(R)F are dual. If ri, . . . , rn 6 R, their conjugates generate a dense 
subgroup of R if and only if the images of the rt in R/RP(R, F) generate this 
group (9, ch. I, Prop. 26). Hence R = (ru . . . , rh) if dim Hl(R)F = h. 

Suppose that G is a pro-p-group with n = n(G) < °°. Let 1 —> i^ —> i7 —> 
G —» 1 be a presentation of G with F = ^(ft). Let q = p^ (g = 1, 2, . . . , 00 ) 
be such that R C ^ f f(^\ F) and let & = Zp/qZp where k has the p-adic topology 
and the action of G on k is trivial. (Note that R C F*(F, F) as i P (G) -> H1 (F) 
is a bijection.) Then, since the homomorphism Hl(G, k) —> Hl(F, k) is bijec-
tive, the exact sequence (A) shows that the transgression map is injective. 
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Now one may show that H2(F, k) classifies the group extensions of F by k in 
the category of pro-^-groups and, since F is free, each such extension splits. 
Thus H2(F,k) = 0, which shows that tg is surjective and hence bijective. 
In particular, if k = Z/pZ, the results of the preceding paragraph show that 
R = Oi, ...,rh)iî dim H2(G) = h. 

1.5. T h e algebra ZP(G). The completed algebra ZP(G) of a pro-^-group G 
is the projective limit of the group algebras of the finite quotients of G. ZP{G) 
is then a compact totally disconnected ring and there is a canonical injection 
of G into ZP(G). If G — Zv, then ZP(G) is isomorphic to the formal power 
series ring ZP[[T]] (9, ch. I, Prop. 7). Moreover, the isomorphism can be so 
chosen as to map a given generator of ZP onto 1 + T. If G, H are two pro-p-
groups with G finite, then ZP(G X H) = ZP(G) ®Zv ZP(H). Finally, if G is a 
pro-£-group and E Ç ^ G is compact, the continuous mapping G X E —> E 
extends to a continuous mapping ZP(G) X E —> E, making E into a ZP(G)-
module. This follows from the fact that E is the projective limit of finite 
G-modules. 

§2. A preliminary classification. In the first part of this section we 
prove some general propositions on free pro-£-groups and cup products of 
1-cocycles. We then apply these results to obtain a preliminary classification 
of Demushkin groups; cf. Theorem 3. 

Let F be the free pro-^-group of rank n and let q = p9, where g is an integer 
> 1 or oo. The descending g-central series of F is the filtration (Ft) defined 
inductively as follows: 

Fi = F, Fi+1 = Ft<(Ft, F). 

The formulae Fi+1 C Fu (Fu Fj) C Fi+j imply that grt(F) = Ft/Fi+i is an 
abelian group (written additively), and that gr(F) = ^grt(F) is a Lie 
algebra over Zp/qZp; cf. (6). The Lie bracket for homogenous elements of 
gr(F) is induced by the commutator, that is, if £ = x £ gïi(F), and 
V = y 6 grj(F), then [£, rj] is the image of (x, y) = x~ly~lxy in gri+j(F). 

PROPOSITION 1. If x G Fu y Ç Fjf a Ç Zp, then 

(1) (*, y)a s xaya(y, x) (S) (mod Fi+j+1), 

(2) (x\ y) - (x, y)aax, y), x)(S) (mod Fi+j+2), 

(3) (*, / ) s (*, jO* ((*, 3O, y) 6 ) (mod 7 ^ , ) . 

Proof. The proposition is proved for positive integral a by induction using 
the formulae 

(i) (uv, w) = (u, w)((u, w), v) (v, w), 
(ii) (u,vw) = (u,w)(u,v)((u,v),w). 

The general result is obtained by passing to the limit. 
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Proposition 1 shows that the map x H> XQ of Ft into Fi+i induces a mapping 
Ttiigr^F) —>gri+i(F). The family (-zr )̂ then induces a map 7r*:gr(i7) •—>gr(F). 
L ^ & = Zp/qZp and let ir be an indeterminate over k if q ^ 0 and the zero element 
°f k if q = 0. Then there exists a unique mapping 

<t>:kU] Xgr(F)->gr(F) 

which is k-linear in the first variable and such that <t>('nt
1 £) = *"**(£)• If we let 

«•£ denote <£(«, £), w£ Aavg 7r*- (TTJ-Ç) = 7ri+:?'-£. Proposition 1 now yields 

PROPOSITION 2. Let £ G gr,CF). *? € gr^(F). r t o 

(1) 7T'(£ + 77) = 7T-£ + 7T-77 i f i = j > l , 

(2) TT-a + r;) = * . { + * . , , + (jjfo*] */* = J = 1, 

(4) [1^,1, ] = TT[$, 77] + ( | ) [ [ ê , 7̂], S] ifi=j = 1 , 

(5) fê, 7^] = *[*,*]+@[[£,IJ] ,IJ] ifi=j=l. 

Remarks. Let g be an integer > 1 . If g ^ 2", then ( 1 = 0 (mod g) and gr(7^) 

is a free Lie algebra over k[n]; cf. (8). If q = 2ff, then ( 1 = 2ff_1 (mod g) and 

gr(i?) is not a Lie algebra over k[ir]. In any case ]Cc>i g*i(F) is a Lie algebra 
over k[ir]. 

Now let r £ ^ (^S 70 and let f be the image of r in gr2CF). Then 

where £1, . . . , %n is a basis of gri(F) and au atj Ç & = Zp/qZp. Identifying 
Hl(F, k) with the dual of the k-module gri(F), we let xi> • • • > Xn £ Hl(F, k) be 
the dual basis of £1, . . . , £w. Le£ i£ C ^ f f(^, ^0 £e # c/osed normal subgroup of F 
containing r and let G = F/R. We have seen (cf. §1.4) that in the above 
situation the transgression tg: Hl(R, k)F —> H2(G, k) is bijective. Hence we 
may define a k-linear homomorphism 

r:H2(G,k)-*k 

by setting f(a) = tgr1 (a) (f1) for any a Ç H2(G, k). If we identify Hl(G, k) 
with Hl(F, k), we have the following proposition. 

PROPOSITION 3. Let x%^ Xj £ H2 (G, k) be the cup product of xu Xj £ H1 (G, k) 
relative to the pairing k X k —> k defined by sending (a, b) into ab. Then 

if i < h 
if i > j , 

r(xz U Xj) 

I an 
) —aH 

^J at ili=j. 
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Proof. Lift £i, . . . , £« to a basis Xi, . . . , xn of F. The cohomology class 
Xt ^ Xj can be represented by a 2-cocycle c0 where c0(a, r) = XzOOxjOO for 
ex, r Ç G. Let c be the inflation of c0 to F. Since H2(F, k) = 0, there exists a 
cochain ^ £ C^i7, fe) such that b — du and, moreover, by subtracting from 
u a suitable homomorphism, we can require that u(xh) = 0 for h = 1, . . . , n. 
Then 

w(ry) = «(*) + u(y) - XiWxyCv), x, y £ F. 

If ?; is the restriction of w to i?, then v = tg_1(xi U X;)- Hence 

r{xi^ xi) = v{r~l) = -u(r). 

Since u{x~l) + u(x) + Xi(%)Xj(%) = 0 for x 6 F, we have for h < k 

u(xh,xk) = uipCfT1) + «(xjfc-^ftX*) + Xi(xh)xj(pch) 

= —dih ôjh + u(xk~
lxh xk) + dih ôjh 

= Ufa-1) + u{xhXk) + X i f e ) X ; f e O + X i f e ) X ; f e ) 

= —ô*jfc àjh + u(xh) + u(xk) — Xi{Xh)Xj{Xk) + &ik àjh + &ik àjk 

Î
— 1 ili = h,j = k, 

1 if i = k,j = h, 
, 0 otherwise. 

If i T^ j , we have u{xh
m+l) = u(xh

m) and u(xh~
1) = 0 which implies that 

u (xh
m) = 0 for any m Ç Z. If i = j , we have 

wfew+1) = u(xh
m) - x,(x»w)x<(**) = u(xh

m) - ro«,», 

which implies that 

«(O = -(™)5« 
for w = 1, 2, 3, . . . . 

Noticing that u restricted to F2 is a homomorphism vanishing on F^ we have 

A2. 
since 

( dij Hi <j, 

/ x / — an if i > j , u(r) = \ / v 
at Hi = j , 

r = fi xh
9ai n (**, xk)"* (mod F8). 

COROLLARY. Suppose that g 7^0 and /^ 5 6e any element of F such that r = sq 

(mod (F, F)). jT&ew 5 w uniquely determined modulo (F, F) and 

r(x U x) = ( J ) x<^ for any x e ffl(G» fe)-

https://doi.org/10.4153/CJM-1967-007-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-007-8


DEMUSHKIN GROUPS 115 

Proof. The first statement follows from the fact that F/(F, F) is a free 
Zp-module. As for the second, note that 

s=flxt
ai (mod (F, F)). 

Then by Proposition 3 

?(X«UX()= (j)a<=(|)x<(*). 

The corollary then follows by linearity. 

For the remainder of this section we suppose that (i) R = (r), (ii) G — F/R 
is a Demushkin group, and (iii) a = q(G). Note that a is also the highest power of 
p such that r £ Fq(F, F). We now want to show that under these conditions 
the homomorphism f : H2(G, k) —» k is bijective. For this it suffices to show that 
M = R/RQ(R, F) is a free ^-module of rank 1. But this follows from the fact 
that N = R/(R, F) is a free Zp-module of rank 1 and that the image of 
R*(R,F) in N is qN. 

If we let x ^ x' denote f (x U x')> we obtain a ^-bilinear form 

Hl(G,k) XH1(G,k)-^k 

which is non-degenerate since its reduction modulo p is non-degenerate by 
definition of a Demushkin group. If q ?* 0, we let a be the image in gV\{F) of the 
element s described in the above corollary. Then a may be completed to a basis 
of gri(F) and we have the following proposition. 

PROPOSITION 4. (1) If q = 0, then n is even and there exists a basis xi» . • • , Xn 
of Hl(G, k) such that 

Xl V X2 = X3 W X4 = • . • = Xn-1 W Xn = 1, 

aw J Xi^J Xj — Ofor all other i < j . 
(2) If q ye 0, //zere aw/5 a fom's xi> • • • > X* of Hl(G, k) such that (a) Xi(V) = 1, 

XzO) = Oifi^ I and (b) 

Xi ^ X2 = X3 W X4 = . . . = Xn-i ^ X » = l 

with Xi^J Xj ~ 0 for all other i < j , if n is even, or 

X2 W X3 = X4 W X5 = • • • = Xn-1 ^ X n = 1 

ÎW'/Â Xi^-J Xj = 0 /or a// 0 / / ^ i < j , if n is add. Moreover, n is even if q ?£ 2. 

Proof. (1) This follows from the theory of non-degenerate alternate 
bilinear forms over a principal ideal domain. 

(2) Case I: q ?£ 2. The rank n is even since the reduction of the cup product 
modulo p is a non-degenerate alternate bilinear form over the field Fp. Let 
Xi, . . . , Xv be any basis of Hl(G, k) such that (a) holds. To find such a basis 
one only has to complete a to a basis of gri (J7) and take the dual basis. Since 
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the cup product is non-degenerate, one of the elements xi ^ Xi with i > 1 
has to be a unit of k. After a permutation we may assume that %i ^ X2 is a 
unit and multiplying X2 by a unit we may even assume that xi ^ X2 = 1. 
If xi ^ Xt = <ii 7e 0 for some i > 2, replace x% by x* ~ #* X2. Since condition 
(a) is not altered by this substitution, we may assume that xi ^ Xi = 0 for 
i > 2. Now if N is the subspace spanned by X3, • . . , Xn» our cup product 
restricted to iV X iV is non-degenerate and alternate. Hence we may choose 
X3, • • • 1 Xn G N such that (b) holds for i,j > 2. Condition (a) is still satisfied, 
Xi ^ X2 = 1, and xi ^ Xi — 0 for i > 2. If we replace X2 by 

X2 + dz X3 + . • . + On Xn 

with a<n = X2 \J X2i-i and a2î_i = — X2 ^ X2*, we have, in addition, 
X2 ̂  Xi — 0 for i > 2. Thus, the proof of Case I is complete. 

Case II : a = 2. In virtue of the corollary to Proposition 3 it suffices to find 
a basis x% with Xi ^ Xi = an such that (b) holds. But this follows from a 
classical theorem on non-alternate, symmetric bilinear forms in characteristic 
2; cf. (4, p. 170). 

COROLLARY. There exists a basis xi, . . . , xnfor F such that 

Î
XiQ(xu X2) (x3, Xé) . . . (xw_i, xn) (mod ^3) if n is even, 

XiQ(x2, Xz) (#4, #5) • • . (xn-i, xn) (mod F$) if n is odd. 

Proof. Choose a basis xi> • • • > Xn of Hl(G, k) as in Proposition 4 and let 
fii • • • 1 £» be the dual basis in g r ^ ^ ) . We obtain the required basis by lifting 
£ 1, • • • , in to a basis Xi, . . . , xn of -F. 

7w any basis x — (xt) of F let 

!

Xiç(xi, X2) (x3, x4) . . . (xn-i, xn) if n is even, 

XiQ(x2, x3) (XA, X5) . . . (#w_i, xn) if n is odd. 

If tu . . . , tn G -Fj-i, with j > 3, and if yt = xt t{~1, then y = (3^) is a basis of 
F and 

r0(*) = r0(y)dj_1(tu . . . , 4) 

where dj-i(tu . . . , 4) is a uniquely determined element of 7^. A simple cal
culation using Proposition 1 shows that if rt is the image of tt in gVj_i(F), then 
the image of dj-i(ti, . . . , 4) in grj(F) is 

7T-T! + ^ J [ru £1] + [TU £2] + Ki, r2] + . . . + [r„_!, Çn] + [£„_!, r„] 

if « is even, and 

TT-Ti + [ri, £1] + [r2, £3] + [£2, r3] + . . . + [rn_i, £»] + [fn-i, rw] 
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if n is odd. Hence dj-i induces a ^-linear homomorphism 5y_i: grj_i(F)n —> gr^(F) 
for j > 3. 

PROPOSITION 5. Let j > 3. Then 
(1) gr,(F) = lm{51-1)ifq^2. 
(2) 77ze abelian group gTj(F) is generated by Im(5;_i) and the elements 

Ttj~l'£u with i 9^ 2, if q = 2 and n is even. 
(3) The abelian group grj(F) is generated by Im(5y_i) and the elements 

7ry_1'£i, with i 9^ 1, if q = 2 awd w is odd. 

Proof. Let i3j be defined as Im(5;_i) in Case 1, the group generated by 
Im(5;_i) and the elements T T ' - 1 - ^ (i 7^ 2) in Case 2, and the group generated 
by Im(ô^_i) and the elements 7ry-1-^ (i y£ 1) in Case 3. Notice that in order 
to prove that Hj = grj(F)J it suffices to show that it-r^Hj for any 
r G grj-i(F). Indeed, in any case [r, £*] G I m ^ . i ) for i > 3 and r - r + [r, £2], 
IT> £i] € Im(ôy_i) if n is even and TT-T + [r, £i], [r, £2] € Im(5y_i) if n is odd. 
From this it follows that 7r-r, [r, £ j 6 iJy for all r 6 grJ_i(JF) and i > 1 . 
But the elements TT-T, [r, £*] with r G gr ;_i(F) generate g r^F) . 

We now proceed by induction on j . Assume that we have shown that 
Hj = gXj(F) for some j > 3. If r G grj(F), then 

where at G k, n , . . . , rn G gry_i(F) and a2 = 0 in Case 2, ai = 0 in Case 3, 
and all at = 0 in Case 1. But then 

i—n 

T'T = X ) a i ^"J'Si + ^ ( T T ' T I , . . . , 7T-Tm), 

which implies that ir • r G H;+i for any r G Hj. 
Thus we are reduced to proving the proposition for j = 3, that is, to proving 

that 7T -r G H3 for any r G gr2(^). Moreover, it suffices to take r of the form 
it'ku \£u ij\ since these elements generate gv^{F). 

Case 1. The ring k is a local ring with maximal ideal 5DÎ = pk. Hence by 
Nakayama's Lemma it suffices to prove that Tgr2(F) C Hz + $Jlgrz(F), since 
then we would have gr,(F) = Hz + 9^gr3(F). Set M = 9ftgr3(F). Then by 
Proposition 2 we have 

**• Ki, f J = W'èu èj] + m = [£*, TT- l̂ + w', 
where m,m' G Af. Therefore, since [r, £ j G Im(<52) if i ^ 2, we have 
7T • [£*, £ j G Hz + M for any i, j . Moreover, as TT-T + [r, £2] G #3 for any 
r G gr2(/0> we have 7r2-£* + [*•£*, £2] G #3 and, hence, 7r2-^ G f t + i^" for 
any i. 

Case 2. Since 7r-r + [r, £2] G #3 for any r G gr2(/0> it follows that 7r2-£2 

and [ r { „ { 2 ] G # 3 . But 

[*••*<,&] = » • [€i, €2] + [tëi,fc],É,]; 
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hence 7i • [£•*, £2] € # 3 as [r, £ j Ç i ? 3 for any r 6 g r 2 ( / 0 if i ^ 2. For any i, j we 
then have 

lliu U £2] = [[£„ £2], £*] + [[£2, f,] , ZA G # 3 

and hence -n • [£*, £•,-] £ iJ3 . 
Case 3. T h e proof of this case is the same as t h a t of Case 2 except t h a t here 

£1 plays the role of £2. 

T h e object of this section is to prove the following theorem. 

T H E O R E M 3. Let r Ç FV{F, F), where F is a free pro-p-group of rank n. 
Suppose that G = F/(r) is a Demushkin group with q(G) = q. Then, 

(1) if q ** 2, there exists a basis xi, . . . , xn of F such that 

r = X!Q(xu x2)(x3 , XA) . . . (#»-i, xn); 

(2) if q = 2 and n is odd, there exists a basis xi, . . . , xn of F such that 

r = X\Lxtf" (#2» # 3 ) \X\, X§) • • • \Xfi-lj Xn) 

for somef = 2, 3, . . . , °° ; 
(?) tf °\ ~ 2 and n is even, there exists a basis Xi, . . . , xn of F such that 

r = x i 2 + a (x i , x2)x3
2 /(^3, Xt)(x$, x%) . . . (xn_i, xn) 

for some f = 2, 3, . . . , 00 and a £ 4Z2. 

Proof. W e know t h a t r = r0(x) (mod F3) for some basis x = (x\, . . . , xn) 
of F. W e proceed by the method of successive approximation. 

Suppose first t h a t g ^ 2 and t h a t we have found a basis x = (xly . . . , xn) of 
F such t h a t r = ro0O (mod i7^) (j > 3) , t h a t is, r = r0(x)ej with <?y G F y . 
T h e n if 3^ = #* ^ _ 1 with ^ £ ^V-i, we have r = r0(y)dj-i(ti1 . . . , O ^ - B u t in 
v i r tue of Proposition 5 we may choose the t's so t h a t 

dj-iih, . . . , tn)ej = 0 (mod Fj+1). 

Hence r = r0(y) (mod Fj+i). I t e ra te this process and pass to the limit. (This 
is possible since the successive corrections t = (/1, . . . , tn) converge to 1.) W e 
thus obtain a basis x = (xi, . . . , xn) of F such t h a t r = r 0 (x) . 

Now assume t h a t q = 2 and w is even. Suppose t h a t we have found a basis 
x = (#i, . . . , xw) of F and 2-adic integers Xi, . . . , \w divisible by 4 such t ha t 

r = XiXVo(x)x3
X3 . . . Xnnej 

for some j > 3 with e^ Ç 7^. If we set yt = xt tt~
l with tx £ i ^ - i , then 

r = yïln(y)yï* . . . 3^%-ife . . . , / > ' , 
with ej = e'j (mod Fj+i). By Proposition 5, there exist ti, . . . , tn in i 7 , - ! and 
integers ai , . . . , aw £ {0, 1} such t h a t 

d ^ f o , . . . , O * ' , s y ^ 2 ' " 1 - ^ " ' 2 ' " 1 . . . yn
an2J~l (mod FM). 
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Hence 

yiXl-" l l '~V.(y):y.x ,W~ I • • • y ^ ' l e m 

with ej+i 6 Fj+1. Iterating this process and passing to the limit we find a basis 
Xi, . . . , xn of F and 2-adic integers au . . . , an divisible by 4 such that 

r = Xiair0(x)x"3. . . xn
an. 

Now, using Proposition 3, we see that the relation 

Y = \Xzi Xi) . . . {Xn—i, Xn)Xz . . . Xn 

is a Demushkin relation in the variables Xz, . . . , xn. Its g-invariant is 2 / for 
some/ > 2. Hence by Theorem 3, Case 1, we can choose the variables x3, . . . , xn 

so that 
Y' = Xz2f(xz, xi) . . . (xw_i, xn). 

Since r = Xi2+al(#i, X2V, our proof is complete. 

Since the case q = 2, n odd is entirely analogous to the case q = 2, n even, 
we shall not discuss it here. For more details cf. (8, pp. 7-8). 

§3. The invariant Im(x). In this section we discuss the invariant Im(%) 
which was mentioned in the Introduction. We shall see that the existence and 
uniqueness of x follow easily from Theorem 3 and at the same time we shall 
give a procedure for computing it. 

Let G be a pro-£-group, Up the group of £-adic units with the £-adic topology, 
and x ^ continuous homomorphism of G into \JP. If we define a-x = x(o")# for 
all a 6 G, x G Zp, then Zp, with the p-adic topology, becomes a topological 
G-module which we denote by / = 7(x). We then have the following proposi
tion: 

PROPOSITION 6. If dim ^(G) < °°, the following aYe equivalent: 
(1) FOY all i > 1 the canonical homomoYphism Hl(Gy I/p^) —*IP(G, I/pi) 

is suYJective. 
(2) FOY all i > 1 we may aYbitYaYily pvescYibe the values of CYossed homomoY-

phisms of G into I/p lI on a minimal system of genevatoYS of G. 
(3) We may aYbitYaYily pYescYibe the values of CYossed homomoYphisms of G 

into I on a minimal system of geneYatoYS of G. 

PYOof. (3) follows from (2) by passing to the limit, and (1) immediately 
follows from (3). To prove that (1) implies (2) we proceed by induction on i, 
using the exact sequence 

0 -> I/p^I -^ I/p'I -> 11 pi -> 0 

where X is induced by multiplication by p. The statement (2) is true if i = 1 
since Im(x) C 1 + pZv implies that G acts trivially on I/pi = Z/pZ. Now 
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let gu . . . , gn be a minimal system of topological generators of G and let 
#i, . • . » an Ç I/p1! with i > 1. Using (1) we can find a crossed homomorphism 
Di of G into ///>*/ such that b{ = Di(gt) — a* G Im(X). By the inductive 
hypothesis there exists a crossed homomorphism _D2 of G into I/p1'1! such that 
Di{gi) — X_1(ô*)- Then D = Z>i - X o D2 is a crossed homomorphism of G 
into I/p1! such that Dg* = a*. 

COROLLARY. //" G w a free pro-p-group, the statements (1), (2), (3) are true. 

Proof. In virtue of the Proposition it suffices to prove (1). But this follows 
from the fact that H2(G, I/p'I) = 0 for i > 1. 

THEOREM 4. Suppose that the pro-p-group G is a Demushkin group. Then there 
exists a unique continuous homomorphism %\ G —» \JP such that I(x) has the 
equivalent properties (1), (2), (3) of Proposition 6. 

Proof. If dim Hl(G) = n, we know that G is isomorphic to a quotient of the 
free pro-^-group F = F(n) by a closed normal subgroup R = (V). Moreover, 
in each of the cases (1) q ^ 2, (2) q = 2, n odd, (3) q — 2,n even, there is a 
basis Xi, . . . , xw of F such that r has the form described in Theorem 3. 

In each of these cases we define a continuous homomorphism x: F —» Up by 
setting 

(1) x(*8) = (i - a ) - 1 , x(*<) = i if* ^ 2 , 
(2) x(*i) = - 1 , x(*s) = (1 - 20~\ x(*<) = 1 « i * 1,3, 
(3) x f o ) = - (1 + a)"1 , x(*0 = (1 - 20" 1 , x(*<) = 1 if i ^ 2, 4. 

In each case x(r) = 0 so that x induces a continuous homomorphism x'. G —» Up. 
Now let Z) be any crossed homomorphism of F into I(x)- Then, using the 
formula 

D(x, y) = x~ly~l(Dx — yDx + xDy — Dy), 

we find 
(1) Dr = (q + x(x2)~1 - l)Dxx = 0, 
(2) Dr = (1 + x(*i))#*i + (2 ' + xCxs)"1 - l)Dx2 = 0, 
(3) £>r = (2+a + x(x2)-

1 - l)DXl + (2 ' + x ^ ) " 1 - l)£>x3 = 0. 
I t follows that D induces a derivation of G into / ( x ) . Since F has property (3) 
of Proposition 6, it follows that G does. Hence the existence of x is established. 

To prove the uniqueness of x let us show that our definition was forced. Let 
Dt be the derivation of F into I(x) such that Di(r) = 0 and Dt{xj) = 5^. 
Then 

(1) D2(r) = x(*i)Mx(*2)(x(*i) " 1) =» X(*i) = 1, 

Diir) = q + x(*0 ~ 1 => x f o ) = (1 - <z)"\ 

# 2 i ( r ) = X(^20 _ 1 ( l — x(*2i - l ) ) , i 5* 1 => x(*2<-l) = 1, 

D2i-i(r) = x ^ - O ^ x f e ) " 1 ~ 1), i 9* 1 => x(x2i) = 1. 
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(2) Px(r) = 1 + x(*i) =»x(*i) = - l , 
Di(r) = —Di(x2

2f(x2, xz) . . . (xn-u xn)), 

i F* l=>X(Xi) = 1, 
x(*s) = (1 - 2')-1 , 

x(xt) = 1 for i > 3. 

i ) =>x(*i) = 1, 

i ) =*• x(xz) = 1, 

=* x(*!i) = — (1 + a)"1, 
=> x(*0 = (1 - 2')-1 , 

(3) D2(r) = x(xi)1+ax(^2)-1(x(xi) -

^4(r) = xixty'-'xix^Uixz) 
Dx(r) = 2 + a + x(x2)-1 - 1 

Dz(r) = 2^+xW - 1 
Di(r) = Dt((xi, xt) . . . (xw_i, xn))y i> 4 => x(*<) = 1. 

COROLLARY, (i) Im(x) is an invariant of G. 
(ii) a — q(G) is the highest power of p such that Im(x) C 1 + qZp. 

(iii) In Theorem 3 we have 

(\ + qZv in Case 1, 
Im( x ) = ) { ± 1 } XU 2

( / ) in Case 2, 
) { ±1} X U2

( / ) in Case 3 if v%(a) > f, 
( W ' l in Case 3 if / ' = v2(a) < f. 

Remarks. The mapping log: U2?
(/)—» pfZp defined by 

log(l + x) = x - x2/2 + x3/3 

is a continuous homomorphism of Up
( / ) into pfZp. I t is an isomorphism if 

p 9e 2 or if p = 2 and / > 2. Hence, if £ 5̂  2, the only closed subgroups of 
Up

(1) are the groups Up
( / ) wi th / > 1. In the case p = 2, however, 

I V » = {±1} XW 2 >. 

I t is then easy to check that the closed subgroups of U2
(1) are either of the form 

U2
( / ) with / > 2 or of the form {±1} X U2

( / ) with / > 2 or of the form U2
[/I 

with 2 < / < » . Note that U2
[/1 is isomorphic to Z2 if 2 < / < 00. 

§4. The case q — 2, n even. Let F be a free pro-2-group of even rank n 
and let r G ^ 2 ( ^ , ^) = ^2 be a Demushkin relation with g-invariant equal 
to 2. Let x = Xr be the associated character. 

DEFINITION. Let X = ker(x) , E = X/(X,X), T = F/X, A = Z 2 ( r ) ; 
cf. §1.5. We make E into a topological T-module in the following way. If£ = x(zE 
and a = y 6 I\ £/z£ft a- J is £&e image of y~lxy in E. Since E is profinite, we may 
consider E as a A-module; cf. §1.5. 

Now by the Corollary to Theorem 4 we have T ^ Z/2Z, Z2, or (Z/2Z) X Z2. 
If T ^ Z/2Z, then by Theorem 3 and the Corollary to Theorem 4 there is a 
basis Xi, . . . , xn for F such that 

r = xi2(xi, x2) . . . (xw_i, xn). 
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If r = Z2, then Z2(T) ^ Z2[[T]] with a generator of V corresponding to 
1 + T; cf. §1.5. If T ^ (Z/2Z) X Z2, then Z2(T) ^ Z2[5] ®Z2 Z2[[T]] where 
S corresponds to the generator of Z/2Z. 

Note. In this section, (Fi) is the descending 2-central series of F] cf. §2. 

4.1. Im (x) = Z2. In this case Im (x) = U2
[ / ] w i t h / ^ oo. Then by Theorem 3 

and the Corollary to Theorem 4 there exists a basis w\, . . . , wn of F such that 

y = Wi2+a(wi, W2)Wz2g(wdl Wt)(w5, WQ) . . . (w„_i, Wn) 

where a is a 2-adic integer wi th / = v2(a) > 2 and 2g is an integer with g > *>2(a). 
(If w = 2, then by the above we mean r = wi2+a(wi, w2) where a is a 2-adic 
integer with / = fl2(a) > 2. By this convention we include the case n = 2 in 
what follows.) 

In the proof of Theorem 4 we showed that 

x(^2) = — (1 + a:)-1, x(w*) = (1 — 2g)~1, x(Wi) = 1 otherwise. 

Let a be the (unique) 2-adic unit such that (1 + 2f)a = 1 + a, and b the 
(unique) 2-adic integer such that (1 + «)& = 1 — 2^. Note that b is divisible 
by 2. Now set 

j2 = W2a~1, y± = WiW2~
b, y% — Wi otherwise. 

Then y±, . . . , yn is a basis of F and 

xCvi) = i. xW = - (l + 2')-1, x(yt) = 1 for i > 2 
with 

r = yi2+aCyi, y2a)y*2°(ys, ^4 y2a6) (ys, y e ) . . . Cyn-i, 3 0 -
If 7 is the image of y2 in T, then 7 is a topological generator of T. Hence there 
exists an isomorphism of Z 2 ( r ) onto Z2[|T]] sending 7 into 1 + T. If we let 
f and 5^ be the image of r and yt respectively in £ , then 

f = (1 + a + (1 + m ^ + (2* + (1 + r)«6 - 1)3?,. 

LEMMA If f(T) £ Z2[[T]]y c G 2Z2, /Ae» T-c divides f(T) in Z2[[T]] if 
and only if \p(c) = 0. 

Proof. We may assume that c 9e 0. If $(T) = (T — c)(t>(T) with 
<t>(T) G Z2[[T]], then ^(c) = (c — c)4>(c) = 0, the substitution being possible 
since all series involved are convergent. Conversely, if 

iKc) = bo + b1 c + b2 c
2 + . . . + b> cj + . . . = 0 

and 
cj= - (bo + b1 c + . . . + bj cO/c»1, 

then Cj € Z2 for j > 0. If we set 

4>(T) = co + d T + 02 T* + . . . + Cj T^ + . . . , 

then * ( D 6 Z2[[r]] and f(T) = (T - c)<t>(T). 
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If we set 

MT) = 1 + a + (1 + TY and * 2 ( r ) = 2 ' - 1 + (1 + T)*\ 

then 

\^ i ( -2 - 20 = 1 + a + ( - 1 - 2 0 a = 1 + a - (1 + 2 0 a == 0 

and 

<A2(-2 - 20 = 2ff - 1 + ( - 2 - 20a& = 2 ' - 1 + ( - (1 + a))* 
= 2 ' - 1 + (1 + «)* = 0. 

Hence by the lemma there are power series <t>i(T), <t>z(T) in Z2[|T]] such that 

*«(r) = (2 + 2'+r)*«(r) for* = 1,2. 
Then 

f = (2 + 2 ' + T){<t>i{T)y, + «2(203/3). 

Let Z\ be an element of X whose image in E = X/(X, X) is 

0 i ( r )y i + <t>i(T)yz 

and let s* = 3^ for i 5̂  1. Then, since 4>i(0) is a unit and #2(0) 6 2Z2, we have 
Si = yt (mod ^ 2 P X) and 

f = (2 + 2' + T)*!. 

Hence z\, . . . , zn is a basis of T7 with x(^i) = x(s*)> and 

r = S!2+2 /(2i, 22) («8, 24) . . . OV-1, 2»)$ 

with e 6 (X, X) . If we set 3^ = ^ zt (tt 6 F2) in the expression for r in terms 
of the basis (ji) and make use of Proposition 1, we also see that e G F*. 

THEOREM 5. Let r be a Demushkin relation in the free pro-2-group F of even 
rank n. Let x be the character associated with the Demushkin group G = F/(r), 
and suppose that Im(x) = U2

[/1 withf 9^ » . Then there exists a basis Xi, . . . , xn 

of F such that 
r = Xi2+2f(xu x2)(x3, x4) . . . (xn_i, xn). 

Proof. For any basis x = (x0 of F let 

r0(x) = X!2+2/(xi, x2)(x3, x4) . . . (xn_i, x j . 

The above results show that there exists a basis of F such that r = r0(x)e$ 
with e3 Ç (X, X) P\ ^3. Fix this basis and let £* be the image of Xi in gr i(i7). 
We shall show that it is possible to correct x successively by factors t in X so 
that the desired result is obtained by passing to the limit. 

Let gr(X) be the Lie algebra associated with the filtration (Xt) of X where 
Xt = X Pi Fi. Then the inclusion X C F defines an injection of the Lie 
algebra gr(X) into the Lie algebra gr(F), and we use this homomorphism to 
'dentify gr(X) with its image in gr(F). Now let y = (yt) be a basis of F with 
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yt = Xi (mod X2) and let / = (h, . . . , tn) be a family of elements in X ;_i for 
some j > 3. If zt = y* tc1, then s = (s*) is a basis of T7 and 

ro(y) = r0(z)dj_1{t) 

where dj-i(t) is a uniquely defined element of Xj. Noting that the image of yt 

in gri(F) is %u the image of dj-i(t) in gr ;(X) is 

ii'Ti + [ri, fi] + [n, £2] + [£1, r2] + . . . + K_i, £n] + [Jn_i, r j 

where r* is the image of tt in gr ;_i(X). Hence d;_i induces a linear map 

LEMMA 1. gr(X) is an ideal ofgr(F) and for i > 1 the abelian group gr^/7) is 
generated by gr*(X) and 7r*-1-£2. Moreover, 7r*_1-£2 € gr^(X). 

Proof. We have an exact sequence 

0->X-*F-i>2Z2-*0 

where </> is the continuous homomorphism defined by 

<t>(x2) = 2, 0(*<) = 0 for i j* 2. 

The groups 4>{Fi) = 2*Z2 give a filtration of 2Z2 whose associated Lie algebra 
may be identified with the abelian Lie algebra 7rF2[7r], with the graduation 
defined by the fact that iri is of degree i. (ir1 is the image of 2* in 2*Z2/2 l+1Z2.) 
The above exact sequence induces an exact sequence of graded Lie algebras 
cf. (6, p. 112, Theorem 2.4), 

0 _ > gr(X) —> gr(F) -* i 7rF2[7r] —> 0 

with 0* (71 *~1 • £2) = 712". But this implies our lemma. 

LEMMA 2. 7w i > 3, the abelian group gr^(X) is generated by elements of the 
form 7T -r, [r, £,] with T 6 gr*_i(X). 

Proof. Let 31* be the subgroup of gr*(X) generated by the elements 7T-T, 
[r, £,] with T 6 gri-i(X) and let £ G gr,(X). Then 

m 

£ = 7T-T0 + ^ [?> £j] 
3=1 

where Tj G grf_i(F). But by Lemma 1, 

T3 = a^7r*~2-f2 + Ai with a, G F2, Ay G gr*_i(X). 

Now if j ?± 0, we have 

[r,?,] = <*,**-«•[»•&,&] + [**{,] 
= â  * « • [ & , £,] + a, 71 <-'• f[f2> ^ ] , £2] + [ft,, y 
= 7T. (a ,TT- 3 - [a $,]) + [a,7T-3-fe, $,], f2] + [A* tj] e » , 
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since a ; 7r*"3- [£2, £;] G gr*_ipQ. In particular, this implies that 7r -r0 G gr^psT). 
But ir-To = aoT1-1'^ + ir-ho implies that a0 = 0. Hence T-T0 G 21 *, which 
means that £ G 2lz-. Consequently, 2I€ = gr^X). 

LEMMA 3. If i > 3, the abelian group gr^X) is generated by Im(5j_i) and the 
elements 7rz-1-f;- with j 5* 2. 

Proof. Let §* be the group generated by Im(ôj_i) and w*"1-^ with j ^ 2. 
Im(5i_i) is generated by elements of the form 

7 r - r + [ r , fr], [T,{,] (j ^ 2), with r 6 grM (JT) . 

To prove that §* = gr^(X), it suffices to show that TI-T G §* for any 
r € gr*_i(X) by virtue of Lemma 2. Using induction it suffices, therefore, to 
show that (a) n&i-i C §z for i > 4 and (b) 7rgr2(X) C §3. Now (a) follows 
because ôt -n = 7r5z_i for i > 3. We have only to show (b). 

By Lemma 1 the group gr2(X) is generated by the elements 7r-£;- (j 9e 2), 
[£;> £*] 0 < &)• To prove that 7r-r G §3 for any r G gr2(X), it suffices to show 
that 7T2-^ (j ^ 2), 7T • [£;-, £*] (j < k) are in §3. But the elements TT2-^ (j 9e 2) 
are in §3 by definition. If j , k 5* 2, then [[^, £*], £2] G § 3 by virtue of Jacobi's 
identity. Hence ?r • [£,, &] G §3 if J, & ^ 2. But 

and [TT-^-, £2], [[£;, £2], £ j G §3 imply that TT- [£,, £2] G §3. Hence (b) is proved 
and the proof of the lemma is complete. 

LEMMA 4. Let I = I(x) be the F-module defined in §3 and let D be a crossed 
homomorphism of F into 21. Then, if we identify £*>i 2iI/2i+1I with 7rF2[7r] as 
in the proof of Lemma 1, we have 

(1) D induces a linear map A: gr(F) —> 7rF2[7r], 
(2) A o 5 , = 0, 
(3) if Di is the crossed homomorphism with Di(xj) = 2b tj and At is the 

corresponding linear map, then 

ài(*j-%) = *'«« ifk*2, 

(4) I m ^ - O = n A (ker(A) H grt(X)) for i > 3. 

Proof. (1) We first prove D(Ft) C2iI. By hypothesis D(FX) C 21. If 
D(Ft) C 2'J and x G F,, then 

Z>x2 = Dx + x£>x = (1 + x(pc))Dx C 2<+1/ 

since xOO is a unit. Also 

D(x,y) = r y ^ l ~ xGOXD* + (x(x) - l)Dy G 2i+1I 

for any y £ F. Since the elements x2, (#, 3;) with x € Ft, y £ F generate Fi+U 

we have D(Fi+1) C2i+1I. 
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Now let x € Ft,y £ Fi+i. Then Dxy — Dx = xDy Ç 2i+lI. Hence D induces 
a map A: grt(F) -> 2iI/2i+1I. Moreover, if x, y G Fu then 

Dxy = Dx + ff-Dy = Dx + (1 + 2u)Dy with w Ç Z2, 

which implies that Dxy — Dx — Dy 6 2 i+17. Hence A is linear. 
(2) If /i, . . . , 4 € -X^i, then 

£>(42+2/(4, xi) (4, x2) (xi, 4) . . . (4-i, *n) fe-i, 4)) 

= (2 + 2*)Dh + D(fu x*) = (2 + 20Z«i + ( x ^ ) " 1 - \)Dh 
= (2 + 2 ' - 1 - 2 ' - 1)1)/! = 0. 

(3) ZMx/" 1 ) = 2J'-1P,(x,) = 2jÔik ilk 9* 2. 

(4) Follows from Lemma 3 and ( l ) - (3) of this lemma. 

We are now in a position to complete the proof of Theorem 5. Suppose that 
Y = ro(y)ej1 where 

(i) yu • • • , yn is a basis of F with yt = xf (mod X2) ; 
(ii) e ; £ X;- with j > 3 and Dej = 0 for any crossed homomorphism D ol F 

into / . 
(If j = 3, choose yt = #*. Then (ii) is satisfied since D(X, X) = 0.) If 

%i = yih-1 with 4 € Xj-i, then working modulo (X, X) P\ Fj+1 we obtain 
r = r0(z)ei ej with 

«l = 42 + 2 ' (4, si) (4, 22) («i, 4) . . . (4-i, s») fe-i, 4) G Xy. 

Hence r = r0(z)ej+i with ej+i = £i e;- e'i, where e\ £ (X, X) P\ F^+i. Now if 
Z) is a crossed homomorphism of F into I we have 

But Dej = 0 by (ii), De\ = 0 since D vanishes on (X, X) , and Dex = 0 as in 
the proof of Lemma 4, 2. If e; and ej+i are the images of e$ and ej+i respectively 
in gïj(F), we have 

€;+l = 6j + Ô ; _ i ( n , . . . , Tn) 

where n is the image of 4 in gr ;_i(X). By virtue of Lemma 3 we can choose the 
4- so that 

ej — E ^ 2 di Ti3~l£i + 8J(TI, . . . , rw). 

But if i ?* 2, 
0 = Ai(ej) = di-ni, 

which implies that at = 0. Hence ej+i = 0. This means that we have found a 
basis Zi, . . . , zn oî F with r = r0(z)ej+u where (i) and (ii) are satisfied with yt 

and j replaced by zt and j + 1 respectively. Iterating this process and passing 
to the limit we obtain the desired result. 

4.2. Im(x) = (Z/2Z) X Z2. In this section 

Im(x) = {+1} XU 2
( / ) w i t h / > 2 , / ^ oo. 
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Then by Theorem 3 and the Corollary to Theorem 4, we have n > 4 and there 
exists a basis Wi, • • • > wn for F such that 

r = W i 2 + a ( ^ i , ^ 2 ) ^ 3 2 / ( ^ 3 , W4) . • . (w»-i , ww) 

where a 6 4Z2 a n d / < fl2(a:). We want to find a basis such that r has the above 
form with a replaced by 0. Hence we may assume that a 7^ 0. We also lose no 
generality if we assume that n = 4. 

The proof of Theorem 4 implies that 

x O i ) = 1, x(w2) = — (1 + a ) - 1 , x(w3) = 1, x(w0 = (1 ~ 2 /)~1. 

Let 6 be the unique 2-adic integer such that (1 — 2 /)6 = 1 + « and let 

3>2 = W2 WA~h, Ji = Wi for i 7e 2 . 

Then yit . . . , 3/4 is a basis of F, and 
x(yi) = 1. x t o ) = - 1 , x(ys) = 1, x(y0 = (1 - 2 ' ) - \ 

r = yi2+a(yi, y2)Cyi, y4&)ys2/(y3, yOCCyi, 3VO, ̂ 2)^0 

with e0 G (X, X) . Let H and i£ be the subgroups of T generated by 5 = y2 

and 7 = y A respectively. Then r = H X K with H ^ Z/2Z, K ^ Z2 and 
there is an isomorphism of Z2(T) onto Z2[5] ®Z2 Z2[|T]] sending 5 into S and 
7 into 1 + T. Thus, if f is the image of r in E, we have 

r = (2 + « + 5 - 1 + (1 + ry - 1 + (5 - i ) ( ( i + z y - 1 ) ) ^ 

+ (2' + r)y8 
= (1 + a + 5(1 + TY)yx + (2' + T)yz. 

LEMMA. There exists <t>(S, T) £ Z2[5] ®Z2 Z2[|T]] such that 

(1 + a + 5(1 + D»)(l + a)-1 + (2' + 7>(5, T) = 1 + S. 

Proof. Let 

0(5, D = (1 + a + 5(1 + r)»)(l + a)"1 - 5 - 1 . 

Then 

(9(5, D = 5((1 + T)\\ + a)-1 - 1) = SdiT). 
Now 

0(-2O = (1 - 20*(1 + a ) - 1 - 1 = (1 + a)(l + a)"1 - 1 = 0 . 

Hence there exists 0( r ) € Z2[[71] such that 0(r) = (2' + T)<t>(T). Then 
#(5, r ) = S<fi(T) is the required element. 

Now let 0i, z-i be elements of X such that their images in E are respectively 
(1 + a)y,, yz - ( 1 + a)<J>(5, T)y,. Then}! = (1 + a)"1^, y3 = 4>{S, T)z, + z3 

and 

f = ((1 + a + 5(1 + 7T)(1 + «)-i + (2' + D*(5, r))2i + (2' + T)zz 

= (i + 5)2i + (2' + r)f,. 
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Hence, if we set z2 = y2, %i = y h then 21, . . . , 24 is a basis of F, 

x(«i) = l, x W = - 1 , %(*•) = l, x(*0 = (l - 20-S 

and 
r = 2l2(^l, Z2)23

2/(>3, 24)Ci 

with 61 G (X,X). 
Now 1̂ = (zi, z9)

ae'i where a G Z2 and e'i G (X, X) P\ F3. Set 

Xi = zt if i 5̂  2 and x2 = 22 23~
a. 

Then #1, . . . , x4 is a basis of F, x(%ù = x(2i)> and 

r = Xi2(xu X2)xz2f(xz, x4)(xi, xz)
2ae"i 

with^i G ( U ) n f , . 

THEOREM 6. Le/ r be a Demushkin relation in the free pro-2-group F of even 
rank n. Let % be the character associated with the Demushkin group G = F/(r) 
and suppose that Im(x) = {±1} X U2(/) with 2 < / < 00. Then there exists 
a basis xi, . . . , xn of F such that 

r = xi2(xi. x2)x3
2 (x3, x4)(x5, x6) . . . (xn-i, xn). 

Proof. By an earlier remark it suffices to prove the theorem in the case 
n = 4. For any basis x = (xt) of F, set 

rQ(x) = Xi2(xb x2)x3
2/(x3, x4). 

The above results show that there exists a basis x = (xt) oi F such that 

X(*i) = 1, X(x2) = - 1 , x(*s) = (1 - 20" 1 , x(*0 = 1, 
and 

r = r0(x)ez 

where ez G (X, X) C\ Fz. We fix this basis and let £* be the image of x* in 
gri(F). Then, as in the proof of Theorem 5, we define the Lie algebra gr(X) 
and the linear map ôj-i: gr ;_i(X)4 —> grj(X). Recall that 

6 ;_l(r i , . . . , T4) = TT'Ti + [n , £l] + [ri, £2] + [£l, T2] + . . . 

for n , . . . , r4 G gry_i(Z). 

LEMMA 1. For i > 2 //ze abelian group grt(F) is generated by grt(X) and 
TT*-1-^. Moreover, TT*"1-^ £ gr*(X). 

Proof. We have an exact sequence 

0 - > X - > F ^ ( Z / 2 Z ) X (2Z 2)->0 

where 0(^4) = 2 G 2Z2, 0(x2) = 1 G Z/2Z,0(*i) = <^(x3) = 0. Then 
0(F,) = {0} X 2*Z2 for * > 2 and » , = $(F<)/<f>(Fi+1) ̂  2*Z2/2i+1Zs. If 21 
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is the abelian Lie algebra £31*, we have the exact sequence of graded Lie 
algebras 

0 - ^ g r ( X ) — > g r ( F ) ^ 3 ï - > 0 

with 0*(7r*-1-f4) ^ 0. 

LEMMA 2. For i > 3 the abelian group grt(X) is generated by elements of the 
form 7T-T, [r, %j] with r G grz_i(X). 

Proof. Follows from Lemma 1 as in §4.1. 

LEMMA 3. If i > 3 the abelian group gr*(X) is generated by Im(5t_i) and the 
elements it*-2- [£2, £4], 7rî_1-£i, 7rî_1-£3. 

Proof. As in the proof of the corresponding Lemma 3 in §4.1, it suffices to 
prove that 7rgr2(X) C §3 where §3 is the group generated by Im(5j_i) and 
the elements 71i—?• [$2, £4], 71i—1 -gi, and 7r*-1-£3. By Lemma 3, group gr2(X) is 
generated by *•£, (j ^ 4) and [£,, &] (j > k). Now TT2-£I, TT2-£3 G §3 by 

definition and 
TT 2 -£ 2 + [*••&, f2] = TT2-£2 € Im(ô2). 

If j , k 9^ 2, then [[£,, &], £2] G Im(<52) by virtue of Jacobi's identity. Hence 
*'lb, 6t] G §3 if i , * ^ 2. If j ^ 4, then *>•{, + [*••$„ £2] G Im(ô2) which 
implies that [ir-Çj, £2] G §3. Now 

hence [it • £;-, £2] G §3 if J ^ 4. But TT • [£4, £2] G §3 by definition. Hence 71 • r G §3 
for any r G gr2(X) and the proof of the lemma is complete. 

LEMMA 4. Same as Lemma 4 of §4.1 except that (3) is fo £e replaced by 
(3) L ^ £>* Z>£ the crossed homomorphism of F into I such that Dt{xj) = 2b tj. 

Then if At is the corresponding linear map of gr(F) into 71F2M, we have 

AiC^"1 •&) = 7Tj bik if k^ 2,4 and A4(TT''-2 • [f2f £4]) = ^'. 

Proof. I t suffices to prove (2) and (3). 
(2) If * i , . . . f /4 G -Y*-i, then 

jD(*i2(*it * i ) ( # i i ^ ) ( / i , x2)h
2f(hy x 4 ) ( x 3 , / 4 ) ) 

= 2 ^ ! + (x(x2) - l)D/i + 2'Dh + ( x ( ^ ) - 1 - l)Dh 

= (2 - 2)J3/i + (2 / + 1 - 2 ' - 1)Z?*8 = 0. 

(3) DiipcJ-1) = 2'-1£>i(x*) = 2>ôtt if £ ^ 2, 4 and 

D2(x2yx,yj-2 = 2^-2
JD2(x2,x4) = - 2 ' " 2 ( 1 - 20(x(*a) - 1)^4*4 = 2>(1 - 20-

We can now complete the proof of Theorem 6. Suppose that r = r0(y)ej 
where 

(i) yu • • • » 3>4 is a basis of F with y* = x* (mod X2) ; 
(ii) ŷ Ç I ; (j > 3) and Dej = 0 for any crossed homomorphism of F into / . 
Note that (i) and (ii) are satisfied for j = 3 if we choose yt = xt. 
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If Zi = yi t{~1 with tt 6 Xj-i, then r = ro(z)ej+i, where eJ+i = ex e;- e\ with 
e\ 6 (X, X) H ^+1 and 

ei = /i2(^i» *i)fo> *2)0i, t2)h
2f(th zA)(zZy h) G -XV 

If D is a derivation of F into J, then 

DeJ+1 = Dei + Dej + De\ = 0. 

If €j and e;+i are the images of eô and eJ+i respectively in grj(X)1 then 

€j+\ — €j + 5 ; ( n , . . . , Tn) 

where r* is the image of tt in gr ;_i(X). By Lemma 3, we may choose / i t . . . , t4 

so that 

e, = anj-2'[h, {4] + a iTr^ - f i + asTT^'-1-^ + 5J-I(TI , . . . , rn). 

But 0 = A4(e;) = airj implies that a = 0, and 0 = Ai(a* 7rJ'-1-^) = a * ^ - 1 

for i = 1, 3 implies that ai = a3 = 0. Hence e?+i = 0. This means that we 
have found a basis zu . . . , s4 for i7 with r = r0 (2)^+1 where (i) and (ii) are 
satisfied with yt and j replaced by zt and j + 1 respectively. Iterating this 
process and passing to the limit, we obtain the desired result. 

Theorem 1 now follows immediately from Theorems 3-6. 

§5. Applications: The group of the maximal ^-extension of a local 
field. Let Op be the field of £-adic rationals and let K be a finite extension of 
Op of degree d. Let K(p) be the largest Galois extension of K whose Galois 
group G is a pro-£-group. The field K(p) is called the maximal ^-extension of 
K. In this section we shall determine the structure of G. 

If K does not contain a primitive pth root of unity, Shafarevich (10) has 
shown that G is a free pro-£-group of rank d + 1. Suppose then that K contains 
a primitive pth. root of unity. Following Serre (8) we shall show that G is a 
Demushkin group. By local class field theory G/(G, G) is isomorphic to the 
^-completion of K*, that is, to the product (Z/qZ) X Z / + 1 where g is a finite 
power of p. The integer q is the highest power of p such that K contains a 
primitive gth root of unity. Hence Hl(G) = (Z/pZ)d+2, which implies that 
n(G) = d + 2. Choosing a primitive pth root of unity we may identify Z/pZ 
with the group of pth roots of unity in K. We then have the exact sequence 

0 -> Z/pZ->K(p)* £>K(p)* -> 0. 

Taking cohomology, we obtain the exact sequences 

(1) K* &>K* ^>HX(G) -+Q, 

(2) 0-^H\G) -+H\G,K(p)*) ^H\G,K(p)*). 
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By local class field theory we have 

EP(G,K(p)*) = Qp/Zp. 
Hence by (2), 

H*(G) = Z/pZ. 

On the other hand, using the sequence (1) we see that Hl(G) may be identified 
with K*/K*p. With the above identifications Serre has shown (7, ch. XIV) 
that the cup product 

Hl{G) XH1(G)^H2(G) 

corresponds to the Hilbert symbol (a, b). I t is well known that this symbol is 
non-degenerate. Hence G is a Demushkin group with invariants n(G) = d + 2, 
q(G) = q. Using Theorem 3, we obtain the following theorem due to Demushkin 
( i ; 2 ) . 

THEOREM 7. If q 9e 2, the group G can be defined by d + 2 generators Xi, . . . , 
xd+2 with the single relation 

XiQ(xlt X2)(X3 , X4) . . . (pcd+i, X<H-2) = 1. 

In order to determine G in the case q = 2, we must determine the invariant 
Im(x) where x> G —>XJP is the character defined in §3. Let 

Q,G>) = U QPGVO 
N=l 

be the field of pNth (N —•» » ) roots of unity. The Galois group of QP(ÇP°°)/QP 

is canonically isomorphic to \JP under the map a I—> aa, where ora(?) — fa for 
all roots of unity f. Since QP(ÇP<*) C K(p), we obtain a continuous homo-
morphism %'\ G —>\5P where Im(x') is the Galois group of Qp(Çp<x>)/K'', with 
Kf — K C\ QpGv»). Using the exact sequence 

0 _* Mpn _+ X(p)* - £ #(£)* —> 0 
and choosing the primitive pnth. root of unity fpn properly for n > 1 (that is, 
so that fpn+ip = fp» for w > 1), we obtain a commutative diagram 

K*/K*pn _> Hi (G> ^ n ) _> jyi (G f j / ^ j ) 

1 1 i 
# * / * * ' -> Hx (G, M.) -> fl1 (G, / / £ / ) 

for n > 1, where I = Z(x') is the profinite G-module defined in §3. Since the 
horizontal arrows are all isomorphisms and K*/K*pn —> K*/K*p is surjective, 
we see that Hl(G, I/pnI) -+Hl(G, / /£-0 is surjective for n > 1. Hence, by 
Theorem 4, x = x'-

If g = 2 and dis odd, then i£' = X and hence I m (x) = U2
(1) = {±1} X U2

(2). 
Using Theorem 3 and the Corollary to Theorem 4, we obtain the following 
theorem due to Serre (8). 
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THEOREM 8. If q = 2 and d is odd, then the group G can be defined by d + 2 
generators xh . . . , xd+2 with the single relation 

Xi2X2*(x2, Xz)(Xi, X5) . . . (Xd+i, Xd+2) = 1. 

As for the case q = 2, d even, we have by Theorem 1 : 

THEOREM 9. If q = 2 awd d is ez/en, /Ae/z /&# group G can be defined by d + 2 
generators Xi, . . . , xd+2 with the single relation 

Xi2+2/(xi, x2)(x3, x4) . . . (*d+i, xd+2) = 1 i / Im(x) = U 2
[ / J , / > 2, 

or 

Xi2(xb x2)x3
2/(x3, x4) . . . (xd+i, xd+2) = 1 if Im(x) = { ±1} X U 2

( / ) , / > 2. 

Example. HA is a closed subgroup of U2 of finite index, let K C ChCfo00) be 
the fixed field of A. Then K is a local field with d = (U2:^4). Since O2 contains 
a primitive square root of unity, the group G is a Demushkin group with 
Im(x) = A. In particular, if A = U2

[2], then (JU2:A) = 2 and K = Q 2 ( V ^ 2 ) . 
Hence G can be generated by four elements x, y, z, w with the single relation 

x6(x, y)(z, w) = 1. 
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