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GRADED COMPLEXES OVER POWER SERIES RINGS

PAUL ROBERTS

A common method in studying a commutative Noetherian local ring 4
is to find a regular subring R contained in A4 so that 4 becomes a finitely
generated R-module, and in this way one can obtain some information
about the original ring by applying what is known about regular local
rings. By the structure theorems of Cohen, if 4 is complete and contains a
field, there will always exist such a subring R, and R will be a power series
ring k[ [X,, ..., X,,]] = k[ [X]] over a field k. In this paper we show that
if R is chosen properly, the ring 4 (or, more generally, an A-module M),
will have a comparatively simple structure as an R-module. More
precisely, A (or M) will have a free resolution which resembles the Koszul
complex on the variables (X|,..., X,) = (X); such a complex will be
called an (X)-graded complex and will be given a precise definition below.
For low dimensions (= 3) it is possible to list all modules which have such
a resolution, and there are finitely many indecomposable ones; for higher
dimensions this does not appear to be possible.

Nonetheless, in any dimension (X)-graded complexes have some nice
properties. The only one we will consider here is the following: if F, is an
(X)-graded complex, then it is possible to define a filtration on each
module F; so that the complex of associated graded modules one obtains is
a complex of free graded modules over the associated graded ring of
k[ [X]] with homology equal to the associated graded module of a good
filtration on the homology of F,. Such complexes will be called graded
complexes; again, the exact definition will be given below. Interest in
“approximating” a complex by a complex of graded modules came partly
from the results of Peskine and Szpiro [2], where some conjectures on
multiplicity are proven for graded modules by defining a sequence of
invariants related to dimension and multiplicities from a complex of free
graded modules. The results here allow one to define an analogous
sequence of invariants in a more general situation; however, they will not
have all the properties one has in the graded case, due to the inevitable
dependence on the subring R. If A is Cohen-Macaulay, it is possible to
produce from this a complex of modules over the graded ring of 4 (graded
by powers of the ideal (X) ), and, if the original complex is the resolution
of a module M, the new complex will be a resolution of the associated
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graded module of M by modules which are not necessarily free, but can be
described in terms of the ring 4/(X). However, we do not develop this in
this paper.

1. (X)-graded complexes. Let 4 = K[[X]] = k[[X}, ..., X,]]. Before
defining the concept of (X)-graded complex, we give a definition of the
usual Koszul complex K,.(X),...,X,) which will serve as a model for
the more general definition.

In what follows, the word “complex” will mean “bounded complex of
finitely generated free 4-modules.”

The definition of the Koszul complex we give here is by induction
on n.

1.If n = 0, we let K, = A = k in degree zero (thatis, K; = kif i = 0
and K; = 0if i # 0).

2. Suppose K,(X,,...,X,_,) is defined and is a complex of free
k[[X|,....X,_]]-modules. Then K,(X; ..., X,) is the total complex of
the double complex

X
KXy n X, ) © K[[X]|—eKu(X,.....X,_) © k[[X]]

where the two copies of K, (X,...,X, ) ® k[[X]] are given de-
grees | and 0 respectively and the tensor product is taken over
k[ [X), .o, X, ).

We recall that if L, is a double complex, then the total complex of L.,
denoted tot(Ly,), is the complex with

tOt(L**),- = @ L,-k
Jtk=i -

and differentials induced by those of L.
We next give a preliminary definition.

Definition 1.1. A projective complex is a direct sum of complexes of the
forms:

1
.—~>0—>4—>4—->0—>... and
.2 0—>A4->0—> ...
where the non-zero part can occur in any degree.

For the sense in which it is reasonable to consider such a complex pro-
jective, we refer to [3]. We note that if 4 is a field, every complex is
projective.

Definition 1.2. We define what it means for a complex to be (X)-graded
by induction on n.
1. If n = 0. every complex is (X)-graded.
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2. If n > 0, an (X)-graded complex is a complex which is quasi-
isomorphic to a complex of the form

X9
tot[ (Ky @ k[ [X]])— (P @ k[ [X]])]

where we have a short exact sequence of complexes

O—>L*—>K*2>P*—>O

in which K, and P, are (X,,...,X,_;)-graded complexes and L, is
projective.
We give three examples:

Example 1. Every projective complex is (X)-graded.

Example 2. The Koszul complex is (X)-graded. More generally, if we
truncate the Koszul complex by letting K, = 0 for all i less than some
integer j, the resulting complex is (X)-graded.

Example 3. The complex over A = k[ [X|, X,]] given by

is also a truncated Koszul complex, but it is not in the form of part 2 of
the above definition. However, it is quasi-isomorphic to the complex

—X2
Xl

1

4 X X0

A

which is in the correct form, so it is (X)-graded.
We next prove a result we will use later.

PROPOSITION 1.3. Every (X)-graded complex is quasi-isomorphic to one of
the form given in part 2 of Definition 1.2 in which L, has zero
differentials.

Proof. Let

0—>L*—>K*2>P*—>0

be a short exact sequence of complexes of k[ [X|, ..., X, _,]]-modules as
in part 2 of Definition 1.2. Suppose there exists an i such thatd;:L, — L, _,
is not zero. Since L, is projective, this means that there is a direct
summand F, of L, isomorphic to

.—>O—>A—1—>A—>...
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furthermore, since L; is a direct summand of K; for each j, the image of £
in K, is a direct summand of K,. Denoting K,/F, by K, we have a short
exact sequence

0—>F—>K,—>K,—0

so that K, is quasi-isomorphic to K, and is thus (X, ..., X,_;)-graded.
Furthermore, we have

0= E @ k[[X]] — tot(Ky ® k[[X]] = P, ® k[[x]])
— tot(K, @ k[[X]] = P. ® k[[x]]) =0

so that the above total complexes are also quasi-isomorphic. By
continuing to remove trivial direct summands in this way we can
eventually arrive at the situation in which L, has zero differentials.

2. Graded complexes. Let 4 be a local ring with maximal ideal m. We
define in this section an associated graded complex with respect to m for
any complex of free A-modules. If the complex is minimal, so that the
differentials are zero modulo m, this can be done very easily by using
the m-adic filtration on each F; shifted by i; however, we will need a more
general case so we will not assume that the complex is minimal, even
though this makes the definition somewhat more complicated.

Let F, be a bounded complex of finitely generated free A-modules. We
will assume, as we can, that bases are chosen for each F, so that
d;:F; = F,_, is given by a matrix of the form

0 0 0
M (1 0 o0
Mi Ni P;

where I is an identity matrix and M;, N;, and F, all have entries in m. We
denote the corresponding decomposition of F; into a direct sum by

F,=F oFreFr.
The fact that did; | = O translates into the equations
N+ FEM;y =0 FEN;yy =0 RE,) =0
Thus the matrix (1) becomes

0 0 0
2) I 0 0
M, —EM;., F

1 1

and the only condition is PP, = 0.
We now wish to produce from this a complex of free graded modules
over the graded ring
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A = @O m/m T
=

We use the following terminology and notation: if M is a finitely
generated A-module, a good filtration on M is a decreasing filtration of
A-submodules

M=F,M)2F,_ (M) ...

such that mF;(M) S F,, (M) for all j and mF;(M) = F,. (M) for all but
finitely many j. If M is a module with a good filtration, then M, the
associated graded module, is a finitely generated 4-module. If M — N
satisfies

f(E,(M)) S F(N) for all .

f induces a map from M to N which we denote f
Now let F, be the complex above, and define a good filtration on each F;
by letting

F, (F)=m 'Flom '~ 'F & m 'F.

The fact that d.(F(F.)) S F,(F,_)) follows from the fact that d, is
defined by the matrix (2) and M,, M, ,, and P, have entries in m. Thus
there is an associated complex F of free 4-modules; F; is isomorphic as a
graded module to

Al @ A[—i + 12 ® A[—i]>,
where s is the rank of F.
The filtration on F; induces a good filtration on Ker d; and Imd, | (by

the Artin-Rees Lemma), and thus also on the homology H,(F).
Furthermore, there is a short exact sequence

0 — Imd,,, — Ker d, = H;(F,) — 0.

ProposiTION 2.1. There are natural maps:
x:Ker d. — Ker (d)
and
p:Im(d ) — Tmd;
making

Imd;, | —— Ker 4,

i K;
commute.
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Proof. The maps «; and p, are induced by the identity on F}; the fact that
they are well-defined and the commutativity of the diagram are straight
forward to verify.

Definition 2.2. The complex F, is graded if k; and p,; are isomorphisms for
all 4.

If F, is graded, we have a commutative diagram

0—Im(d, , ) —>Ker(d,)—H,(F,)—0

p‘i 122 Kz'll 22 l

0——Imd  ,—>Kerd—>H,(F,)—0

so that H,(F,) is isomorphic to H,(F,) as a graded module.
PROPOSITION 2.3. F, is graded if and only if «; is surjective for all i.

Proof. We have commutative diagrams

Ker di\ Im c7,~+1\
K; /F; and l“i /F;
Ker d Imd,,,

i

so that k; and p,; are automatically injective. Thus the proposition will be
proven if -we can show that the surjectivity of k;,, implies the surjectivity
of p;. We first express these conditions in terms of elements:

Surjectivity of p;: This says thatif « € F, | and da € F,(F;), then there
exists a B € F,(F;,,) withda — dB € F,, (F)).

Surjectivity of k; ,: this says that if « € F(F,,) and da € F,_(F)),
then there exists B € F,(F;, ) witha — 8 € F, ,(F;) and dB = 0.

Suppose now that ;| is surjective. Let a € F; | with da in F (F}).
If « € F(F;,,) we are done; if not, choose j < k such that
a € F(F; ;). Then

da € Fi(F) € F;(F),
so by the surjectivity of k; ., there is a B in F(F;, ) with
df =0 and a — B € F, (Fi1)).

Then d(a — B) = da — dB = da, so we can replace a by a — B €
F, 1 1(F;1 ). This process can be continued until we find y € Fy(F; ) with
dy = da, proving that p, is surjective.

The next result we wish to prove is that the property of being graded
depends only on the quasi-isomorphism class of the complex F,. Since we
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are only concerned here with complexes of free modules, this amounts to
saying that if we represent a complex F; as a direct sum F, = G, © M,,
where G, is chain homotopic to zero and M, is minimal, then F is graded
if and only if M, is. If we represent F, as in (2), the associated minimal
complex is F with boundary maps a’i3 defined by the matrices P.

1

ProPOSITION 2.4. If F, and G, are quasi-isomorphic, then F, is graded if
and only if G is graded.

Proof. As outlined above, it suffices to show that F, with boundary
maps given by (2) is graded if and only if F2is. We use the criterion of
Proposition 2.3.

Assume that Fis graded. Let

0
1 a
B
be in the kernel of d; with
0 .
in F,(F;) and
B

0 0
B —PMa + PB

We then have
~Ma + B € FF)) and P(—Ma + B) € F, (F_).
so, since F is graded, there exists a y EF,((F?) with Py = 0 and
(—Ma + B) — y € F, (F).
Then
0

a € Ker d; and
Y + Ma

0 0 0
a |— « = 0 € Fy(F).
B Yy + Ma B— v — Ma

Hence F, is graded.
Conversely, assume that F, is graded, and let « € F (F;), be such
that
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Pa € Fy . (F_)).

Then
0
0 )e F(F)
a

with

0
d<0> € Fr(Fiy)s
a

so there exists

0
<B € F(F)
Y

with

0 0 0
d <B> =0 and (O) ~ ,8> € F ., ((F)).
Y a Y

We claim that the element § = y — M in F,3 satisfies the condition
of Proposition 2.3. Since

0
Y

we have P§ = Py — PMB = 0. Furthermore, since 8 FH,(FIZ), we
have MB € F, (F>), so

a —f0=a+MB—y=(x—y)+ MBEF,_(F).
Thus d?(ﬂ) =0anda — 0 € Fk+1(F?), so Fis graded.

As a final result in this section, we wish to show that the (X)-graded
complexes defined above are graded. Let

A =k[[X},...,X,]] and m = (X},..., X,).
ProrosITION 2.5. An (X)-graded complex is graded.

Proof. The proof is by induction on n. If n = 0, A4 is a field and there is
nothing to prove.

Assume the result for n — 1, and let F, be an (X)-graded complex. By
Proposition 1.3, we can assume that

E = tot(K, ® k[ [X] 122 b, ® k[ [(X]]).
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where

0—>L*—->K*2>P*—>0

is exact, K, and P, are (X),..., X,_;) graded complexes, and L, is a
complex of free A-modules with zero differentials.

If the complex P, is not minimal, we can remove a trivial summand
from P, and K, to make P, minimal while replacing all complexes
involved by quasi-isomorphic ones. It is not always possible to make K,
minimal, but by a proper choice of splitting

K=POL ®L,

the boundary maps of K, can be put in the form

G, 00
J 00
M, 0 0

where J; is of the form (I 0) for an identity matrix / and G; and M, have
coefficients in m. The boundary map in the total complex to X, ¢ will now
have the form

Gy (DX, 00
0 G, 00
0 J 0 0
0 M 0 0

This is now in the proper form, and we can use the criterion of
Proposition 2.3 to show that this total complex is graded, using the
inductive hypothesis on K, and P,.

Let

be in F, (F;) with

e w

a Gie + (X8
Y JB
) MpB

in F; ((F;_)). Itis clear that the choices of y and § are arbitrary and they
can be taken to be zero. We must thus find

o

= g mod F,, (F;) with d

0

o o™ R
o oW
I
=
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Let
a=2 an; and B =2 ,BJ-X’;

with o and ,8 in k[ [X;...., X,_]] Since G and M have coefficients in
kX .... X.._1]]. the condition

Gipa + (= 1)'X,B € Frp((F;y)
becomes:
Gii(ag) € Frpy(F-y)
Giyi(ey) + (“1)1.:3171 =0,_,€F (K forj>0.

Since P, is graded. we can find &, with &y — aq € F,.(P) and
dan = 0. Let

a=a + aX, + X2+ ...

and let
B =3B — (—1)8)x,.

It is then clear from the equations above that & and 8 will satisfy
Gi@ + (—1X,B =0

and that

mod F, . ((F}).

SOoO™R
S O ™R

The fact that
XB = Gir((=1)®)
now implies that
X,G,(B) = 0, X, J(B) = 0, and X,M(B) =0,

SO

Thus F, is graded.
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3. General complexes over power series rings. Let 4 = k[[Y,,...,
Y,]] be a power series ring, and let F, be a bounded complex of finitely
generated A-modules. We wish to show that there is a sub-power series
ring k[ [X]] € k[[Y]] such that k[[Y]] is a finite k[ [X] |-module and
such that F, is an (X)-graded complex. The proof is by induction; as usual,
there is nothing to prove if n = 0. If n > 0, we reduce to dimension n — 1
by taking the dual of a Cartan-Eilenberg resolution of £, and showing that
it is quasi-isomorphic in positive degrees to a double complex of modules
of dimension less than or equal to n — 1. One can then recover F, up to a
projective summand using a method of [1] and show that for proper choice
of k[ [X]], F is (X)-graded. For the homological results in this section
which are not well-known, we refer to [2].

Let

0—)Ck*_>Ck~l,*—)"'Cl*-_)CO*—_'\‘Ek_—)O

be a finite Cartan-Eilenberg resolution of K.
Let P** = Hom,(Cy4, 4). For each i, j we have boundary maps:

dP = P
8%:PV — P

LeEMMA 3.1. For each i > 0 and for each j, we have:
a. dim(H'(P¥)) =n — 1
b. dim(H'(Ker 8¥)) = n — 1.

Proof. These homology groups are
Ext(F,, A) and Ext'(Fy/d,(F; ), A)

respectively; since 4 is an integral domain of dimension n, they have
dimension = n — 1 for i > 0 (in fact, Ext'(F;, 4) = 0).

LEMMA 3.2. There exists a sub-double complex K** < P** such that:

a.dim P//KY = n — 1 for all i and j.

b. P¥ — P¥/K* induces isomorphisms in homology in degrees > 0 for
all j.

c. Ker 8} — Ker 8}/ g induces isomorphisms in homology in degrees > 0
for all j.

Proof. We proceed step by step, dividing at each stage by a subcomplex
of the form

0——=3(K) -8d(K)—»

) )

K - d(K) —0— . ..
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where K is a submodule of P*/ such that dim P*/K = n — 1 and the
projection from P** onto the quotient modulo this subcomplex satisfies
conditions b and c of the lemma. Thus we assume that this has been done
for i < k and for i = k and j < I, so that dim P*/ = n — 1 for these
indices, and show that it can then be done for P*!_ Since there are only a
finite number of non-zero modules in P**, this will prove the lemma.

Fix k, | as above. The procedure is now as follows: we give several
conditions on a submodule K of PX' so that if K satisfies all of them, it will
satisfy conditions b and c of the lemma. We show that there is a
submodule K satisfying each condition with

dim PY/K = n — 1.

Finally, each condition has the property that if K satisfies it so does any
submodule of K. Then the intersection of submodules satisfying each of
them will satisfy all of them and PY/K will still have the correct
dimension.

d
ConDITION 1. K — dK is an isomorphism if k > 0 and surjective if
k = 0.

Surjectivity is of course obvious. For injectivity, assume & > 0 and
consider the sequence

P
ph—1l s phi & g pk+1i

Since P*~ M and H*(Pk’[) have dimension = n — 1, Ker 4/ must also.
Thus we can choose a K with

KN Kerd =0 and dim P/K=n — 1.

d
CoNDITION 2. 8K — d8K is an isomorphism if k > 0 and surjective if
k = 0.

As for Condition 1, we can find a submodule L of PRI with
dim P'*'/L =n —1 and L N Kerd = 0.

We then let K = 8 (L).
We assume henceforth that the module K under consideration satisfies
Conditions 1 and 2.

ConDITION 3. For k > 0, and for all j,

. d .
Ker 8%/ = Ker 841/
is an isomorphism. For k = 0, for all j we have

K N d”'(Ker 8571y c Ker 8% + Ker d¥'.
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This condition is trivial if j # /or [ +1 and is Condition 2 if j = / + 1.

Hence we assume j = /.
If k¥ > 0, Condition 3 follows from Conditions 1 and 2 and the

diagram
0—Ker &) —K —8>3K——> 0

d ’ §

0—Ker 8k —» dK ——»dSK—»0.
0. Both Ker 8’}‘;/ and Ker d’,‘;’ are mapped by d into

Let k =
Ker 847! and we have an injective map
0 — d '(Ker 85"y (Ker 8% + Ker d%) — H'(Ker &*).

= n — 1, we can then find a submodule K

Since dim H'(Ker 83 =
with
dim PY/K = n —1

and satisfying
K 0 d '(Ker 8511y € Ker 8%' + Ker dy'.

c
ConDITION 4. For all k > 0, and for all j, the sequence

0 — Ker 8%/ — Ker 8%/ — Ker 834 — 0

is exact.
With no assumptions on K, we have an exact sequence

0 — Ker 8%/ — Ker 8%/ — Ker 8;,*”[{ — Coker 8%/

Thus we must make the map from Ker 83% to Coker 8%/ zero. Since
Coker 8%/ = O unlessj = / — 1, we assume j = / — 1. In this case, the

map looks like:
Coker 8%t = ... —>0—> Kk—39 sk —0-—...
Isk,zﬂ Iskﬂ,/ﬂ

0— 8“(K)d—>8“‘(d1<) —0—

Ker 8%/
We must now choose K so that both vertical caps are zero.
To make /7! = 0 in this diagram, it suffices to make

K n 8Py = 0.
Now dim PY/"! = n — 1 by hypothesis, so
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dim 8P Yy =n -1

and we can do this.
To make 8¢ T1/~!

PN N gk = 0.
First, the short exact sequence of complexes:

0— Ker8*' ' - P71 5> Im s+~ -0

zero, we need

together with Lemma 3.1 imply that Im &%/~ has homology of dimension
= n — 1 in degrees = 1. Since d(Im Bk’l"l) has dimension = n — 1, we
deduce that

Im 8t~ A Ker g*TW
has dimension = n — 1. Hence we can find a submodule L of P**!/
with

dim PFYY/L

IA

n—1
and such that
LN Im& 1A Ker gkt = 0.

It then suffices to take K = dﬁl(L).
We now show that if Conditions 1-4 are satisfied, the map P** —
P**/K** satisfies Conditions b and ¢ of the lemma.

Condition b. Conditions 1 and 2 imply that for each j, and each i > 0,
we have H'(K*/) = 0. Thus the long exact sequence associated to

0 — K*/ — p*/ — (P/K)*/ — 0
implies Condition b.

Condition c. We divide this into two cases.
First assume & > 0. Then Condition 3 says that

H'(Ker 8%/) = 0 for all i,
and Condition 4 says that
0 — Ker 8%/ — Ker 8%/ — Ker 8%% — 0

1s exact. Hence the long exact sequence implies Condition c.
Now assume k& = 0. We must check that

H'(Ker 8%7) — H'(Ker 8%%)
is an isomorphism.
Surjectivity follows from Condition 4 as in the case when k > 0. We

now show that Condition 3 is enough to implv that this map is injective.
This is non-trivial only if j = /.
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Let n € H'(Ker 8;;/15) be such that its image in H'(Ker 8;',‘)/,() is zero.
Represent 1; by x in P with 8x = dx = 0. Then, since the ima%e of nis
zero in H' (KerSP/K) there exists y in PX//K with 8y = 0 in P 8K
and dy = X in P* !/dK. In other words, there exists y € Pl and k, k' in K
with

Sy = ok’
dy = x + dk.

Replacing y by y — k’ and k by k — k’, we can replace the first equation
by

dy = 0.
We have

8(dk) = 8(dy — x) = déy — éx = 0,

SO
dk € Ker 8511,

Thus, by Condition 3 we can write k = s + ¢, with
s € Ker 8:’1 and ¢ € Ker d;’l.

Now let y) = y — 5. Then:
8 =8y — 85 =0
dy =dy —ds = x + dk — dk = x.

Thus x € d(Ker 8/), y = 0in H'(Ker 8;"1). This completes the proof of
the lemma.

We now return to the inductive proof that there is a power series
subring R of A such that F is an (X)-graded complex of R-modules. Let
K** be as in Lemma 3.5, and let M** = P**/K** Then the dimension of
MV is less than n for all i and j, so there is a non-zero element X, € A such

that X,M” = 0 for all i, j. Choose X’l, ..., X,_,in 4 so that A/X,A
is a finitely generated k[[X,,...,X,_,]]-module. We note that A4 is
then a finitely generated k[ [X,, ... )7,,_1, X, ] ]-module.

The procedure is now to reconstruct F, from M**. Let Q** — M**
be a Cartan-Eilenberg resolution of the complex of complexes of
k[[X,, ..., X,_]]-modules:

0— M¥* > M* > . — M 0.

Let S** be the total complex (or mapping cone) of the map of complexes
of complexes of k[ [X, . .. . X X,]]1 modules given by

n—1

Q** & Q**,
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where

Q’** _ Q** ®k[[)?l

Thus for each i, we have
x = g @ it

with differentials induced by those of O ** and by X,

Then $** is a resolution of M** over k| [)?1, Ce, )7”_1, X,]]. Since P**
is a resolution of M** in degrees = 1 (by the construction in Lemma 3.2),
S** and P** agree in degrees = 1 up to trivial direct summands and in
degree zero up to a projective direct summand. Let 7** denote S**
truncated by omitting everything in degrees < 0. The complex T** is
constructed from Q** as follows: let Q%% denote Q** truncated by
omitting Q’* for i < 0 (ie., replacing these O'* with zeros), and let
Q%* by O** truncated by omitting 0™ for i < 1; similarly define 0%
and Q%}. Then if

Ynfl]] k[ [Yla ... anb X ]]

.....

- Y
0= — 0%
is the inclusion, we have
Xy ~
= tot(QE > 0%p).

We now dualize to get back to Cy,. Let
R=k[X,....X,_|. X,]]
We have:
Cyxx = Hom (P**, 4).

n—1»

We also know that
Hompg(T**, R) = Homg(P**, R)

up to trivial summands in positive degrees and a projective summand in
degree zero. We wish to show that the total complexes of all these
complexes are isomorphic as complexes of R-modules up to a projective
direct summand, and to do this it will suffice to show that

Hom (P**, A) = Homg(P**, R)

as complexes of R-modules.

To see this last isomorphism, we note that since P** is a complex of free
modules, we can decompose it into summands isomorphic to 4 and maps
given by multiplication by elements of 4. Hence it suffices to find an
isomorphism

a:Hom (A4, A) = Hompg(4, R)
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such that for each a € 4, the diagram

Hom, (4, A) = A—2L — +4

[44 [s4
Homp(A4, R) ——2—=Homg(4, R)

commutes. But this is the same as an isomorphism of 4-modules:
Hompg(A4, R) = A4,

and this exists whenever A is a Gorenstein ring.
Putting these isomorphisms together, we deduce that

E, = tot(Homg(T**, R))
up to a projective direct summand. Let
R/ = k[ [Yl’ . e ’Xn*l]]'

By changing the order in which we tensor with R and take total complexes,
we have that tot(Homg(7T**, R) ) is isomorphic to

tot{Hom(tot Q'2,, R)

X '"Hom(tot ¢, R’) ® R
®R’ Rn ( 4 ) »Hom(tot QE], R’) ®R’ R].

By the induction hypothesis, we can find a subring

K[Xp, ..., X,_]) € k[[X),....X,_4]]

such that the complexes Hom(tot Q*%,, R’) and Hom(tot Q}%,, R’) are
(X}, ..., X,_-graded and such that k[[X,,..., X, _;]] is a finitely

generated k[[X),..., X,_,]]-module. It then follows that 4 is a fi-
nitely generated k[ [X, ..., X, ] ]-module and Hom(T**, R), so also F,, is
an (X, ..., X,)-graded k[ [X,, ..., X, ] ]-module, as was to be shown.

4. (X)-graded complexes in low dimension. If the dimension R is one or
two, it is possible to write down a list of all indecomposable (X)-graded
complexes. If the dimension is three, this does not appear to be possible;
however, it is still possible to list all modules whose free resolutions are of
this tvpe.

In dimension one, R is a discrete valuation ring. so there is a structure
theorem for all compiexes; every complex is a direct sum of free moduies
and compiexes of the form

yn
.—>0—>R>SR—->0—....
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We remark that the complex is (X)-graded if and only if » = 1 in every
direct summand of this form; we will use this in the next example.

Assume now that the dimension of R is 2. Here there are numerous
infinite families of indecomposable modules, but we will show that there
are exactly five distinct indecomposable (X)-graded complexes. For
convenience, we will write R = k[ [X, Y] ]. and we assume that we have a
map ¢:K, — P, of (X)-graded complexes over k[ [X]] which fits into
a short exact sequence

*) 0->L, 2K, >P—0

where L, is a complex of free modules with zero differentials. We now
wish to describe the complex

tot(K, ® k[ [X, Y] ]ﬁp* ® k[[X, Y]]).

We will do this by modifying the complex (*) by row and column
operations on its matrices to split off direct summands of various types.
Let S = k[ [X]]. Let n be the highest degree for which L, K, or P, is not
zero. We can then throw out L, and the highest two degrees of the
sequence will look like:

0 0

0— 00— ——5"—>0

%)

v
0—> =S + §"—>5"—»0

where M and N are matrices with coefficients in S.
. . (M .
If we have a column of zeros in the matrix (W)’ we can split off a

summand of the form

1
§—S

from the first row, which gives the complex

, Y

(), R—R

If we have a row of zeros, we can split off a summand from the second row

and deal with it when considering the map from degree n — 1 to degree
n— 2.

. . (M
We now wish to reduce the matrix (;) Note that we are not allowed
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to add a row of M to N or interchange rows when one is in M and the
other in N, as this will not preserve the subcomplex L,. Other row and
column operations are allowed.

We first reduce N to obtain the form

0 M

SO~ | O
O = O
S OO

where we use X to denote X times an identity matrix of the appropriate
size. This gives summands of the form

1

S——S

1 1
1

S§———8§

which give rise to trivial complexes.
Now reduce the part of M’ lying above zeros:

0 I 0 0
M 0 X O
0 0 O

X 0 0 0

The I gives direct summands of the form
S§——m§,
1

S

which produce the complex

o (7)

R——=R?> = R.

We now have:

M X
0
X 0
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We note that a column operation on M” can be undone in X by an
appropriate row operation, and that any multiple of X in M” can be
removed by subtracting a multiple of a row below the dotted line, so that
we can reduce the part of M” to the left of zero and obtain:

0 MI/I X
I 0 0
0 0 o0
X 0 0
0 X 0

This produces summands of the form
1

S——————S

(4 x

Lo on ¥
which give
—Y
(3) 1
X/ J(X0Y) ,(XY)
R——»R——— R = R*——R.

We can now reduce M’ to get

I 0 X O
0 0 0 X
X 0 0 O
0 X 0 O
This gives three types of direct summand. The first is:
1 X
X 0
however, in diagonal form this becomes
1 0
0 x°

which cannot occur since K, is (X)-graded. The others are:
1

S—S§
X

S—0
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which produces

X

(4) Y
R———R?
and
§——t—rs

which gives rise to the Koszul complex

-Y
(&) X

XY

R——»R*——%R.

Thus there are five (X)-graded complexes over k[ [X, Y]]; it is clear that
these are distinct (up to quasi-isomorphism).

If R = k[[X, Y, Z]], there does not appear to be a simple classification
of (X)-graded complexes of this sort. However, if F, is the resolution of a
module, we can take its dual (as in Section 3); this will give an (X)-graded
complex over k[ [X, Y]], and, using the above classification, one can see
that there are eight modules which arise in this way. Adding a free module
of rank one, this gives nine (X)-graded modules in dimension three.
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